
Appendices to Chapter III

III.A Non-uniform phenomena
Until now in this chapter, we have implicitly considered only homogeneous systems, perturbed by
uniform excitations. In this appendix, we generalize part of the formalism and results developed
above to non-uniform systems. Much more can be found in the key article by L. Kadanoff(az) and
P. Martin(ba) [46].

III.A.1 Space-time correlation functions
Consider a quantum-mechanical system at thermodynamic equilibrium. Under the influence of

spontaneous fluctuations or of some localized external perturbation, its properties at a given instant
and position, represented by some intensive variable, might depart from their equilibrium values. It
then becomes interesting to quantify the correlation between such properties at different times and
positions.

Associating space-dependent observables to intensive properties like the local density of particle
number or of energy, we are thus led to consider averages of the type

⌦
B̂I(t,~r) ÂI(t

0,~r 0)
↵
eq.

.

As was done several times in this Chapter, we can invoke the stationarity of the equilibrium state
to show that such an average only depends on the time difference ⌧ = t � t0. If in addition the
equilibrated system is invariant under arbitrary spatial translations—as we shall assume from now
on—, one also finds that the above expectation value depends only the separation ~r �~r 0, not on ~r
and ~r 0 separately.

Remark: The assumed invariance under arbitrary spatial translations is less warranted as that under
time translations. Strictly speaking, the assumption can only hold in fluids, since a crystalline solid
is only invariant under some discrete translations. In addition, it can only hold if the system—in
particular its volume V , which explicitly appears in some of the formulae below—is infinitely large.
In practice, these mathematical caveats are in many cases irrelevant.

Quite obviously, the various time-correlation functions introduced in Sec. III.1 can be generalized
to functions of the spatial separation, which can all be expressed in terms of the non-symmetrized
correlation function

CBA(⌧,~r) ⌘
⌦
B̂I(⌧,~r) Â(0,~0)

↵
eq.

. (III.94)

It will be fruitful to investigate these functions not only in “direct” space, but also in reciprocal
space, i.e. after performing a spatial Fourier transform. For a generic function X(t,~r), this transform
is defined as (note the minus sign!)

X̃I(t,~q) ⌘

Z

R3

XI(t,~r) e
�i~q·~r d3~r. (III.95)

Thus, rewriting Eq. (III.94) thanks to the assumed invariance under translations as

CBA(⌧,~r) =
⌦
B̂I(⌧,~r +~r 0) Â(0,~r 0)

↵
eq.

,

and multiplying both sides of the identity by e�i~q·~r = e�i~q·(~r+~r 0
) ei~q·~r

0 , one finds after integrating
(az)L. P. Kadanoff, 1937–2015 (ba)P. C. Martin, 1931–2016
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over both ~r +~r 0 and ~r 0

V
Z
CBA(⌧,~r) e

�i~q·~r d3~r =
⌦ ˜̂B(⌧,~q) ˜̂A(0,�~q)

↵
eq.
,

with V =
Z
d3~r 0. Dividing by V and Fourier transforming with respect to ⌧ , one defines

C̃BA(!,~q) ⌘

Z Z 1

�1
CBA(⌧,~r) e

i!⌧ d⌧

�
e�i~q·~r d3~r =

1

V

Z 1

�1

⌦ ˜̂B(⌧,~q) ˜̂A(0,�~q)
↵
eq.

ei!⌧ d⌧, (III.96)

where attention should be payed to the opposite arguments ~q, �~q of the observables.

III.A.2 Non-uniform linear response
Among the generalized correlation functions, the retarded propagator is the function that char-

acterizes the local linear response to a non-uniform excitation by an inhomogeneous classical field
f(t,~r), represented by an extra term in the Hamiltonian

Ŵ (t) = �

Z
f(t,~r) Â(~r) d3~r, (III.97)

which generalizes Eq. (III.7). Under the influence of this perturbation, the change of a local property
with respect to its equilibrium value reads

⌦
B̂I(t,~r)

↵
n.eq.

=
⌦
B̂(~r)

↵
eq.

+

Z

V

Z 1

�1
�BA(t� t0,~r �~r 0) f(t0,~r 0) dt0

�
d3~r 0 +O(f2), (III.98a)

which defines �BA(⌧,~r). Repeating the derivation of § III.2.1, one easily finds that the latter is
given by the Kubo formula

�BA(⌧,~r) ⌘
i

~
⌦⇥
B̂I(⌧,~r), Â(0,~0)

⇤↵
eq.
⇥(⌧). (III.98b)

In Fourier space, the Kubo formula (III.98a) becomes (assuming that B̂ is centered at equilibrium)
⌦ ˜̂B(!,~q)

↵
n.eq.

