Non-equilibrium physics

Time/place: Lecture (eKVV):  Mon 10:15-12:00 & Tue 08:30-10:00 in D6-135 
Tutorials (eKVV):  Wed 10:15-12:00 in D6-135

Instructor: Nicolas Borghini (borghini at physik dot uni-bielefeld dot de) E6-123
Tutor:  Travis Dore
Oral exam, registration at the end of the semester
list of exam dates

News: Contact N.B. to set up the date of your exam!
Outcome of the evaluation
Prerequisites: Classical mechanics, Quantum mechanics, (Special Relativity), Thermodynamics & Statistical physics
(in Bielefeld: Theoretische Physik I, II, III)
Literature: * Boon & Yip: Molecular hydrodynamics
* Huang: Statistical mechanics
* Kubo, Toda & Hashitsume: Statistical physics II
* Landau & Lifschitz: Course of theoretical physics,
              Vol. 5: Statistical physics
              Vol. 9: Statistical physics, part II
              Vol. 10: Physical kinetics
* Pottier: Nonequilibrium statistical physics
* Reif: Fundamentals of statistical and thermal physics
* Zwanzig: Nonequilibrium statistical mechanics
Content: All pages in a (regularly updated) single file  [version of February 9]

Thermodynamics of irreversible processes
  October 9  Reminder on equilibrium thermodynamics
  October 10  Description of irreversible processes
  October 16  Linear irreversible processes: general description
  October 17  Linear irreversible processes: first examples
  October 23  Linear irreversible processes in simple fluids
Distributions of statistical physics
  October 24  Probabilistic description of classical many-body systems
  October 30  Quantum-mechanical systems with many degrees of freedom
Linear response theory
  October 31  Introduction. Linear response function & generalized susceptibility; Kubo formula
  November 6  Symmetric correlation function; spectral density & dissipation
  November 7  Canonical correlation function & relaxation
  November 13  Green–Kubo relation; (generalized) Onsager relations
  November 14  Fluctuation-dissipation theorem; sum rules
  November 20  Nonuniform phenomena. Classical linear response
Brownian motion
  November 20 & 21  Random variables
  November 21 & 27  Stochastic processes: generalities
  November 27  Langevin model
  November 28  Spectral analysis of stationary processes. Application to the Langevin model
  December 4  Markovian stochastic processes
  December 5  Fokker–Planck equation for Markovian processes
  December 11  Fokker–Planck equation for the Langevin model. Generalized Langevin dynamics
  December 12  Classical Caldeira–Leggett model. (Quantum Brownian motion)
Kinetic equations
  December 18 & 19  Reduced phase-space densities & their time evolution; BBGKY hierarchy
  January 8  Boltzmann equation: description of the system
  January 9  Derivation of the Boltzmann transport equation
  January 15  Boltzmann equation: Balance equations, H-theorem
  January 16  Solutions of the Boltzmann equation
  January 22  Boltzmann equation: computation of transport coefficients
  January 23  From the Boltzmann equation to hydrodynamics
  January 29  Wigner distribution and Wigner–Weyl formalism
Links: * Sir Martin Hairer's lecture On coin tosses, atoms and forest fires
* Online version of the NIST Handbook of mathematical functions