III.3.2 Properties and relations of the time-correlation functions

IIII.3.2 a Properties of the time-correlation functions

We now list a few properties of the various time-correlation functions, without providing their respective proofs, starting with the symmetric and canonical correlation functions ${ }^{(49)}$

- $S_{B A}(0)=S_{A B}(0) \quad, \quad K_{B A}(0)=K_{A B}(0) ;$
- $S_{B A}(\tau)=S_{A B}(-\tau), K_{B A}(\tau)=K_{A B}(-\tau) ;$
in particular $S_{A A}(\tau)=S_{A A}(-\tau) \quad, \quad K_{A A}(\tau)=K_{A A}(-\tau)$,
that is, $S_{A A}$ and $K_{A A}$ are even functions.
Note that similar properties do not hold for $C_{B A}$ when $\hat{B} \neq \hat{A}$. However, one still has

$$
\begin{equation*}
C_{A A}(\tau)=C_{A A}(-\tau) \tag{III.44d}
\end{equation*}
$$

Considering now complex conjugation, one finds [cf. Eq. (III.15]]

- $S_{B A}(\tau)^{*}=S_{A^{\dagger} B^{\dagger}}(-\tau)=S_{B^{\dagger} A^{\dagger}}(\tau), \quad K_{B A}(\tau)^{*}=K_{A^{\dagger} B^{\dagger}}(-\tau)=K_{B^{\dagger} A^{\dagger}}(\tau)$;
- if $\hat{A}=\hat{A}^{\dagger}$ and $\hat{B}=\hat{B}^{\dagger}, S_{B A}(\tau)$ and $K_{B A}(\tau)$ are real numbers;
in particular for $\hat{B}=\hat{A}^{\dagger}=\hat{A}, S_{A A}(0)$ and $K_{A A}(0)$ are positive real numbers.
The latter property for Hermitian operators \hat{A} also holds for $C_{A A}(0)$.
Given the antisymmetrization in the definition of $\xi_{B A}(\tau)$, the corresponding properties differ:
- $\xi_{B A}(0)=\xi_{A B}(0)=0$;
- $\xi_{B A}(\tau)=-\xi_{A B}(-\tau)$;
in particular $\xi_{A A}$ is odd: $\xi_{A A}(\tau)=-\xi_{A A}(-\tau)$,
Turning to complex conjugation, one finds
- $\xi_{B A}(\tau)^{*}=\xi_{A^{\dagger} B^{\dagger}}(-\tau)=-\xi_{B^{\dagger} A^{\dagger}}(\tau)$;
- if $\hat{A}=\hat{A}^{\dagger}$ and $\hat{B}=\hat{B}^{\dagger}, \xi_{B A}(\tau)$ is purely imaginary;

We shall come back to property (III.46b) in §II.3.5, in which we shall take into account the specific behavior of the operators \hat{A}, \hat{B} under time reversal.

IIII.3.2 b Interrelations between time-correlation functions

The explicit expression (III.26) of the generalized susceptibility shows that it is simply related to the inverse Fourier transform (III.19) of the spectral density according to

$$
\begin{equation*}
\chi_{B A}(\tau)=2 \mathrm{i} \Theta(\tau) \xi_{B A}(\tau) \tag{III.48}
\end{equation*}
$$

Since $\chi_{B A}(\tau)$, which was defined for Hermitian operators only, is real-valued (see last remark of \S III.1.2 a), one recovers property III.47b.

Let us define an operator $\hat{\dot{A}}$ by the relation

$$
\begin{equation*}
\hat{\dot{A}} \equiv \frac{1}{\mathrm{i} \hbar}\left[\hat{A}, \hat{H}_{0}\right] \tag{III.49}
\end{equation*}
$$

i.e. such that its matrix elements are given by $(\dot{A})_{n n^{\prime}}=\left(E_{n^{\prime}}-E_{n}\right) A_{n n^{\prime}} / \mathrm{i} \hbar=\mathrm{i} \omega_{n n^{\prime}} A_{n n^{\prime}}$ in the

[^0]energy-eigenstates basis. If \hat{A} is an observable, then $\hat{\dot{A}}$ coincides with the value taken at $t=0$ by the derivative $\mathrm{d} \hat{A}_{\mathrm{I}}(t) / \mathrm{d} t$ for a system evolving with \hat{H}_{0} only, i.e. in the absence of external perturbation.