= �̃BA(!,~q) f̃(!,~q) , (III.99a)

where the generalized susceptibility is given by

�̃BA(!,~q) ⌘

Z

R3


lim
"!0+

Z 1

�1
�BA(⌧,~r) e

i!t e�"⌧ d⌧

�
e�i~q·~r d3~r. (III.99b)

::::::::::::::::::::::::::
Dynamic structure factor

An important example of application is the coupling of a non-uniform external scalar potential
Vext.(t,~r) to a system of particles at thermal (and mechanical) equilibrium, and more precisely to
their number density, n̂(~r):

Ŵ =

Z
n̂(~r)Vext.(t,~r) d

3~r.

The response of the number density itself is given by the compressibility of the system
⌦
n̂(t,~r)

↵
n.eq.

=
⌦
n̂(~r)

↵
eq.

+

Z
�nn(t� t0,~r �~r 0)n̂(t0,~r 0) dt0 d~r 0.

In that case, the autocorrelation function C̃nn(!,~q) is usually denoted by S̃(!,~q) and called dynamic
structure factor :(56)

S̃(!,~q) ⌘
1

V

Z 1

�1

⌦
n̂(⌧,~q)n̂(0,�~q)

↵
eq.

ei!⌧ d⌧ =
2⇡

V

X

n,n0

⇡n
��(n~q)nn0

��2�(!n0n � !), (III.100)

(56)The factor 1/V is sometimes omitted from the definition.
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where we have introduced the Lehmann representation, involving the matrix elements (n~q)nn0 of
n̂(0,~q), which obey the identity (n~q)nn0 = (n�~q)

⇤
nn0 .

This dynamic structure function is directly measurable in a scattering experiment on the system.
Assume that a beam of particles with momentum ~k is sent onto the system. One can show that
in the Born(bb) approximation, the intensity scattered with some momentum ~k 0, amounting to a
momentum transfer ~q ⌘ ~k 0

� ~k, is proportional to the product of S̃(�!,�~q) and the form factor .
The latter characterizes the scattering probability on a single center, in particular it quantifies how
much the scattering center differs from a point-like particle. In turn, the dynamic structure factor
contains the information on the distribution and dynamics of the microscopic scattering centers in
the system.(57)

Introducing the spectral function of the system

⇠̃(!,~q) ⌘
1

2~V

Z 1

�1

⌦⇥
n̂(⌧,~q), n̂(0,�~q)

⇤↵
eq.

ei!⌧ d⌧

one easily checks that it is related to the dynamic structure factor according to

⇠̃(!,~q) =
1

2~
⇥
S̃(!,~q)� S̃(�!,�~q)

⇤
=

1

2~
�
1� e��~!�S̃(!,~q),

which expresses the fluctuation-dissipation theorem. Additionally, one finds the relation

Im �̃nn(!,~q) = �⇠̃(!,~q)

with the generalized susceptibility of the system.

III.A.3 Some properties of space-time autocorrelation functions
We now give a few relations obeyed by the non-symmetric correlation function, specializing to

the case of identical observables Â = B̂, that is of autocorrelation functions CAA(⌧,~r). One can
then check that the spatial Fourier transforms (we drop the factor 1/V ) satisfy a few properties:

•
⌦
Â(t,~q) Â(0,�~q)

↵
eq.

=
⌦
Â(0,~q) Â(�t,�~q)

↵
eq.

; (III.101a)

•
⌦
Â(t,~q) Â(0,�~q)

↵⇤
eq.

=
⌦
Â(0,~q) Â(t,�~q)

↵
eq.

; (III.101b)

•
⌦
Â(t,~q) Â(0,�~q)

↵⇤
eq.

=
⌦
Â(t� i~�,�~q) Â(0,~q)

↵
eq.

. (III.101c)

The latter identity is known as the Kubo–Martin–Schwinger (bc) condition for the observables of a
system at canonical equilibrium.
From these identities follow a few properties of the double Fourier transform C̃AA(!,~q):

• C̃AA(!,~q) is a real number; (III.102a)

• detailed balance condition: C̃AA(!,~q) = C̃AA(�!,�~q) e�~!, (III.102b)

where the latter generalizes Eq. (III.53).

III.B Classical linear response
The linear response formalism can also be applied to systems which are described classically, as
e.g. fluids obeying hydrodynamical laws. Two parallel strategies can then be adopted: either to
consider the classical limit of the quantum-mechanical results, or to tackle the problem in the
(57)For more details, see Van Hove’s original article on the topic [47], which is easily readable.
(bb)M. Born, 1882–1970 (bc)J. Schwinger, 1918–1994



III.B Classical linear response 83

classical framework from the start. In this appendix we give examples of both approaches, which
quite naturally lead to the same results.

