
APPENDIX B

Elements on random variables

This Appendix summarizes a few elements of probability theory, with a focus on random variables,
adopting the point of view of a physicist interested in results more than in formal proofs.(76)

B.1 Definition
The notion of a random variable—or stochastic variable—X relies on two elements:

a) The set ⌦—referred to as sample space, universe or range—of the possible values x (the
realizations) describing the outcome of a “random experiment”.
This set can be either discrete or continuous, or even partly discrete and partly continuous.
Besides, the sample space can be multidimensional. Accordingly, one speaks of discrete,
continuous or multidimensional random variables. The latter will in the following often be
represented as vectors X.
A physical instance of discrete resp. continuous one-dimensional random variable is the pro-
jection of the spin of a particle on a given axis, resp. the kinetic energy of a free particle.
Examples of continuous 3-dimensional stochastic variables are the three components of the
velocity ~v or those of the position ~x of a Brownian particle at a given instant.

b) The probability distribution on this set.
Consider first a continuous one-dimensional random variable defined on a real interval (or on
a union of intervals) I. The probability distribution is specified through a probability density ,
that is a nonnegative function pX(x)

pX(x) � 0 8x 2 I (B.1a)

normalized to 1 over its range of definition
Z

I
pX(x) dx = 1. (B.1b)

pX(x) dx represents the probability that X takes a value between x and x+ dx.
To account for the possible presence of discrete subsets in the sample space, the probability
distribution may involve Dirac distributions:

pX(x) =
X

n

pn�(x� xn) + p̃X(x), (B.2a)

with the normalization condition
X

n

pn +

Z
p̃X(x) dx = 1, (B.2b)

(76)The presentation is strongly inspired by Chapter I of van Kampen’s(bo)classic book [53].

(bo)N. G. van Kampen, 1921–2013
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with pn > 0 and p̃X a nonnegative function. If p̃X = 0 identically over the range, then X is
simply a discrete random variable. The corresponding probability density is then replaced by
a probability mass function, which associates finite positive probabilities pn to the respective
realizations xn.

The generalization to the case of a multidimensional stochastic variable is straightforward
and involves D-dimensional integrals. The corresponding D-dimensional infinitesimal volume
around a point x will hereafter be denoted by dDx.

Remark: Physical quantities often possess a dimension, like length, mass, time... As a consequence,
the probability density pG for the distribution of the values g of such a quantity G must also have a
dimension, namely the inverse of that of G, to ensure that the probability pG(g) dg be dimensionless.
This property can easily be checked on the various probability densities introduced in Sec. B.3.

In formal probability theory, one distinguishes between the sample space ⌦—the set of all
possible “outcomes” of a random experiment—and a set F , which is a subset of the power set
(set of all subsets) of ⌦. The elements of F , called “events”, represent the events(!) that can be
observed. Eventually, one introduces a function, the “probability measure”, P from F in the real
interval [0, 1], which associates to each event A 2 F a probability P (A) fulfilling the conditions

⌅ P (⌦) = 1 [normalization, cf. Eq. (B.1b) or (B.2b)],

⌅ 8A,B 2 F , P (A[B) = P (A)+P (B) if P (A\B) = 0—in particular when A\B = ;—and
otherwise P (A [B) < P (A) + P (B).

The triplet (⌦,F ,P ) is called “probability space”.

Consider then such a probability space. A one-dimensional random variable X is a function
from ⌦ to R with the property

8x 2 R, {! 2 ⌦ | X(!)  x} 2 F ,

i.e. the set of all outcomes !, whose realization X(!) is smaller than x, is an event.

A cumulative distribution function F from R to [0, 1] is then associated to this random variable,
which maps the real number x onto the probability P (X  x) ⌘ P ({! 2 ⌦ | X(!)  x}). One
then has

F (x) ⌘ P (X  x) =

Z
x
+

�1
p
X
(x0) dx0,

with p
X
(x) the probability density. (The notation x+ means that when p

X
contains a contri-

bution �(x), then the latter is also taken into account in the integral.)

B.2 Averages and moments
Besides the sample space ⌦ and the probability density pX , other notions may be employed for
the characterization of a random variable X. In this Section we restrict the discussion to one-
dimensional stochastic variables—multidimensional ones will be addressed in Sec. B.4.

