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IV.2 Fokker–Planck equation
In this Section, we analyze the Langevin model of Sec. IV.1 by adopting a different view of the
dynamics of a Brownian particle in an environment. Instead of focusing on the solution v(t) of the
Langevin equation for a given initial condition, we rather investigate the dynamics of the velocity
probability density f(t, v), such that f(t, v) dv is the probability that at time t the Brownian particle
velocity lies between v and v + dv.

We first argue in § IV.2.1 that on time scales larger than the autocorrelation time ⌧c of the fluc-
tuating force, the velocity is a Markov process. The density f(t, v) thus obeys the usual consistency
equation involving the transition probability, which is recast in § IV.2.2 in the form of a partial
differential equation of first order in t, yet involving an infinite number of successive derivatives
with respect to v. Truncating this equation at second order yields the Fokker–Planck equation
(§ IV.2.3), whose solutions we examine in § IV.2.4. Eventually, we repeat the same analysis in the
case of the position of the Brownian particle and its probability density (§ IV.2.5).

IV.2.1 Velocity of a Brownian particle as a Markov process
Assume first that the spectral density of the Langevin force is a white noise, i.e. that its auto-

correlation function is proportional to a Dirac distribution, Eq. (IV.3d), or equivalently, that the
autocorrelation time ⌧c vanishes. In that case, we have seen [Eq. (IV.26)] that the velocity at a
given instant t and the fluctuating force at a later time t0 are uncorrelated, hv(t)F

L
(t0)i = 0 for

t0 > t. That is, the Langevin force at time t0 has no memory of the past of t0.
Now, if the Langevin force is a Gaussian stochastic process, then so is the velocity of the

Brownian particle. The covariance hv(t)F
L
(t0)i = 0 for t0 > t then means that v(t) and F

L
(t0) are

statistically independent for t0 > t.
If FL(t) is a Gaussian process, then its Fourier transform F̃L(!) is a Gaussian random variable.
In turn, Eq. (IV.30) shows that ṽ(!) is also Gaussian—the proportionality factor 1/[M(�� i!)]
is a “deterministic” function of !. After a last inverse Fourier transform, v(t) is a Gaussian
random process, entirely determined by its first two moments.

Since the Langevin equation (IV.1) is of first order, with the source F
L
(t), the velocity shift

between t and t+�t only depends on the velocity at time t and the force in the interval [t, t+�t],
yet is totally independent of v and F

L
at times prior to t, so that v(t) is a Markov process.

If on the other hand F
L
(t) and thus v(t) is not Gaussian, or if ⌧c is finite, then the velocity

is strictly speaking no longer a Markov process. Restricting oneself to the change on time scales
much larger than ⌧c—and assuming from now on that F

L
(t) and v(t) are Gaussian—, v(t) can

be approximated as Markovian. That is, we shall in the remainder of this Chapter consider the
evolution of the Brownian particle velocity on a coarse-grained version of time, and “infinitesimal”
time steps �t will actually always be much larger than ⌧c, although we shall consider the formal
limit �t ! 0.

Remark: From the physical point of view, the coarse-graining of time actually corresponds to the
experimental case, in which observations are not performed continuously—in the mathematical
sense—, but rather at successive instants, between which the Brownian particle has actually under-
gone many collisions with its environment.

Since the velocity v(t) of the Brownian particle is assumed to be a Markov process, it is en-
tirely described by its probability density, which will be denoted by f(t, v) instead of the notation
p
1
(t, v) used in Appendix C.2.5, and by the transition probability p

1|1(t2, v2 | t1, v1). These obey
the consistency condition (C.24), which for the evolution between times t and t+�t reads

f(t+�t, v) =

Z
p
1|1(t+�t, v | t, v0) f(t, v0) dv0, (IV.41a)

where �t � ⌧c.
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Physically, the collisions with the much lighter constituents of the environment lead on short
time scales—i.e. for �t much smaller than the relaxation time ⌧r = ��1—only to small shifts of the
velocity v of the Brownian particle. That is, the modulus of w = v � v0 is much smaller than v. In
order to later exploit this property, let us rewrite Eq. (IV.41a) as

f(t+�t, v) =

Z
p
1|1(t+�t, v | t, v � w) f(t, v � w) dw, (IV.41b)

where we now integrate over the change in velocity.

IV.2.2 Kramers–Moyal expansion
We shall now assume that the transition probability p

1|1(t + �t, v | t, v0) and the probability
density f(t, v0) are continuous functions of t and �t, and that their product is analytic in the
velocity variables, which will allow us to derive a partial differential equation obeyed by f .
Note that the calculations in this subsection hold more generally for any Markovian stochastic
process with the necessary regularity properties; the specific case of the velocity in the Langevin
model will be studied in further detail in the next subsection.

Under the above assumptions, the integrand in the evolution equation (IV.41b) can be expanded
in Taylor series as

p
1|1(t+�t, v | t, v � w) f(t, v � w) = p

1|1(t+�t, v + w � w | t, v � w) f(t, v � w)

=
1X

n=0

(�1)n

n!
wn dn

dvn
⇥
p
1|1(t+�t, v + w | t, v) f(t, v)

⇤
.