III.B.1 Classical correlation functions
Let A, B be classical observables associated with quantum-mechanical counterparts Â, B̂.

Using (without proof) the correspondence between quantum-mechanical and classical statistical-
mechanical expectation values, the non-symmetrized correlation function CBA(⌧), Eq. (III.12), be-
comes in the classical limit

classical limit of CBA(⌧) =
⌦
B(⌧)A(0)

↵
eq.

⌘ C cl.
BA(⌧), (III.103)

where the expectation value is a �-space integral computed with the proper equilibrium phase-space
distribution.

In the classical limit, operators become commuting numbers (“c-numbers”). Invoking the sta-
tionarity of the equilibrium state, one thus has

C cl.
BA(⌧) = C cl.

AB(�⌧), (III.104)

in contrast to the quantum-mechanical case where the identity is between CBA(⌧) and CAB(�⌧)⇤,
see Eq. (III.15). In the case of autocorrelations (B = A), the non-symmetrized correlation func-
tion (III.103) is even.

Fourier transforming both sides of relation (III.104), one finds at once

C̃ cl.
BA(!) = C̃ cl.

AB(�!), (III.105)

which is the classical limit ~ ! 0 of the detailed balance relation, as was already discussed below
Eq. (III.53).

Thanks to the commutativity of the A and B(⌧), the classical limit of SBA(⌧) is given by the
same correlation function

⌦
B(⌧)A(0)

↵
eq.

classical limit of SBA(⌧) =
⌦
B(⌧)A(0)

↵
eq.

= C cl.
BA(⌧). (III.106)

Similarly, the various operators in the defining integral for Kubo’s canonical correlation functions
commute with each other in the classical limit, and one obtains

classical limit of KBA(⌧) =
⌦
B(⌧)A(0)

↵
eq.

1

�

Z �

0

d� =
⌦
B(⌧)A(0)

↵
eq.

= C cl.
BA(⌧). (III.107)

We thus recover the fact that SBA and KBA have the same classical limit, as mentioned for their
Fourier transforms at the end of § III.3.3 b.

Remark: More generally, even in the quantum-mechanical case if either Â or B̂ commutes with Ĥ0,
then the non-symmetrized, symmetric and canonical correlation functions CBA(⌧), SBA(⌧), KBA(⌧)
are equal.

In contrast, the linear response function �BA(⌧) and the Fourier transform ⇠BA(⌧) of the spectral
function are proportional to commutators divided by ~, see Eqs. (III.26) and (III.19). In the classical
limit, these become proportional to some Poisson brackets, for instance [see also Eq. (III.115b)
hereafter]

classical limit of ⇠BA(⌧) =
i

2

⌦�
BN (⌧), AN

 ↵
eq.

⌘ ⇠cl.BA(⌧). (III.108)

III.B.2 Classical Kubo formula
In this Subsection, we want to show how some results of linear response theory can be derived

directly in classical mechanics, instead of taking the limit ~ ! 0 in quantum-mechanical results.
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For that purpose, we consider(58) a system of N pointlike particles with positions and conjugate
momenta {qa}, {pa} with 1  a  3N . The �-space probability density and Hamilton function of
this system are denoted by ⇢N

�
t, {qa}, {pa}

�
and HN

�
t, {qa}, {pa}

�
. The latter arises from slightly

perturbing a time-independent Hamiltonian H(0)

N

�
{qa}, {pa}

�
:

HN
�
t, {qa}, {pa}

�
= H(0)

N

�
{qa}, {pa}

�
� f(t)AN

�
{qa}, {pa}

�
, (III.109)

with AN
�
{qa}, {pa}

�
an observable of the system and f(t) a time-dependent function which vanishes

as t ! �1.
Let iL0 be the Liouville operator (II.11) associated to H(0)

N and ⇢eq. the N -particle phase-space
density corresponding to the canonical equilibrium of the unperturbed system

⇢eq.
�
{qa}, {pa}

�
=

1

ZN (�)
e��H

(0)

N
({qa},{pa}) with ZN (�) =

Z
e��H

(0)

N
({qa},{pa}) d6NV , (III.110)

where the �-space infinitesimal volume element is given by Eq. (II.4a). Averages computed with
⇢eq. will be denoted as h · ieq., those computed with ⇢N as h · in.eq..