Consider a function f defined on the one-dimensional sample space ⌦ of a random variable X.
The expectation value or average value of f is defined by

⌦
f(X)

↵
⌘

Z

⌦

f(x) pX(x) dx. (B.3)

The generalization of this definition to the case of multidimensional random variables is straight-
forward.
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Remarks:
⇤ This expectation value is also denoted by E

�
f(X)

�
, in particular by mathematicians.

⇤ Averaging a function is a linear operation.

The m-th moment—or “moment of order m”—of a one-dimensional random variable X (or
equivalently of its probability distribution) is defined as the average value

µm ⌘ hXm
i . (B.4)

In particular, µ1 is the expectation value of the random variable. In analogy with the arithmetic
mean, µ1 is often referred to as “mean value”.

In addition, the variance of the probability distribution is defined by

�2
⌘
⌦
(X � hXi)2

↵
= µ2 � µ2

1. (B.5)

The positive square root � is called standard deviation. The latter is often loosely referred to as
“fluctuation”, because � constitutes a typical measure for the dispersion of the realizations of a
random variable about its expectation value, i.e. for the scale of the fluctuations of the quantity
described by the random variable.

Remarks:
⇤ The integral defining the m-th moment of a probability distribution might possibly diverge! See

for instance the Cauchy–Lorentz distribution in § B.3.8 below.

⇤ In analogy to the variance (B.5), one also defines the m-th central moment (or m-th moment
about the mean)

⌦
(X � hXi)m

↵
for arbitrary m.

⇤ If the random variable possesses a physical dimension, then its moments are also dimensioned
quantities.

Another useful notion is that of the characteristic function, defined for k 2 R by

GX(k) ⌘
⌦
eikX

↵
=

Z
eikxpX(x) dx. (B.6a)

When all moments (B.4) of the probability distribution pX exist, one easily checks that the Taylor
expansion of GX(x) about k = 0 reads

GX(k) =
1X

m=0

(ik)m

m!
µm, (B.6b)

i.e. the m-th derivative of the characteristic function at the point k = 0 is related to the m-th
moment of the probability distribution.

Remarks:
⇤ More precisely, the moment-generating function is GX(k) ⌘ GX(�ik), whose successive deriva-

tives at k = 0, when they exist, are exactly equal to the moments µm. This moment-generating
function may be non-analytic at the origin—e.g. in the case of the Cauchy–Lorentz distribution—,
so that Eq. (B.6b) makes no sense, while Eq. (B.6a) is always defined.

⇤ The logarithm of GX (or GX) generates the successive cumulants m of the probability distribu-
tion:

ln GX(k) =
1X

m=1

(ik)m

m!
m, (B.7)

which are sometimes more useful than the moments (see Sec. B.4). Again, ln GX may not be
analytic at k = 0, in which case the right-hand side of this equation is not well-defined. One easily
checks for instance 1 = µ1 = hXi, 2 = �2, 3 =

⌦
(X � hXi)3

↵
.
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B.3 Some usual probability distributions
In this Section, we list a few often encountered probability distributions together with some of their
properties, starting with discrete ones, before going on with continuous densities.

B.3.1 Discrete uniform distribution
Consider a random variable X with the finite discrete sample space ⌦ = {x1, . . . , xN} where

N 2 N⇤. The discrete uniform distribution

pn =
1

N
8n 2 {1, 2, . . . , N} (B.8)

corresponds to the case where all realizations of the random variable are equally probable.

The expectation value is then hXi =
1

N

NX

n=1

xn and the variance �2 =
1

N2

NX

n=1

x2n �
1

N

 
NX

n=1

xn

!
2

.

B.3.2 Binomial distribution
Let p be a real number, 0 < p < 1,(77) and N 2 N⇤ a positive integer.
The binomial distribution with parameters N and p is the probability distribution for a random

variable with sample space ⌦ = {0, 1, . . . , n, . . . N} given by

pn =

✓
N

n

◆
pn(1� p)N�n. (B.9)

pn is the probability that, when a random experiment with two possible outcomes (“success” and
“failure”, with respective probabilities p and 1 � p) is repeated N times, one obtains exactly n
“successes”.

The expectation value is hXi = pN and the variance �2 = Np(1� p).

