
APPENDIX C

Basic notions on stochastic processes

Similar to the previous one, this Appendix introduces further notions of probability theory, namely
now some basic definitions and results on stochastic processes.

C.1 Definitions
Consider a random variable X with sample space ⌦ and probability distribution pX . Let t denote
an additional variable, which takes an infinite number (countable or not) of values in some set I.
Any function f on the product I ⇥ ⌦ defines an infinite number of stochastic variables

YX(t) = f(t,X) (C.1)

labeled by t. Such a quantity is referred to as a random function of the variable t. In case the latter
stands for time, YX(t) is called a stochastic process.
Taking at every t a realization x of the random variable X, one obtains a realization of the process
or sample function

Yx(t) = f(t, x), (C.2)

which is a function in the usual sense of analysis. In turn, fixing t 2 I, YX(t) is a random variable
in the sense of Appendix B.

The random function can be multidimensional, YX(t) = Y 1

X(t), Y 2

X(t), . . . , Y D
X (t). This is in

particular often the case when the random variable itself is multidimensional, X.

In this Appendix, the random functions we shall consider will take their values in (subsets of) R
(in the one-dimensional case) or RD with D > 1. The results can be extended to further spaces,
provided a product can be defined on them, so that e.g. the integrand of Eq. (C.4) makes sense.

In turn, there might be more than one additional variable, that is the random function is labeled
by a multidimensional variable. In physics, this corresponds for instance to the case of random fields,
whose value is a stochastic variable at each instant and at each point in space.

For the sake of brevity, we shall hereafter refer to the variable t as “time”, and assume that it
takes its values in (an interval of) R: we thus consider continuous-time stochastic processes. The
points of the t-axis will be referred to as “instants”.

C.1.1 Averages and moments
Using the probability distribution pX(x) of the random variable, one easily defines averages as

in Sec. B.2. For instance, the (single-time) sample average or ensemble average of the stochastic
process YX(t) is given by

⌦
YX(t)

↵
⌘

Z

⌦

Yx(t) pX(x) dx, (C.3a)

where the integration runs over the sample space ⌦.
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It is sometimes helpful to view this sample average differently: let Yx(r)(t) with r = 1, 2, . . . , N
denote different realizations of the process at the same instant t, where the corresponding
realizations x(r) of the random variable X are distributed according to p

X
. Then the sample

average is given by
⌦
YX(t)

↵
= lim

N!1

1

N

NX

r=1

Yx(r)(t), (C.3b)

in accordance with the definition of the probability distribution p
X

.

More generally, one can define multi-time averages, or higher moments, as follows. Let n 2 N⇤,
and consider n (not necessarily different) values t1, t2, . . . , tn of the time variable. The n-th moment
is then defined as

⌦
YX(t1)YX(t2) · · ·YX(tn)

↵
⌘

Z

⌦

Yx(t1)Yx(t2) · · ·Yx(tn) pX(x) dx. (C.4)

By combining first and second moments, one obtains the autocorrelation function

(t1, t2) ⌘
⌦⇥
YX(t1)�

⌦
YX(t1)

↵⇤⇥
YX(t2)�

⌦
YX(t2)

↵⇤↵
(C.5a)

=
⌦
YX(t1)YX(t2)

↵
�
⌦
YX(t1)

↵⌦
YX(t2)

↵
. (C.5b)

In case the random function is multidimensional, this autocorrelation function is replaced by the
correlation matrix

ij(t1, t2) ⌘
⌦⇥
Y i
X(t1)�

⌦
Y i
X(t1)

↵⇤⇥
Y j
X(t2)�

⌦
Y j
X(t2)

↵⇤↵
, (C.6)

whose diagonal coefficients are autocorrelations, while the off-diagonal elements are referred to as
cross-correlations.

Generalizing the concept of characteristic function for a random variable [see Eqs. (B.6a) and
(B.17)], one defines for a given stochastic process YX(t) the characteristic functional

GYX
[k(t)] ⌘

⌧
exp


i

Z
k(t)YX(t) dt

��
, (C.7)

where the integral runs over the domain in which the time variable t takes its values, while k(t)
is a test function defined over this domain. One easily checks that expanding this characteristic
functional in powers of k yields the n-time averages (C.4) as functional derivatives.

