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Performing the integration over y0 and using relation (C.34), this yields

@pY,1(⌧, y)

@⌧
=

Z ⇥
�(y | y0) pY,1(⌧, y

0)� �(y0 | y) pY,1(⌧, y)
⇤
dy0, (C.35)

formally identical to the equation for TY ;⌧ , and accordingly also referred to as master equation.

Remark: When applied to a physical system, Eq. (C.35) allows the computation of the single-time
probability density at any time from an initial distribution pY,1(t=0, y) and the transition rates �.

C.3 Spectral decomposition of stationary processes
In this Section, we focus on stationary stochastic processes and introduce an alternative description
of their statistical properties, based on Fourier transformation (§ C.3.1). This approach in partic-
ularly leads to the Wiener–Khinchin theorem relating the spectral density to the autocorrelation
function (§ C.3.2).

C.3.1 Fourier transformations of a stationary process
Consider a stationary process Y (t). In general, a given realization y(t) will not be an inte-

grable function, e.g. because it does not tend to 0 as t goes to infinity. In order to talk of Fourier
transformations of the realization, one thus has to first introduce a finite time interval [0, T ] with
nonnegative T , and to work with continuations of the restriction of y(t) to this interval, before
letting T go to infinity.

:::::::
C.3.1 a

::::::::::::::::::
Fourier transform

Let first yT (t) denote the function that coincides with y(t) for 0 < t < T , and vanishes outside
the interval. yT (t) may be seen as the realization of a stochastic process YT (t).

One can meaningfully define the Fourier transform of yT (t) with the usual formula

ỹT (!) ⌘

Z
yT (t) e

i!t dt =

Z T

0

y(t) ei!t dt. (C.36a)

ỹT (!) is now the realization of a stochastic function ỸT (!). The inverse transform reads

yT (t) =

Z
ỹT (!) e

�i!t d!

2⇡
. (C.36b)

Taking the limit T ! 1 defines for each realization y(t) a corresponding ỹ(!). The latter is
itself the realization of a process Ỹ (!), and one symbolically writes for the stochastic processes
themselves

Ỹ (!) =

Z
Y (t) ei!t dt, Y (t) =

Z
Ỹ (!) e�i!t d!

2⇡
. (C.37)

Remark: The reader can check that thanks to the assumed stationarity of the process, we could
have started with restrictions of the realizations to any interval of width T , for instance [� T

2
, T
2
],

without changing the result after taking the limit T ! 1.

:::::::
C.3.1 b

:::::::::::::::
Fourier series

Alternatively, one can consider the T -periodic function which coincides with y(t) on the interval
[0, T ]. This T -periodic function can be written as a Fourier series, which of course equals y(t) for
0 < t < T :

y(t) =
1X

n=�1
cn e

�i!nt for 0 < t < T , (C.38a)

where the angular frequencies and Fourier coefficients are as usual given by
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!n =
2⇡n

T
, cn =

1

T

Z T

0

y(t) ei!nt dt for n 2 Z. (C.38b)

Again, one considers the limit T ! 1 at the end of the calculations.
For the stochastic process, one similarly writes

Y (t) =
1X

n=�1
Cn e

�i!nt for 0 < t < T , (C.39a)

where Cn is a random variable, of which the Fourier coefficient cn is a realization

Cn =
1

T

Z T

0

Y (t) ei!nt dt. (C.39b)

At fixed T , one has the obvious relationship

cn =
1

T
ỹT (!n), (C.40a)

which for the corresponding stochastic variables reads

Cn =
1

T
ỸT (!n). (C.40b)

An equivalent relation will also holds in the limit T ! 1.

Remark: Instead of the complex Fourier transform, one can also use real transforms, for instance
the sine transform as in Ref. [53].

:::::::
C.3.1 c

:::::::::::::::::::::::::::::::
Consequences of stationarity

The assumed stationarity of the stochastic process, which allowed us to define the Fourier trans-
formations on an arbitrary interval of width T , has further consequences, some of which we now
investigate.

