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a (hopefully small) deviation. This leads to relations between the fields (number density, mean
velocity, temperature) entering the expression of the local equilibrium solution, which are exactly
the laws governing the (thermo)dynamics of a perfect (§ VI.6.2) or a Newtonian (§ VI.6.3) fluid. In
the latter case, we can compute the various transport coefficients in terms of microscopic quantities.

VI.6.1 Conservation laws revisited
If �(t,~r,~p) denotes a quantity, carried by the colliding particles, which is locally conserved in

elastic collisions, then Z

~p
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✓
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(t,~r,~p) = 0,

where (@ f̄/@t)coll. denotes the collision integral of the Boltzmann equation, computed with any
single-particle distribution f̄(t,~r,~p)—that is, f̄ need not be a solution to the Boltzmann equation.

Now, if f̄ is a solution to the Boltzmann equation, then the collision term equals the left-hand
side of Eq. (VI.8), resulting in the identity
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Dropping the dependence of the functions on their variables and performing some straightforward
algebra, this can be rewritten as
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In the fourth term, the velocity is independent of the position, and can thus be taken out of the
gradient, ~r~r ·

�
�~v

�
= ~v · ~r~r �. Similarly, if we from now on restrict ourselves to momentum-

independent forces, then in the sixth term one may write ~r~p ·
�
�~F

�
= ~F · ~r~p�. Eventually, the fifth

term, which is trivially integrated, is zero, since the single-particle density vanishes when |~p| ! 1.
Exchanging the order of the integration over ~p with the differentiation with respect to t or ~r in

the first and third terms, and introducing the notation
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which clearly represents an f̄-weighted average over momenta, the above identity becomes
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= 0. (VI.59)

Note that since the particle-number density n is independent of velocity, it can be moved inside or
outside of averages over ~p at will.

We can now re-express the balance equations (VI.20)–(VI.22) in an equivalent, yet slightly
different manner.

:::::::
VI.6.1 a

::::::::::::::::::::
Mass conservation

First, instead of particle number, we consider mass, setting � = m in formula (VI.59). Since
this is a constant, the second, fourth and fifth term drop out, while the average hmi~p in the first
term is trivial. The remaining first and third terms then give
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Introducing the mass density
⇢(t,~r) = mn(t,~r) (VI.60a)

and the average velocity [cf. Eq. (VI.22a)]
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~v(t,~r) ⌘ h~vi~p, (VI.60b)

this becomes
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⇤
= 0, (VI.61)

which expresses the local conservation of mass.(96)

:::::::
VI.6.1 b

:::::::::::::::::::::
Momentum balance

Choosing now for � the i-th component of linear momentum pi = mvi, the second and fourth
terms in the balance equation (VI.59) vanish, leaving
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The term within square brackets in the time derivative is clearly ⇢(t,~r) vi(t,~r). The mass density
also appears in the argument of the spatial-divergence term. The average hvi~vi~v can be transformed
by noting the identity

h(vi � vi)(vj � vj)i~p = hvivji~p � vivj

and introducing the second-rank stress tensor ⇡⇡⇡, whose components are given by
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The balance equation (VI.62) then becomes
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Using the mass conservation equation (VI.61), this can be rewritten as(96)
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:::::::
VI.6.1 c

::::::::::::::::::::::::::::::::::::::
Balance equation for internal energy

Consider eventually �(t,~r,~p) =
⇥
~p � m~v(t,~r)
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2, which represents the

kinetic energy of the particles in a frame locally comoving with their average velocity. Differentiation
with respect to time or momentum followed by an average over ~p easily allow one to check that the
second and fifth terms in Eq. (VI.59) are zero. There remains
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In the third term, one can first write 1
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then checks that the third term equals the negative of the sum over all indices i and j of ⇡ij times
the derivative @vj/@xi.

Let then
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denote the local density of internal energy and
(96)The subscript on the ~r operator has been suppressed, as it is obvious that it denotes the gradient with respect

to position.
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be the internal energy (or heat) flux in the local rest frame. These quantities allow one to rewrite
the first and second term in Eq. (VI.65) as the time derivative of internal-energy density and the
divergence of ~JU + e~v, respectively.

