
CHAPTER I

Thermodynamics of irreversible
processes

Thermodynamics is a powerful generic formalism, which provides a description of physical systems
involving many degrees of freedom in terms of only a small number of salient variables like the
system’s total energy, particle number or volume, irrespective of the actual underlying microscopic
dynamics. The strength of the approach is especially manifest for the so-called equilibrium states,
which in a statistical-physical interpretation are the “most probable” macroscopic states—i.e. those
which correspond to the largest number of microscopic states obeying given constraints—, and are
characterized by only a handful of thermodynamic variables. Accordingly, introductory courses in
thermodynamics often chiefly focus on its equilibrium aspects. In that context, when considering
physical transformations of a system across different macrostates, one mostly invokes “quasi-static
processes”, namely fictive continuous sequences of equilibrium states between the initial and final
states.

An actual physical process in a macroscopic system is however not quasi-static, but rather
involves intermediary macrostates that are not at thermodynamic equilibrium. As a result, the
evolution is accompanied by an increase in the total entropy of the system, or more precisely, of
the smallest whole including the system under study and its environment which is isolated from the
rest of the universe. That is, such an out-of-equilibrium process is irreversible.

Similar departures from equilibrium also appear spontaneously in an equilibrated system, when
at least one of its key thermodynamic variables is not exactly fixed—as is the case when the sys-
tem cannot exchange the corresponding physical quantity with its exterior—, but only known “on
average”—as happens when the system can exchange the relevant quantity with an external reser-
voir. In the latter case, the thermodynamic variable will possibly fluctuate around its expectation
value,(1) which will again momentarily drive the system out of equilibrium.

In either case, it is necessary to consider also non-equilibrated thermodynamic systems, which
constitute the topic of the present chapter. In a first step, the macroscopic variables necessary to
describe such out-of-equilibrium systems as well as the processes which drive them to equilibrium
are presented (Sec. I.1). Making physical assumptions on how far away the systems are from equi-
librium and on the processes they undergo, one can postulate constitutive equations that relate the
newly introduced variables with each other (Sec. I.2), irrespective of any microscopic picture. These
relations, which actual encompass several known empirical laws, involve characteristic properties of
the systems, namely their transport coefficients. The calculation of the latter, like that of thermo-
dynamic coefficients, falls outside the realm of thermodynamics and necessitates more microscopical
approaches, as will be presented in the following chapters.

For simplicity, the discussion is restricted to non-relativistic systems. ...but I am willing to
change that, if I find the time.

(1)The standard deviation of these fluctuations is readily computed in statistical mechanics, by taking second deriva-
tives of the logarithm of the relevant partition function, and involves thermodynamic coefficients like the compress-
ibility or the specific heat.
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I.1 Description of irreversible thermodynamic processes
This section is devoted to introducing the quantities needed to describe nonequilibrated systems
at the macroscopic level. First, the laws of equilibrium thermodynamics, or thermostatics, are
recalled (§ I.1.1), using Callen’s approach [8, Chap. 1], which is closer to statistical mechanics than
that starting from the traditional principles, thereby allowing one more easily to treat macroscopic
physical quantities as effective concepts. After that, the novel variables that play a role in a situation
of departure from (global) thermodynamic equilibrium in a system are presented, starting with the
simpler case of discrete systems (§ I.1.2), then going on to the physically richer continuous media
(§ I.1.3 and I.1.4).

I.1.1 Reminder: Postulates of equilibrium thermodynamics
Instead of using the traditional laws of thermodynamics—which for the sake of completeness will

be quickly recalled at the end of this subsection—it is possible to give an alternative formulation,
due to Herbert Callen(a) [8], which turns out to be totally equivalent and has the advantage of being
more readily extended to out-of-equilibrium thermodynamics.

This approach takes as granted the existence of variables—namely the volume V , the chemical
composition N1, N2,. . . , Nr and the internal energy U—to characterize properties of “simple”
thermodynamic systems at rest, where “simple” means macroscopically homogeneous and isotropic,
chemically inert and electrically neutral. All these variables, which will hereafter be collectively
represented by {X a}, are extensive: for a system whose volume V become infinitely large, they all
diverge in such a way that the ratio X a/V remains finite.