Introducing for n 2 N the jump moments

Mn(t, t+�t, v) ⌘

Z
wn p

1|1(t+�t, v + w | t, v) dw =

Z
(v0 � v)n p

1|1(t+�t, v0 | t, v) dv0, (IV.42)

and exchanging the order of integration over w and partial differentiation with respect to v, the
evolution equation (IV.41) can be rewritten as

f(t+�t, v) =
1X

n=0

(�1)n

n!

@n

@vn
⇥
Mn(t, t+�t, v) f(t, v)

⇤
. (IV.43)

Definition (IV.42) shows that M0(t, t+�t, v) = 1 for arbitrary t and �t—which actually only
states that the integral over all possible final states of the transition probability of a Markov process
is 1.

For n � 1, the “initial condition” p
1|1(t, v

0
| t, v) = �(v0 � v) and the assumed continuity in �t

mean that Mn(t, t + �t, v) tends to 0 in the limit �t ! 0. Assume now—this will be shown
explicitly in the next subsection in the cases n = 1 and 2 for the jump moments of the velocity of
a Brownian particle—that the jump moments with n � 1 are to leading order linear in �t at small
�t:

Mn(t, t+�t, v) ⇠
�t!0

Mn(t, v)�t+ o(�t), (IV.44)

where o(�t)/�t tends towards 0 when �t ! 0. Subtracting then from both sides of Eq. (IV.43)
the term with n = 0, dividing by �t, and finally taking the formal limit �t ! 0 leads to(63)

@f(t, v)

@t
=

1X

n=1

(�1)n

n!

@n

@vn
⇥
Mn(t, v)f(t, v)

⇤
. (IV.45)

(63)As in the study of the Boltzmann kinetic equation (Chapter ??), we take the mathematical limit of infinitesimal
small �t, notwithstanding the fact that physically it should be larger than ⌧c.
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This equation is the so-called Kramers–Moyal (bf) expansion, which may be written for any Marko-
vian stochastic process fulfilling the regularity hypotheses we have made.

In many situations, the first two jump moments yield a suitable description, and one truncates
the expansion at second order, neglecting the terms with n � 3. This approximation yields the
Fokker (bg)–Planck (bh)equation

@f(t, v)

@t
= �

@

@v

⇥
M1(t, v)f(t, v)

⇤
+

1

2

@2

@v2
⇥
M2(t, v)f(t, v)

⇤
. (IV.46)

The first resp. second term on the right hand side is referred to as drift resp. diffusive term, and
accordingly M1(t, v) resp. M2(t, v) as drift resp. diffusion coefficient.

Remarks:

⇤ To give an interpretation of the jump moments, let us introduce the notation
⌦
g
�
v(t)

��� v(t0)=v0
↵
v
⌘

Z
g(v) p

1|1(t, v | t0, v0) dv,

which denotes the average value at time t of the function g(v) of the stochastic process v(t), un-
der the condition that at some earlier instant t0 the latter takes the value v0. Comparing with
definition (IV.42), the jump moment can be rewritten as

Mn(t, t+�t, v) =
⌦⇥
v(t+�t)� v

⇤n�� v(t)=v
↵
v
. (IV.47)

That is, Mn(t, t+�t, v) represents the n-th moment of the probability distribution for the change
in velocity between t and t+�t, starting from velocity v at time t.

Hereafter, we shall use the fact that such moments can actually be computed in two equivalent
ways: either, as in the above two equations, by using the conditional probability p

1|1(t+�t, v0 | t, v)
and integrating over v0; or by following explicitly trajectories in velocity space that start with the
fixed velocity v at time t, and computing the average velocity at a later time as in § IV.1.2, from
which the average velocity shift easily follows.

⇤ If the Markov process under consideration is stationary, the jump moments are independent of
time. As we shall see below, the reciprocal does not hold.

⇤ The Kramers–Moyal expansion (IV.45) is sometimes referred to as generalized Fokker–Planck
equation.

IV.2.3 Fokker–Planck equation for the Langevin model
We now apply the formalism developed in the previous subsection to the specific case of the

Langevin model.

:::::::
IV.2.3 a

:::::::::::::::::::::::::::::::::::::::::
Jump moments for the Langevin model

Let us compute the first two jump moments of the velocity in the Langevin model. Integrating
the Langevin equation (IV.1) between t and t+�t, one finds

v(t+�t) = v(t)� �

Z t+�t

t
v(t0) dt0 +

1

M

Z t+�t

t
F

L
(t0) dt0. (IV.48)

Considering now that v(t) is fixed and equal to v, and subtracting it from both sides of the equations,
one obtains the velocity change between t and t+�t for a given realization of the Langevin force.
Averaging over the possible realizations of the latter, one finds the average velocity shift between t

(bf)J. E. Moyal, 1910–1998 (bg)A. Fokker, 1887–1972 (bh)M. Planck, 1858–1947

Nicolas Borghini
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