All in all, one finds(96)
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This expresses the local balance of energy.

The balance equations (VI.61), (VI.64b) and (VI.67) are the same, up to the external force, as
the laws of hydrodynamics (I.70), (I.71) and (I.72), which were derived at the macroscopic level.
Here, we have expressions of the stress tensor and the internal-energy flux in terms of microscopic
quantities, which will allow us to compute them provided we have the form of the single-particle
density in the Boltzmann gas.

VI.6.2 Zeroth-order approximation: the Boltzmann gas as a perfect fluid
We first start by assuming that the single-particle distribution in the Boltzmann gas is given

by a local equilibrium distribution f̄
(0)
(t,~r,~p) of the type (VI.38), characterized by a local number

density n(t,~r), a local temperature T (t,~r) and a local average velocity ~v(t,~r).

:::::::
VI.6.2 a

::::::::::::::::::::::::::::::::::::::::::::::::
Stress tensor and internal-energy flux density

Inserting f̄
(0)
(t,~r,~p) in the expressions (VI.63) and (VI.66b), we obtain the corresponding stress

tensor ⇡(0)

ij and flux density of internal energy in the local rest frame ~J (0)

U .
Let ~w ⌘ ~v �~v(t,~r) denote the velocity of a particle as measured with respect to that reference

frame. The stress tensor reads component-wise(97)
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When i 6= j, the integrand is odd in wi, and thus the integral vanishes: the off-diagonal elements
of the stress tensor are zero. Using formula (A.1b) with n = 2, one finds that all three diagonal
elements are equal to P (t,~r) ⌘ n(t,~r)kBT (t,~r). All in all
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ij = P (t,~r)�ij = n(t,~r)kBT (t,~r)�ij . (VI.68)

Interpreting P (t,~r) as the local pressure—which can be justified by investigating the force on a
surface element, which is then normal—, one recognizes the mechanical equation of state of a
classical ideal gas.

Calculating the internal energy density (VI.66a), one at once finds e = 3

2
nkBT = 3

2
P , i.e. the

thermal equation of state of a classical ideal gas.
For the internal-energy flux, Eqs. (VI.38) and (VI.66b) give
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where the rightmost identity is due to the oddness of the integrand. That is, there is no diffusive
transport of internal energy to this order of approximation.

(97)Throughout this section we use the straightforward change of variable
Z
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Since ⇡⇡⇡(0) is diagonal, there is no transport of linear momentum by (shear) viscosity either: the
Boltzmann gas behaves like a non-dissipative fluid. As a consequence, the balance equations (VI.61),
(VI.64b) and (VI.67) will represent the laws governing the dynamics of such a perfect fluid.

:::::::
VI.6.2 b

:::::::::::::::::::::::::::::
Dynamics of a perfect fluid

Inserting the stress tensor (VI.68) and the (trivial!) heat flux density (VI.69) in Eqs. (VI.64b)
and (VI.67), one finds
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which is the Euler equation for the dynamics of a perfect fluid, while the local balance of internal
energy reads
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where in the right-side one can make the substitution P (t,~r) = 2

3
e(t,~r).

VI.6.3 First-order approximation: the Boltzmann gas as a Newtonian fluid
Adopting now the relaxation-time approximation (VI.49) and assuming that the single-particle

distribution can be written as f̄ = f̄
(0)

+ f̄
(1) [Eq. (VI.50)], we can find f̄

(1), and deduce the mod-
ifications of the stress tensor and flux of internal energy, which give us new dynamical equations.
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Single-particle distribution to subleading order

In the framework of relaxation-time approximation with a momentum-independent relaxation
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which allows the calculation of f̄
(1)
(t,~r,~p) by differentiating the expression (VI.38) of the local

equilibrium distribution f̄
(0)
(t,~r,~p).