B.3.3 Negative binomial distribution

Let p be a real number, 0 < p < 1,(77) and r 2 N⇤ a positive integer.(78)

The negative binomial distribution with parameters r and p is the probability distribution for a
random variable with sample space ⌦ = N, the space of nonnegative integers, given by

pn =

✓
n+ r � 1

n

◆
pr(1� p)n. (B.10)

pn represents the probability that, in a random experiment with two possible outcomes (“success”
and “failure”, with respective probabilities p and 1 � p), one obtains n “failures” before attaining
exactly r “successes”.

The expectation value is hXi =
r(1� p)

p
and the variance �2 =

r(1� p)

p2
.

B.3.4 Poisson distribution
Let � be a positive real number. The Poisson distribution with parameter � associates to the

integer n 2 N = ⌦ (sample space) the probability

pn = e���
n

n!
. (B.11)

The corresponding average value and variance are hXi = �2 = �.
(77)The limiting cases p = 0 or p = 1 are trivial.
(78)The extension to r = 0 is trivial.
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B.3.5 Continuous uniform distribution
Consider a continuous random variable X whose sample space ⌦ is the real interval ]a, b] with

a < b. A constant probability density

pX(x) =

8
<

:

1

b� a
for a < x  b

0 otherwise
(B.12)

on this range represents an instance of continuous uniform distribution. This is quite obviously the
generalization to the continuous case of the discrete uniform distribution (B.8).

B.3.6 Gaussian distribution
Let ⌦ = R represent the sample space for a continuous random variable X. The probability

density

pX(x) =
1

p

2⇡�2
exp


�
(x� µ)2

2�2

�
(B.13)

is called Gaussian distribution (or normal distribution).
The average value is hXi = µ and the variance �2. One can also easily check that the cumulants

m of all orders m � 3 vanish identically.

B.3.7 Exponential distribution
Let � be a positive real number. A continuous random variable X with sample space ⌦ = R+

is said to obey the exponential distribution with parameter � if its probability density is given by

pX(x) = � e��x. (B.14)

The expectation value is hXi =
1

�
and the variance �2 =

1

�2
.

B.3.8 Cauchy–Lorentz distribution
Let x0 and � be two real numbers, with � > 0. The Cauchy–Lorentz distribution, also called in

physics (non-relativistic) Breit (bp)–Wigner (bq) distribution or shortly Lorentzian, is given by

pX(x) =
1

⇡

�

(x� x0)2 + �2
(B.15)

for x 2 ⌦ = R.
All moments of this distribution diverge! x0 is the position of the maximum of the distribution—

i.e. it corresponds to the most probable value of the random variable—, while 2� represents the full
width at half maximum (often abbreviated FWHM).

B.4 Multidimensional random variables
Let X be a D-dimensional random variable, whose components will be denoted X1, X2, . . . , XD.
For the sake of brevity, we shall hereafter only consider the case of continuous variables.

B.4.1 Definitions
The probability density pX(x) is also called multivariate or joint probability density of the D

random variables. For commodity, we shall also denote this density by pD(x1, . . . , xD) ⌘ pX(x).

(bp)G. Breit, 1899–1981 (bq)E. P. Wigner, 1902–1995
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:::::::
B.4.1 a

::::::::::::::::::::::::
Moments and averages

The moments of a multivariate probability density are defined as the expectation values
⌦
Xm1

1
Xm2

2
· · ·XmD

D

↵
⌘

Z
xm1

1
xm2

2
· · ·xmD

D pD(x1, . . . , xD) dx1 dx2 · · · dxD. (B.16)

They are generated by the characteristic function

GX(k1, . . . , kD) ⌘
⌦
ei(k1X1+···+kDXD)

↵
, (B.17)

with k1, . . . , kD real auxiliary variables. The logarithm of this characteristic function generates the
corresponding (joint) cumulants.

Combinations of moments that play an important role are the covariances
⌦�
Xi � hXii

��
Xj � hXji

�↵
= hXiXji � hXiihXji (B.18)

for every i, j 2 {1, . . . , D}. These are often combined into a symmetric covariance matrix , of which
they constitute the entries. One easily checks that the covariances are actually the second-order
cumulants of the joint probability distribution.

Useful, dimensionless measures are then the correlation coefficients obtained by dividing the
covariance of random variables Xi, Xj by the product of their standard deviations (B.5)

cij ⌘
hXiXji � hXiihXji

�Xi
�Xj

. (B.19)

Obviously, the diagonal coefficients cii are identically equal to 1.
If the covariance—or equivalently the correlation coefficient—of two random variables Xi and

Xj vanishes, then these variables are said to be uncorrelated .