C.1.2 Distribution functions
Consider a stochastic process YX(t). The probability density that YX(t) takes the value y at

time t, also called single-time density , is trivially given by

pY,1(t, y) ⌘

Z

⌦

�
�
y � Yx(t)

�
pX(x) dx. (C.8)

Introducing now different instants t1, t2, . . . , tn with n > 1, the joint probability for YX to take
the value y1 at t1, the value y2 at t2, . . . , and the value yn at tn is given by

pY,n(t1, y1; t2, y2; . . . ; tn, yn) ⌘

Z

⌦

�
�
y1 � Yx(t1)

�
�
�
y2 � Yx(t2)

�
· · · �

�
yn � Yx(tn)

�
pX(x) dx. (C.9)

pY,n is referred to as n-time density or n-point density . With its help, the n-th moment (C.4) can
be rewritten as

⌦
YX(t1)YX(t2) · · ·YX(tn)

↵
=

Z
y1y2 · · · yn pY,n(t1, y1; t2, y2; . . . ; tn, yn) dy1 dy2 · · · dyn, (C.10)

where the integral runs over (n copies of the) space on which the realizations of YX(t) take their
values.
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One easily checks that the n-point densities satisfy the following four properties:

• pY,n(t1, y1; t2, y2; . . . ; tn, yn) � 0 for every n � 1 and for all (t1, y1), . . . , (tn, yn). (C.11a)

• pY,n is symmetric under the exchange or two pairs (tj , yj) and (tk, yk) for all j, k. (C.11b)

• The densities obey for all m < n and for all (t1, y1), . . . , (tm, ym) the consistency conditions

pY,m(t1, y1; t2, y2; . . . ; tm, ym) =
Z

pY,n(t1, y1; . . . ; tm, ym; tm+1, ym+1; . . . ; tn, yn) dym+1 · · · dyn.
(C.11c)

That is, every pY,n encompasses all information contained in all pY,m with m < n.

• The single-time density pY,1 is normalized to unity:
Z

pY,1(t, y) dy = 1. (C.11d)

Remarks:

⇤ Property (C.11b) allows one to order the time arguments at will.

⇤ The definition of the densities need not be extended to the case where two or more of the time
arguments, say tj and tk, are equal, since it in that case, only yj = yk is meaningful—the probability
that the process takes two different values at the same instant is obviously zero.

⇤ Relation (C.11c) expresses pY,m as a marginal distribution of pY,n, cf. Eq. (B.20).

⇤ Starting from the normalization (C.11d) and using Eq. (C.11c), one easily proves recursively that
every n-point density pY,n is normalized to unity as well

Z
pY,n(t1, y1; t2, y2; . . . ; tn, yn) dy1 dy2 · · · dyn = 1. (C.12)

Together with the positivity condition (C.11a), this means that the n-point densities possess the
“good properties” (B.1) of probability distributions.

::::::::::::::::::::::::::::::
Conditional n-point densities

One also introduces conditional probability densities , by considering the probability density that
YX takes the value y1 at t1, the value y2 at t2, . . . , and the value ym at tm, knowing that it takes
the value ym+1 at tm+1, the value ym+2 at tm+2, . . . , and the value yn at tn:

pY,m|n�m(t1, y1; . . . ; tm, ym | tm+1, ym+1; . . . ; tn, yn) =
pY,n(t1, y1; . . . ; tm, ym; tm+1, ym+1; . . . ; tn, yn)

pY,n�m(tm+1, ym+1; . . . ; tn, yn)

(C.13)
[cf. Bayes’ theorem (B.22)].

Remarks:

⇤ Working recursively, one finds that every n-point density can be expressed as the product of
conditional probability densities pY,1|m, with m ranging from n � 1 to 1, and of a single-time
density:

pY,n(t1, y1; . . . ; tn, yn) = pY,1|n�1
(tn, yn | t1, y1; . . . ; tn�1, yn�1)

⇥ pY,1|n�2
(tn�1, yn�1 | t1, y1; . . . ; tn�2, yn�2) · · · pY,1|1(t2, y2 | t1, y1)

⇥ pY,1(t1, y1), (C.14)

which is easily interpreted.
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⇤ Writing down the previous identity for n = 3 and integrating over y2 under consideration of the
consistency condition (C.11c), one finds

pY,2(t1, y1; t3, y3) =

Z
pY,1|2(t3, y3 | t1, y1; t2, y2) pY,1|1(t2, y2 | t1, y1) pY,1(t1, y1) dy2.

Dividing by pY,1(t1, y1), which can readily be factorized out of the integral, then yields

pY,1|1(t3, y3 | t1, y1) =

Z
pY,1|2(t3, y3 | t1, y1; t2, y2) pY,1|1(t2, y2 | t1, y1) dy2. (C.15)

Again, this identity has an intuitive meaning. Mathematically, it is an integral-functional equation
for the conditional probability pY,1|1, involving the integration kernel pY,1|2. Similarly, one can write
down an analogous equation for pY,1|2, with pY,1|3 as integration kernel; and more generally, a whole
hierarchy of integral-functional relations, where the equation for pY,1|n admits pY,1|n+1

as integration
kernel.

C.2 Some specific classes of stochastic processes
The knowledge of all n-point probability densities pY,n for a random function YX(t) allows the
computation of all n-point averages and thus replaces the knowledge of the probability density pX .
Accordingly, we shall from now on drop any reference to the random variable X and denote a
stochastic process more simply as Y (t), and its realizations as y(t).