Remark: Interestingly enough, the extensive variables {X a} are, with the exception of volume, all
conserved quantities in isolated (and a fortiori closed) chemically inert systems, which somehow
justifies the special role that they play.

Building upon the variables {X a}, thermostatics follows from four postulates:

• According to postulate I, there exist particular macroscopic states of simple systems at rest,
the equilibrium states , that are fully characterized by the variables U , V , N1, . . . , Nr.

• The three remaining postulates specify the characterization of the equilibrium state among
all macrostates with the same values of the parameters {X a}:

– Postulate II: For the equilibrium states of a composite system—defined as a collection of
simple systems, hereafter labeled with a capital superscript (A)—, there exists a function
of the extensive parameters {X (A)

a } of the subsystems, the entropy S, which is maximal
with respect to free variations of the variables {X (A)

a }.
– Postulate III: The entropy of a composite system is the sum of the entropies of its

subsystems. Additionally, S is continuous and differentiable, and is a monotonically
increasing function of U .

– Postulate IV: The entropy of any system vanishes in the state for which
✓
@U

@S

◆

V ,N1,...,Nr

= 0.

Noting that any simple system can be in thought considered as a composite system of arbitrarily
chosen subparts, the second postulate provides a variational principle for finding equilibrium states.

The generalization of these postulates to more complicated systems, e.g. magnetized systems or
systems in which chemical reactions take place, is quite straightforward.

In this formulation, a special role is played by the entropy—which is actually only defined for
equilibrium states. The functional relationship between S and the other characteristic variables,
(a)H. Callen, 1919–1993
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S = S({X a}), is referred to as the fundamental equation,(2) and contains every information upon
the thermodynamic properties of the system at equilibrium. The differential form of the relation is
Gibbs’ (b) fundamental equation

dS =
X

a

@S

@X a
dX a =

X

a

Ya dX a with Ya ⌘
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◆

{Xb}b 6=a

. (I.1)

The partial derivatives Ya are intensive parameters conjugate to the extensive variables. Mathe-
matically these derivatives depend on the same set of variables {X b} as the entropy; the functional
relationships Ya = Ya({X b}) are the equations of state of the system.

For instance, in the case of a simple multicomponent fluid, the fundamental equation reads in
integral form S = S(U,V , N1, . . . , Nr), and in differential form

dS =
1

T
dU +

P
T
dV �

X

k

µk

T
dNk, (I.2a)

that is(3)

YE =
1

T
, YV =

P
T
, YNk

= �
µk

T
, (I.2b)

with T the temperature, P the (thermodynamic) pressure, and µk the chemical potential for species
k.

Remark: Postulate I explicitly deals with systems at rest, that is, with a vanishing total linear
momentum ~P . Since ~P is also a conserved quantity in isolated systems, like internal energy or
particle number, it is tempting to add it to the list of characteristic parameters {X a}.

Now, a system at thermodynamic equilibrium is a fortiori in mechanical equilibrium, that is,
there is no macroscopic motion internal to the system: a finite linear momentum ~P is thus entirely
due to some global motion of the system, with a velocity ~v = ~P/M , where M denotes the mass of
the system. Equivalently, the finite value of total momentum arises from our describing the system
within a reference frame in motion with velocity �~v with respect to the system rest frame. The
only interest in considering ~P among the basic parameters is that it allows us to find the conjugate
intensive parameter, which will prove useful hereafter.(4)

Relying momentarily on the statistical mechanical interpretation of entropy as a measure of
missing information, the entropy of a system of mass M does not change whether it is at rest
[energy E = U , entropy S(U, ~P =~0) = S0(U)] or in collective motion with momentum ~P , in which
case its energy becomes E = U + ~P 2/2M and its entropy S(E, ~P ). One thus has

S(E, ~P ) = S0

✓
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◆
.