:::::::
B.4.1 b

:::::::::::::::::::::::::::::::::::::::::::::::::::
Marginal and conditional probability distributions

Consider a nonnengative integer r < D and choose r random variables among X1, X2, . . . , XD—
for the sake of simplicity, the first r ones X1, . . . , Xr. The probability that the latter take values in
the intervals [x1, x1 + dx1], . . . , [xr, xr + dxr], irrespective of the values taken by Xr+1, . . . , XD, is

pr(x1, . . . , xr) dx1 · · · dxr =

 Z
pD(x1, . . . , xr, xr+1, . . . , xD) dxr+1 · · · dxD

�
dx1 · · · dxr,

where the integral runs over the (D � r)-dimensional sample space of the variables Xr+1, . . . , XD,
which have thus been “integrated out”. The density

pr(x1, . . . , xr) ⌘

Z
pD(x1, . . . , xr, xr+1, . . . , xD) dxr+1 · · · dxD (B.20)

for the remaining random variables X1, . . . , Xr is then called marginal distribution.

If the random variables Xr+1, . . . , XD take given realizations xr+1, . . . , xD, then one can consider
the probability distribution for the remaining random variables under this condition. Accordingly,
one introduces the corresponding conditional probability density

pr|D�r(x1, . . . , xr |xr+1, . . . , xD). (B.21)

One has then the identities

pD(x1, . . . , xD) = pr|D�r(x1, . . . , xr |xr+1, . . . , xD) pD�r(xr+1, . . . , xD)

= pD�r|r(xr+1, . . . , xD |x1, . . . , xr) pr(x1, . . . , xr).
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The first identity can be rewritten as

pr|D�r(x1, . . . , xr |xr+1, . . . , xD) =
pD(x1, . . . , xD)

pD�r(xr+1, . . . , xD)
, (B.22)

which constitutes Bayes’ (br) theorem.

B.4.2 Statistical independence
When the identity

pD(x1, . . . , xD) = pr(x1, . . . , xr) pD�r(xr+1, . . . , xD) (B.23)

holds for all realizations x1, . . . , xr, xr+1, . . . , xD of the random variables, then the sets of variables
{X1, . . . , Xr} and {Xr+1, . . . , XD} are said to be statistically independent (or shortly independent).
In that case, the marginal probability distribution for X1, . . . , Xr (resp. for Xr+1, . . . , XD) equals
the conditional distribution:

pr(x1, . . . , xr) = pr|D�r(x1, . . . , xr |xr+1, . . . , xD).

Let X1 and X2 be two statistically independent random variables. For all functions f1, f2 defined
on the respective sample spaces,(79) one has the identity hf1(X1) f2(X2)i = hf1(X1)i hf2(X2)i. In
particular, all moments—if defined—obey

hXm1

1
Xm2

2
i = hXm1

1
i hXm2

2
i 8m1,m2,

as one sees by considering the characteristic functions of the random variables.
The latter equation shows that the statistical independence of two random variables implies that

they are uncorrelated. The converse is not however true, although both notions are often taken as
identical.

B.4.3 Addition of random variables
Consider again two random variables X1, X2 defined on the same sample space, whose joint

probability density is denoted by pX(x1, x2).
Their sum Y = X1 +X2 constitutes a new random variable with the expectation value

hY i = hX1i+ hX2i (B.24)

and more generally the probability density

pY (y) =

Z
pX(x1, x2) �(y � x1 � x2) dx1 dx2 (B.25)

=

Z
pX(x1, y � x1) dx1 =

Z
pX(y � x2, x2) dx2.

This corresponds to the characteristic function

GY (k) = GX1,X2
(k, k), (B.26)

where GX1,X2
(k1, k2) is the generating function for pX(x1, x2).

If X1 and X2 are statistically independent, Eq. (B.23) allows one to simplify Eq. (B.25) into

pY (y) =

Z
pX1

(x1) pX2

(y � x1) dx1 =

Z
pX1

(y � x2) pX2

(x2) dx2,

(79)... and whose product can be defined in some way, in case the functions are neither real- nor complex-valued, as
e.g. the scalar product of two vectors.