Replacing \hat{A} by $\hat{\dot{A}}$ in the spectral form (III.23) of Kubo's correlation function, one finds

$$
K_{B \dot{A}}(\tau)=\mathrm{i} \sum_{n, n^{\prime}} \frac{\pi_{n}-\pi_{n^{\prime}}}{\beta \hbar} B_{n n^{\prime}} A_{n^{\prime} n} \mathrm{e}^{-\mathrm{i} \omega_{n^{\prime} n} \tau},
$$

i.e.

$$
\begin{equation*}
K_{B \dot{A}}(\tau)=\frac{2 \mathrm{i}}{\beta} \xi_{B A}(\tau) \tag{III.50}
\end{equation*}
$$

In turn, relation (III.48), becomes

$$
\begin{equation*}
\chi_{B A}(\tau)=\beta K_{B \dot{A}}(\tau) \Theta(\tau) . \tag{III.51}
\end{equation*}
$$

This relation is sometimes referred to as Kubo formula, since in his original article [33] Kubo expressed the linear response to a perturbation with the help of $\beta K_{B \dot{A}}(\tau)$ instead of the retarded propagator $\chi_{B A}(\tau)$ used in \S III.1.2.

Identifying the right-hand sides of Eqs. (III.37) and (III.38) and differentiating the resulting relation with respect to time, one finds

$$
\frac{\mathrm{d} K_{B A}(\tau)}{\mathrm{d} \tau}=-\frac{2 \mathrm{i}}{\beta} \xi_{B A}(\tau)
$$

Equation (III.50) then yields

$$
\begin{equation*}
\frac{\mathrm{d} K_{B A}(\tau)}{\mathrm{d} \tau}=-K_{B \dot{A}}(\tau) \tag{III.52}
\end{equation*}
$$

III.3.5 Onsager relations

Using the symmetries of a problem often allows one to deduce interesting relations as well as simplifications. We discuss here a first example, in the case of symmetry under time reversal. A further example will be given illustrated on an explicit example in § ??, when discussing quantum Brownian motion.

Equation III.46b relates $\xi_{B A}$, i.e. the response of \hat{B} to a excitation coupled to \hat{A}, to $\xi_{A B}$, which describes the "reciprocal" situation of the change in the expectation value of \hat{A} induced by a perturbation coupling to \hat{B}. More precisely, it is a relation between $\xi_{B A}(t)$ and $\xi_{A B}(-t)$, that is with reversed time direction, which is slightly unsatisfactory.

To obtain an equation relating $\xi_{B A}(t)$ and $\xi_{A B}(t)$, with the same time direction in both correlation functions, one needs to introduce the time reversal operator $\hat{\mathscr{T}}$ and to discuss the behavior of the various observables under its operation.

III. 3.5 a Time reversal in quantum mechanics

Accordingly, let us briefly recall some properties of the operator $\hat{\mathscr{T}}$ which represents the action of the time-reversal operation on spinless particles (54). These follow from the fact that $\hat{\mathscr{T}}$ is an antiunitary operator, i.e. an antilinear operator whose adjoint equals its inverse.