Differentiating this identity with respect to one of the component P i of momentum in a given
coordinate system, there comes the conjugate variable

YP i ⌘
@S

@P i
=

@S0

@P i
= �

Pi

M

@S0

@U
= �

vi
T
, (I.3)

where vi denotes the i-th component of the velocity ~v of the system. One easily checks that the
other intensive parameters YE , YV , YNk

remain unchanged even if the system is in motion, which
justifies a posteriori the notation convention mentioned in footnote 3.
(2)More precisely, it is the fundamental equation in “entropy representation”.
(3)Throughout these notes, quantities related to the internal energy U—as here its conjugate variable or later below

the corresponding affinity or the internal energy per unit volume—will be denoted with the letter E, instead of U .
(4)It is also more natural in order to allow the extension of the formalism to relativistic systems, since the energy

alone is only a single component of a 4-vector.
(b)J. W. Gibbs, 1839–1903
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For the sake of completeness, we recall here the “classical” laws of thermodynamics, as can be
found in most textbooks:
� 0th law (often unstated): thermal equilibrium at a temperature T is a transitive property;
� 1st law: a system at equilibrium is characterized by its internal energy U ; the changes of

the latter are due to heat exchange Q with and/or macroscopic work W from the exterior,
�U = Q+W ;
� 2nd law: a system in equilibrium is characterized by its entropy S; in an infinitesimal process
between two equilibrium states, dS � �Q/T , where the identity holds if and only if the process
is quasi-static;
� 3rd law: for any system, S ! S0 when T ! 0+, where S0 is independent of the system

variables (which allows one to take S0 = 0).
Callen discusses the equivalence between his postulates and these laws in Chapters 1, 2 & 4 of
Ref. [8]. For instance, one sees at once that the third traditional law and the fourth postulate
are totally equivalent.

I.1.2 Irreversible processes in discrete thermodynamic systems
The first of Callen’s postulates of thermostatics has two implicit corollaries, namely the existence

of other states of macroscopic systems than the equilibrium ones, and the necessity to introduce
new quantities besides the extensive parameters {X a} for the description of these out-of-equilibrium
states. In this subsection, these extra variables are introduced for the case of discrete systems.

::::::
I.1.2 a

::::::::::::
Timescales

In the following, we shall consider composite systems made of several simple subsystems, each of
which is characterized by a set of extensive parameters {X (A)

a }, where (A) labels the various subsys-
tems. If the subsystems are isolated from each other, they can individually be at thermodynamic
equilibrium, with definite values of the respective variables. Beginning with such a collection of
equilibrium states and connecting the subsystems together, i.e. allowing them to interact with each
other, the subsystems start evolving. This results in a time dependence of the extensive variables,
{X (A)

a (t)}.
An essential assumption is that the interaction processes between macroscopic systems are slow

compared to the microscopic ones within the individual subsystems, which drive each of them to
its own thermodynamic equilibrium. In other terms, the characteristic timescales for macroscopic
processes, i.e. for the evolution of the extensive parameters {X (A)

a (t)}, are much larger than the
typical timescale of microscopic interactions.

Under this assumption, one can consider that the composite system undergoes a transforma-
tion across macroscopic states such that one can meaningfully define an instantaneous entropy
S({X a(t)}), with the same functional form as at thermodynamic equilibrium.

::::::
I.1.2 b

::::::::::::::::::::::::::::::::::::::::::
Affinities and fluxes in a discrete system

Consider an isolated composite system made of two simple systems A and B, with respective
extensive variables {X (A)

a }, {X (B)

a }. Since the latter correspond to conserved quantities, the sum

X (A)

a (t) + X (B)

a (t) = X tot

a (I.4)

remains constant over time for every a, whether the subsystems A and B can actually exchange the
quantity or not.

According to postulate III, the entropy of the composite system is

Stot(t) = S(A)
�
{X (A)

a (t)}
�
+ S(B)

�
{X (B)

a (t)}
�
. (I.5)

Since for fixed X tot

a , X (B)

a (t) is entirely determined by the value of X (A)

a (t) [Eq. (I.4)], the total
entropy Stot is actually only a function of the latter.

Nicolas Borghini
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