(br)T. Bayes, 1702–1761
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that is, into the convolution of pX1

with pX2

. In this case, the variance of Y is

�2

Y = �2

X1
+ �2

X2
. (B.27)

This property generalizes to all cumulants of Y (however, not to its central moments!), as follows
at once from the identity

GY (k) = GX1
(k)GX2

(k).

Remark: The latter equation shows at once that the sum of two Gaussian variables—and more
generally, any linear combination of Gaussian variables—is itself a Gaussian variable.

B.4.4 Multidimensional Gaussian distribution
Let A be a positive definite, symmetric D ⇥ D matrix and B a D-dimensional vector. The

multivariate Gaussian distribution for random variables X = (X1, . . . , XD) is given by

pX(x) =

s
detA

(2⇡)D
e�

1

2
BT ·A�1·B exp

2

4�1

2

DX

i,j=1

Aijxixj �
DX

i=1

Bixi

3

5 , (B.28)

with Aij resp. Bi the elements of A resp. the components of B, while BT denotes the transposed
vector of B.

B.5 Central limit theorem
Consider a sequence (X1, X2, . . . , Xn, . . .) of statistically independent one-dimensional random vari-
ables with the same sample space ⌦ and the same probability distribution.(80) One assumes that
both the expectation value µ and the variance �2 of the distribution exist. Let

ZN ⌘
1

N

NX

n=1

Xn (B.29a)

denote the N -th partial sum of these random variables, multiplied with an adequate normalization
factor. Following the results of § B.4.3, the expectation value of ZN exactly equals µ while the
variance is �2/N .

According to the central limit theorem,(81) the probability distribution for the random variable
p
N(ZN�µ) converges for N ! 1 towards the Gaussian distribution with expectation value µ1 = 0

and variance �2, i.e. for every real number z

pZN

(z) ⇠
N�1

1p
2⇡�2/N

exp


�
(z � µ)2

2�2/N

�
. (B.29b)

This theorem underlies the important role of the Gaussian distribution and is related to the law
of large numbers. Since the variance of the distribution of ZN becomes smaller with increasing N ,
the possible realizations z become more and more concentrated about the expectation value µ: the
distribution approaches a �-distribution at the point µ.
Remarks:
⇤ The convergence in Eq. (B.29b) is actually a weak convergence, or “convergence in distribution”,

analogous to the pointwise convergence of “usual” (i.e. non-stochastic) sequences.

⇤ There exist further analogous theorems (the version above is the theorem of Lindeberg(bs)–
Lévy(bt)) for statistically independent random variables with different probability distributions, for
“nearly independent” random variables...
(80)Such variables are referred to as “independent and identically distributed” (i.i.d.) random variables.
(81)... in its simplest incarnation.
(bs)J. W. Lindeberg, 1876–1932 (bt)P. Lévy, 1886–1971
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Elements of a proof:
The probability density for ZN follows from the generalizations of Eqs. (B.25) and (B.23)

p
ZN

(z) =

Z
p
X1
(x1) · · · p

XN
(xN ) �

 
z �

1

N

NX

n=1

xn

!
dx1 · · · dxN ,

where p
X1

, . . . , p
XN

actually all reduce to the same density p
X

. Inserting the Fourier represen-
tation of the � distribution, this becomes

p
ZN

(z) =

Z
p
X1
(x1) · · · p

XN
(xN ) exp

"
ik

 
1

N

NX

n=1

xn � z

!#
dx1 · · · dxN

dk

2⇡

=

Z
e�ikz

NY

n=1

✓Z
p
X
(xn) e

ikxn/N dxn

◆
dk

2⇡
=

Z
e�ikz


GX

✓
k

N

◆�N dk

2⇡
,

where GX is the characteristic function (B.6a). A Taylor expansion of the latter at k = 0 yields

GX

✓
k

N

◆
= 1 +

ikµ

N
�

k2hX2
i

2N2
+O

✓
1

N3

◆
,

i.e.
N lnGX

✓
k

N

◆
= ikµ�

k2�2

2N
+O

✓
1

N2

◆
.

This eventually gives

p
ZN

(z) ⇠
N�1

Z
exp


�
k2�2

2N
� ik(z � µ)

�
dk

2⇡
=

1p
2⇡�2/N

exp

"
�

�
z � µ

�2

2�2/N

#
. 2
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