Assuming for simplicity that there is not external force ~F and focusing on stationary solutions,
one finds after performing all computations(98)

f̄
(1)

= �⌧r


~w · ~rT

T

✓
1

kBT

m

2
~w 2

�
5

2

◆
+

m

kBT

X

i,j

wiwj @vi
@xj

�
1

3

m~w 2

kBT
~r ·~v

�
f̄
(0)

,

where as above ~w ⌘ ~v�~v(t,~r), while all gradients are with respect to spatial coordinates. This can
also be rewritten as
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:::::::
VI.6.3 b

::::::::::::::::::::::::::::::::::::::::::::::::
Stress tensor and internal-energy flux density

Substituting f̄ = f̄
(0)

+ f̄
(1) in Eq. (VI.63) yields the expression of the stress tensor to first order

in ⌧r. With the same local equilibrium distribution f̄
(0) as in § VI.6.2 and f̄

(1) given by Eq. (VI.72),
(98)The detailed derivation—which only necessitates some careful bookkeeping in computing the various partial

derivatives, but presents no real difficulty, and does not provide much physical insight—can be found e.g. in
Huang [54], chapter 5.5.
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one finds
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with obvious notations, where ⇡(0)

ij is again given by Eq. (VI.68), ⇡(0)
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Inspecting the correction to the single-particle distribution (VI.72), the first term within the

square brackets is odd in ~w and thus will not contribute to ⇡(1)
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In the integral, only the indices k, l such that every component of ~w appears with an even power
contribute: either k = i and j = l, or k = j and l = i, or i = j (diagonal terms) and k = l. Using
then formula (A.1b) with n = 2 or 3, one finds
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with
⌘(t,~r) = n(t,~r)kBT (t,~r)⌧r, (VI.73b)

and all in all
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Comparing with Eqs. (I.73b) and (I.73d), one recognizes the stress tensor of a Newtonian fluid,
whose shear viscosity ⌘ is given by Eq. (VI.73b), while its bulk viscosity ⇣ vanishes.

Inserting now f̄ = f̄
(0)

+ f̄
(1) in the internal energy flux (VI.66b), f̄(0) does not contribute—as in

Eq. (VI.69)—, nor does the second term within the square brackets in Eq. (VI.72). There remains
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Performing the integration, one eventually finds

~JU (t,~r) = ~J (1)

U (t,~r) = �(t,~r)~rT (t,~r) (VI.74a)

with
(t,~r) =
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m
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One recognizes Fourier’s law, with  the heat conductivity.

Remark: The transport coefficients ⌘ and , Eqs. (VI.73b) and (VI.74b) are both proportional to
the relaxation time ⌧r. As mentioned in § VI.4.3, this time is (at least) of the order of the mean
free time ⌧mfp between two successive collisions of a particle, say ⌧r ⇠ ⌧mfp. The latter, divided
by some typical particle velocity, gives the mean free path `mfp, i.e. the typical length traveled by
a particle between two successive collisions. In turn, `mfp is inversely proportional to the particle
density and to the total interaction cross-section, `mfp ⇠ 1/n�tot.. As a consequence, ⌘ and  in
a Boltzmann gas are in first approximation independent of density—yet the latter should be small
enough that only two-to-two collisions take place—and inversely proportional to the cross-section:
the more ideal a gas is (small �tot), the more dissipative (large transport coefficients) it is. An ideal
gas is thus not a perfect fluid!
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:::::::
VI.6.3 c

::::::::::::::::::::::::::::::::
Dynamics of a Newtonian fluid

Eventually, one can substitute the stress tensor (VI.73c) and the internal-energy flux (VI.74a)
in the balance equation for linear momentum [Eq. (VI.64b)]. Straightforward calculations give
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3
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�
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��
, (VI.75)

which is the Navier–Stokes equation [Eq. (I.79)] for a Newtonian fluid with vanishing bulk viscosity.
Inserting the stress tensor and heat flux in the balance equation for internal energy, one accordingly
recovers Eq. (I.80) with ⇣ = 0.
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