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This autocorrelation function only depends on the modulus of the time difference, as expected for
a stationary stochastic process, and decreases exponentially with an autocorrelation time given by
the relaxation time ⌧r. Note that for t0 = t, we recover the large-time limit (IV.10) of the variance
of the velocity.

If the environment is at thermal equilibrium at temperature T , relation (IV.12) gives
⌦
v(t)v(t0)

↵
=

kBT

M
e��|t�t0|. (IV.28)

Remark: Inspecting the average velocity (IV.5) and autocorrelation function (IV.27), one sees that
they obey the same first-order linear differential equation, with the same characteristic relaxation
time scale ⌧r.

IV.1.5 Harmonic analysis
In the regime in which the Brownian particle is in equilibrium with the fluid, the velocity

v(t) becomes a stationary stochastic process, as is the fluctuating force F
L
(t) itself. One can thus

apply to them the concepts introduced in Appendix C.3, and in particular introduce their Fourier
transforms(62)

F̃
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Z
v(t) ei!t dt. (IV.29)

In Fourier space, the Langevin equation (IV.1) leads to the relation
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1

M
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L
(!). (IV.30)

One also introduces the respective spectral densities of the stochastic processes(62)
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For these spectral densities, Eq. (IV.30) yields at once the relation

Sv(!) =
1

M2

1

�2 + !2
SF (!). (IV.32)

The spectral density of the velocity if thus simply related to that of the force, for which we shall
consider two possibilities.

:::::::
IV.1.5 a

:::::::::::::
White noise

A first possible ansatz for SF (!), compatible with the assumptions in § IV.1.1 b, is that of a
frequency-independent spectral density, i.e. of white noise

SF (!) = SF . (IV.33a)

According to the Wiener–Khinchin theorem (C.46), the autocorrelation function of the fluctuating
force is then the Fourier transform of a constant, i.e. a Dirac distribution
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= SF �(⌧). (IV.33b)

This thus constitutes the case in which Eq. (IV.3d) holds, with SF = 2DvM2.
With this simple form for SF (!), the spectral density (IV.32) of the velocity is given by the

Lorentzian distribution
Sv(!) =

2Dv

�2 + !2
,

(62)Remember that, formally, one defines the transforms considering first the restrictions of the processes to a finite-
size time interval of width T , and at the end of calculations one takes the large-T limit. Here we drop the subscript
T designating these restrictions to simplify the notations.
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which after an inverse Fourier transformation yields for the autocorrelation function
⌦
v(t)v(t+ ⌧)

↵
=

Dv

�
e��|⌧ |, (IV.34)

in agreement with what was already found in Eq. (IV.27).

:::::::
IV.1.5 b

:::::::::::::::
Colored noise

While a frequency-independent white noise spectrum of Langevin-force fluctuations amounts to
a vanishingly small autocorrelation time ⌧c, a very wide—but not everywhere constant—spectrum
corresponds to a finite ⌧c. One then talks of colored noise.

Assume for instance that the density spectrum of the fluctuating force is given by a Lorentzian
distribution centered on ! = 0, with a large typical width !c, where the precise meaning of “large”
will be specified later:

SF (!) = SF
!2
c

!2
c + !2

. (IV.35a)

Since SF (!=0) equals the integral of the autocorrelation function (⌧), condition (IV.3c) leads to
the identity SF = 2DvM2. With the Wiener–Khinchin theorem (C.46) and relation (IV.32), this
corresponds to an autocorrelation function of the fluctuating force given by
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i.e. the autocorrelation time of the Langevin force is ⌧c = !�1
c .

Using Eq. (IV.32), the spectral density of the velocity is
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The autocorrelation function of the velocity then reads

⌦
v(t)v(t+ ⌧)

↵
=

Dv

�

!2
c

!2
c � �2

✓
e��|⌧ |

�
�

!c
e�!c|⌧ |

◆
. (IV.36)

At small |⌧ | ⌧ !�1
c ⌧ ��1, this becomes
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i.e. it departs quadratically from its value at ⌧ = 0. In particular, the singularity of the derivative
at ⌧ = 0 which appears when ⌧c is neglected [cf. Eq. (IV.34)] has been smoothed out.

Remark: The autocorrelation function (IV.36) actually involves two time scales, namely ⌧c = !�1
c

and ⌧r = ��1. The Langevin model only makes sense if ⌧c ⌧ ⌧r, i.e. � ⌧ !c, in which case the
second term in the brackets in the autocorrelation function is negligible, and the only remaining
time scale for the fluctuations of velocity is ⌧r. Velocity if thus a “slow” stochastic variable, compared
to the more quickly evolving Langevin force. Physically, many collisions with lighter particles are
necessary to change the velocity of the Brownian particle.

IV.1.6 Response to an external force
Let us eventually assume momentarily that the Brownian particle is submitted to an additional

external force Fext.(t), independent of its position and velocity. The equation of motion describing
the Brownian particle dynamics then becomes

M
dv(t)

dt
= �M�v(t) + F

L
(t) + Fext.(t). (IV.37)
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Averaging over many realizations, one obtains

M
dhv(t)i

dt
= �M�hv(t)i+ Fext.(t), (IV.38)

where we have used property (IV.3a) of the Langevin noise. This is now a linear ordinary differential
equation, which is most easily solved by introducing the Fourier transforms
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In Fourier space, Eq. (IV.38) becomes �i!Mhṽ(!)i = �M�hṽ(!)i+ F̃ext.(!), i.e.

hṽ(!)i = Y (!) F̃ext.(!), (IV.39a)
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the (complex) admittance of the Langevin model. That is, the (sample) average velocity of the
Brownian particle responds linearly to the external force.

In the Hamilton function describing the Brownian particle, the external force Fext. couples to
the position x. Thus, the admittance (IV.39b) represents, in the language used in Chapter III,
the generalized susceptibility �̃vx that characterizes the linear response of the velocity to a
perturbation of the position. Accordingly, Eq. (IV.40) below is nothing but relation (III.65)
with Kvẋ = Kvv, in the classical case.

Consider now the autocorrelation function at equilibrium (IV.27). Setting t0 = 0 and assuming
that the environment is at thermodynamic equilibrium with temperature T , in which case rela-
tion (IV.12) holds, one finds ⌦

v(t)v(0)
↵
=

kBT

M
e��|t|.

The Fourier–Laplace transform of this autocorrelation function reads
Z 1
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,

that is, given expression (IV.39b) of the admittance

Y (!) =
1

kBT

Z 1

0

⌦
v(t)v(0)

↵
ei!t dt. (IV.40)

This result relating the admittance to the autocorrelation function is again a form of the fluctuation–
dissipation theorem.

If the Brownian particle carries an electric charge q, then one may consider an electrostatic force
Fext.(t) = qE (t) as external force. Inserting this form in Eq. (IV.38), one sees that the average
velocity of the Brownian particle in the stationary regime is hvi= qE /M�. Defining the electrical
mobility as µel.⌘ hvi/E , one finds

µel.=
q

M�
= q Y (!=0),

where the stationary regime obviously corresponds to the vanishing-frequency limit.
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