C.2.1 Centered processes
A stochastic process Y (t) is called centered if its single-time average hY (t)i is identically van-

ishing for any time t.
Given an arbitrary stochastic process Y (t), the process Z(t) ⌘ Y (t) � hY (t)i is obviously cen-

tered. One checks at once that Y (t) and the associated process Z(t) share the same autocorrelation
function (t1, t2).

C.2.2 Stationary processes
A stochastic process Y (t) is said to be stationary when all its moments are invariant under

arbitrary shifts of the origin of times, that is when for all n 2 N⇤, �t 2 R and n-uplets t1, t2, . . . ,
tn, one has the identity

⌦
Y (t1 +�t)Y (t2 +�t) · · ·Y (tn +�t)

↵
=

⌦
Y (t1)Y (t2) · · ·Y (tn)

↵
. (C.16a)

In particular, the single-time average hY (t)i is time-independent, so that it is convenient to work
with the associated centered process Y (t)� hY i.

Remark: An equivalent definition is that all n-point densities of the process are invariant under
arbitrary time translations:

pY,n(t1 +�t, y1; t2 +�t, y2; . . . ; tn +�t, yn) = pY,n(t1, y1; t2, y2; . . . ; tn, yn). (C.16b)

The autocorrelation function (t1, t2) of a stationary process only depends on the time difference
⌧ ⌘ t2 � t1, and is an even function of ⌧ (i.e. it only depends on |⌧ |):

(⌧) =
⌦
Y (t)Y (t+ ⌧)

↵
�
⌦
Y
↵
2
. (C.17)

A widespread case in physics is that of processes whose autocorrelation function only takes significant
values over some scale |⌧ | . ⌧c—the autocorrelation time—, and become negligible for |⌧ | � ⌧c.

For a centered stationary multidimensional stochastic process Y(t) with components Y 1(t),
Y 2(t), . . . , defining [cf. the correlation matrix (C.6)]

ij(⌧) ⌘
⌦
Y i(t)Y j(t+ ⌧)

↵
, (C.18a)
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which may not be even in ⌧ , one has the obvious property

ij(⌧) = ji(�⌧). (C.18b)

Stationary processes are conveniently characterized by their spectral properties, which follow
from considering their (discrete) Fourier transform. This idea will be further discussed in Sec. C.3.

C.2.3 Ergodic processes
A stationary stochastic process Y (t) is called ergodic, when any single realization y(t) contains

all statistical information on the whole process, i.e. allows one to compute all possible n-point
averages.

Let y(t) denote a given realization. The time average of the stationary process over the finite
interval [t� T

2
, t+ T

2
], where T > 0, is defined as

Y (t)
T
⌘

1

T

Z t+ T
2

t� T
2

y(t0) dt0. (C.19)

This average depends on t, T and the realization y. In the limit of large T , the average becomes
the time average Y of the process,

Y = lim
T !+1

Y (t)
T
⌘ lim

T !+1

1

T

Z t+ T
2

t� T
2

y(t0) dt0. (C.20)

As hinted at by the notation, Y no longer depends on t and T , thanks to the assumed stationarity;
yet it still depends on the specific realization of the process. If it is independent of the realization,
then the time average Y is equal to the (time-independent, since Y (t) is stationary) ensemble average
hY i.

A stochastic process is ergodic when the identity between time average and sample average holds
for all products of Y (t) at different times, i.e. for all moments.

C.2.4 Gaussian processes
A stochastic process Y (t) is called Gaussian process if all its n-point densities (C.9) are Gaussian

distributions. Equivalently, for every nonnegative integer n and every choice of arbitrary instants
t1, t2, . . . , tn, the n-dimensional random variable with components Y (t1), . . . , Y (tn) is Gaussian-
distributed.

The corresponding characteristic functional reads

GY [k(t)] = exp


i

Z
k(t)

⌦
Y (t)

↵
dt�

1

2

Z
k(t1)k(t2)(t1, t2) dt1 dt2

�
, (C.21)

so that the process is entirely determined by its single-time average hY (t)i and its autocorrelation
function (t1, t2)—or equivalently, by the single- and two-time densities pY,1, pY,2. For instance,
one can show(82) that for even n, the n-point moment is given by

⌦
Y (t1)Y (t2) · · ·Y (tn)

↵
=

X⌦
Y (tj)Y (tk)

↵
· · ·

⌦
Y (tl)Y (tm)

↵
,

where the sum runs over all possible pairings of the indices 1, 2, . . . , n, while the product for a
given pairing involves all n/2 corresponding pairs.

If Y (t) is a Gaussian process, then the associated centered process Z(t) ⌘ Y (t)� hY (t)i is also
Gaussian, and all moments of odd order of Z(t) vanish.
(82)This is (part of) the Isserlis’(bu)theorem, better known in physics as Wick’s(bv)theorem.
(bu)L. Isserlis, 1881–1966 (bv)G.-C. Wick, 1909–1992
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