Let BN
�
{qa}, {pa}

�
denote another observable of the system. We wish to compute its out-of-

equilibrium expectation value at time t, hBN (t, {qa}, {pa})in.eq., and in particular its departure from
the equilibrium expectation value hBN ({qa}, {pa})ieq.. The latter is time-independent, as follows
from Eqs. (II.18)–(II.19) and the time-independence of ⇢eq..

For the sake of brevity we shall from now on drop the dependence of functions on the phase-space
coordinates {qa}, {pa}.

In analogy to the quantum-mechanical case (§ III.2.1), we start by calculating the phase-space
density ⇢N (t), or equivalently its departure

�⇢N (t) ⌘ ⇢N (t)� ⇢eq. (III.111)

from the equilibrium density. Writing ⇢N (t) = ⇢eq.+ �⇢N (t) and using the stationarity of ⇢eq., the
Liouville equation (II.10b) for the evolution of ⇢N (t)

d⇢N (t)

dt
+
�
⇢N (t), HN (t)

 
= 0

gives for �⇢N (t) to leading order in the perturbation
d�⇢N (t)

dt
=
�
HN (t), �⇢N (t)

 
+
�
�f(t)AN , ⇢eq.

 
+O(f2)

= �iL0�⇢N (t)� f(t)
�
AN , ⇢eq.

 
+O(f2). (III.112)

In the second line, we pulled f(t) outside of the Poisson brackets since it does not depend on the
phase-space coordinates.

This is an inhomogeneous first-order linear differential equation, whose solution reads

�⇢N (t) = �

Z t

�1
e�i(t�t0)L0

�
AN , ⇢eq.

 
f(t0) dt0 +O(f2),

where we used f(�1) = 0 which results in �⇢N (�1) = 0. Again, the independence of f(t0) from
the �-space coordinates allows one to move it to the left of the time-translation operator e�i(t�t0)L0 .
Adding ⇢eq. to both sides then gives

⇢N (t) = ⇢eq. �

Z t

�1
f(t0) e�i(t�t0)L0

�
AN , ⇢eq.

 
dt0 +O(f2). (III.113)

Multiplying this identity left with BN and integrating afterwards over phase space yields
⌦
BN (t)

↵
n.eq.

=
⌦
BN

↵
eq.

�

Z t

�1
f(t0)

Z

�

BN e�i(t�t0)L0

�
AN , ⇢eq.

 
d6NV

�
dt0 +O(f2). (III.114)

(58)This is the generic setup of § II.2.1.
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Using the unitarity of e�i(t�t0)L0 , Eq. (II.20), the phase-space integral on the right-hand side can
be recast as Z

�

h
ei(t�t0)L0BN

i�
AN , ⇢eq.

 
d6NV .

Invoking Eq. (II.17), the term between square brackets is then BN (t � t0) as would follow from
letting BN evolve under the influence of H(0)

N only .(59) Equation (III.114) thus becomes

⌦
BN (t)

↵
n.eq.

=
⌦
BN

↵
eq.

�

Z t

�1
f(t0)

Z

�

BN (t� t0)
�
AN , ⇢eq.

 
d6NV

�
dt0 +O(f2).

By performing an integration by parts and using the fact that the phase-space distribution vanishes
at infinity, one checks that the integral over phase space of BN (t � t0)

�
AN , ⇢eq.

 
equals that of

⇢eq.
�
BN (t� t0), AN

 
:

⌦
BN (t)

↵
n.eq.

=
⌦
BN

↵
eq.

�

Z t

�1
f(t0)

Z

�

⇢eq.
�
BN (t� t0), AN

 
d6NV

�
dt0 +O(f2).

The phase-space integral in this relation is now simply the equilibrium expectation value of the
Poisson bracket

�
BN (t� t0), AN

 
. All in all, this gives

⌦
BN (t)

↵
n.eq.

=
⌦
BN

↵
eq.

�

Z t

�1
f(t0)

⌦�
BN (t� t0), AN

 ↵
eq.

dt0 +O(f2)

=
⌦
BN

↵
eq.

+

Z 1

�1
f(t0)�cl.

BA(t� t0) dt0 +O(f2), (III.115a)

with
�cl.
BA(⌧) ⌘ �

⌦�
BN (⌧), AN

 ↵
eq.

⇥(⌧). (III.115b)

This result is—as it should be—what follows from the quantum-mechanical Kubo formula (III.26)
when making the usual substitution

1

i~
⇥
· , ·

⇤
!

�
· , ·

 

to derive the classical limit of a quantum-mechanical commutator.

(59)That is, corresponding to the interaction picture in the quantum mechanical case.
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