First, the single-time average hY (t)i is independent of time, hY (t)i = hY i. Averaging the Fourier
coefficient (C.39b) over an ensemble of realizations, the sample average and integration over time
can be exchanged, which at once leads to

hC0i =
1

T

Z T

0

hY i dt = hY i , hCni =
1

T

Z T

0

hY i ei!nt dt = 0 for n 6= 0. (C.41)

Consider now a two-time average, which, since the process is stationary, only depends on the
time difference. For the sake of simplicity, we assume that the stochastic process is real-valued and
centered, hY i = 0, so as to shorten the expression of the autocorrelation function. The latter reads

(⌧) =
⌦
Y (t)Y (t+ ⌧)

↵
=

1X

n,n0=�1
hCnCn0i e�i(!n+!

n0 )te�i!n⌧ ,

which can only be independent of t for all values of ⌧ if hCnCn0i = 0 for all values of n and n0

such that !n + !n0 6= 0, i.e. [cf. the frequency (C.38b)] when n0
6= �n. Using the classical property

C�n = C⇤
n of Fourier coefficients, this condition can be written as

hCnC
⇤
n0i =

⌦
|Cn|

2
↵
�n,n0 , (C.42)

with �n,n0 the Kronecker symbol. Fourier coefficients of different frequencies are thus uncorrelated,
and the autocorrelation function reads

(⌧) =
1X

n=�1

⌦
|Cn|

2
↵
e�i!n⌧ . (C.43)
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C.3.2 Wiener–Khinchin theorem

:::::::
C.3.2 a

:::::::::::::::::::::::::::::::::::::::::
Spectral density of a stationary process

Consider a centered stationary stochastic process Y (t). Working first on a finite interval [0, T ],
one can introduce the Fourier coefficients Cn or alternatively the Fourier transform ỸT (!). Using
relation (C.40b), Eq. (C.42) reads

1

T 2

D
ỸT (!n)ỸT (!n0)⇤

E
=

1

T 2

D��ỸT (!n)
��2
E
�n,n0 .

The Kronecker symbol can be rewritten under consideration of the expression (C.38b) of the Fourier
frequencies as

�n,n0 = �(n� n0) =
2⇡

T
�(!n� !n0),

leading to D
ỸT (!n)ỸT (!n0)⇤

E
=

2⇡

T

D��ỸT (!n)
��2
E
�(!n� !n0).

Defining now the spectral density S(!) as

S(!) = lim
T !1

1

T

D��ỸT (!)
��2
E
, (C.44)

the above identity becomes in the limit T ! 1

D
Ỹ (!) Ỹ (!0)⇤

E
= 2⇡�(! � !0)S(!), (C.45)

where the discrete frequencies !n, !n0 have been replaced by values !, !0 from a continuous interval.

Coming back to Fourier representations defined on a finite-size time interval, let I! ⌘ [!,!+�!]
denote an interval in frequency space, over which ỸT (!) is assumed to be continuous and to vary
only moderately. One introduces a function �(!) such that

�(!)�! ⌘

X

!n2I!

⌦
|Cn|

2
↵
=

X

!n2I!

1

T 2

⌦��ỸT (!n)
��2↵.

From Eq. (C.38b), the number of modes !n inside the interval I! is �!/(2⇡/T ) = T �!/2⇡.
Taking the limit T ! 1, this gives

�(!) = lim
T !1

1

2⇡T

D��Ỹ (!)
��2
E
=

1

2⇡
S(!)

which shows the relation between the spectral density and the sum of the (squared) amplitudes
of the Fourier modes.

:::::::
C.3.2 b

:::::::::::::::::::::::::::
Wiener–Khinchin theorem

Consider the autocorrelation function (C.43). In the limit T ! 1, the discrete sum is replaced
by an integral, yielding

(⌧) = lim
T !1

1

2⇡T

Z D��ỸT (!)
��2
E
e�i!⌧ d!.

With the help of the spectral density (C.44), this also reads

(⌧) =

Z
S(!) e�i!⌧ d!

2⇡
. (C.46a)
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That is, the autocorrelation function is the (inverse) Fourier transform of the spectral density, and
reciprocally

S(!) =

Z
(⌧) ei!⌧ d⌧. (C.46b)

The relations (C.46) are known as Wiener–Khinchin theorem, and show that the autocorrelation
function (⌧) and the spectral density S(!) contain exactly the same amount of information on the
stochastic process.

Remarks:

⇤ In deriving the theorem, we did not use the stationarity of the stochastic process, but only its
wide-sense stationarity (or covariance stationarity), which only requires that the first and second
moments be independent of time, not all of them.

⇤ If the stochastic process Y (t) is not centered, then the Wiener–Khinchin-theorem states that its
autocorrelation function (⌧) and the spectral density S(!) of the fluctuations around its average
value constitute a Fourier-transform pair.
The spectral density of X(t) itself is given by S(!) + 2⇡|hY i|

2�(!), i.e. it includes a singular
contribution at ! = 0.

Bibliography for Appendix C
• Pottier, Nonequilibrium statistical physics [6], chapter 1 § 6–10.

• van Kampen, Stochastic processes in physics and chemistry [53], chapters III & IV.
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