Let $\hat{\mathcal{A}}$ denote an antilinear operator. If $|1\rangle,|2\rangle$ are two kets of the Hilbert space \mathscr{H} on which $\hat{\mathcal{A}}$ is acting, and λ_{1}, λ_{2} two complex constants, one has

$$
\begin{equation*}
\hat{\mathcal{A}}\left(\lambda_{1}|1\rangle+\lambda_{2}|2\rangle\right)=\lambda_{1}^{*} \hat{\mathcal{A}}|1\rangle+\lambda_{2}^{*} \hat{\mathcal{A}}|2\rangle . \tag{III.72a}
\end{equation*}
$$

That is, if $\lambda \in \mathbb{C}$

$$
\begin{equation*}
\hat{\mathcal{A}} \lambda=\lambda^{*} \hat{\mathcal{A}} \tag{III.72b}
\end{equation*}
$$

[^1]If $\langle\phi|$ is a bra (belonging to the dual space to \mathscr{H}), the action of $\hat{\mathcal{A}}$ on $\langle\phi|$ defines a new bra $\langle\phi| \hat{\mathcal{A}}$ such that for any ket $|\psi\rangle$, one has the identity

$$
\begin{equation*}
(\langle\phi| \hat{\mathcal{A}})|\psi\rangle=[\langle\phi|(\hat{\mathcal{A}}|\psi\rangle)]^{*} . \tag{III.72c}
\end{equation*}
$$

Note that the brackets cannot be dropped, contrary to the case of linear operators: one must specify whether $\hat{\mathcal{A}}$ acts on the ket or on the bra.

The adjoint operator $\hat{\mathcal{A}}^{\dagger}$ of the antilinear operator $\hat{\mathcal{A}}$ is such that for all $|\phi\rangle, \hat{\mathcal{A}}^{\dagger}|\phi\rangle$ is the ket conjugate to the bra $\langle\phi| \hat{\mathcal{A}}$. For all $|\phi\rangle,|\psi\rangle$, the usual property of the scalar product reads

$$
\langle\psi|\left(\hat{\mathcal{A}}^{\dagger}|\phi\rangle\right)=[(\langle\phi| \hat{\mathcal{A}})|\psi\rangle]^{*} .
$$

Comparing with Eq. (III.72d), this gives the relation

$$
\begin{equation*}
\langle\psi|\left(\hat{\mathcal{A}}^{\dagger}|\phi\rangle\right)=\langle\phi|(\hat{\mathcal{A}}|\psi\rangle) . \tag{III.72d}
\end{equation*}
$$

Eventually, the antiunitarity of $\hat{\mathscr{T}}$ means that it obeys the additional identity

$$
\begin{equation*}
\hat{\mathscr{T}} \hat{\mathscr{T}}^{\dagger}=\hat{\mathscr{T}}^{\dagger} \hat{\mathscr{T}}=\hat{\mathbb{1}} . \tag{III.72e}
\end{equation*}
$$

It follows from this relation that if vectors $\left\{\left|\phi_{n}\right\rangle\right\}$ form an orthonormal basis, then so do the transformed vectors $\left\{\hat{\mathscr{T}}\left|\phi_{n}\right\rangle\right\}$, which will be denoted as $\left\{\left|\hat{\mathscr{T}} \phi_{n}\right\rangle\right\}$.

Signature of an operator under time reversal

Many operators \hat{O} acting on a system transform in a simple way under time reversal, namely according to

$$
\begin{equation*}
\hat{\mathscr{T}} \hat{O} \hat{\mathscr{T}}^{\dagger}=\epsilon_{O} \hat{O} \quad \text { with } \epsilon_{O}=+1 \text { or }-1 . \tag{III.73}
\end{equation*}
$$

ϵ_{O} is the signature of the operator \hat{O} under time reversal.
For instance, time reversal does not modify positions, but changes velocities

$$
\begin{equation*}
\hat{\mathscr{T}} \hat{\vec{X}} \hat{\mathscr{T}}^{\dagger}=\hat{\vec{X}}, \quad \hat{\mathscr{T}} \hat{\vec{V}} \hat{\mathscr{G}}^{\dagger}=-\hat{\vec{V}}, \tag{III.74}
\end{equation*}
$$

that is $\epsilon_{X}=1, \epsilon_{V}=-1$.
Consider now a system with Hamilton operator \hat{H}, assumed to be invariant under time reversal, i.e. $\hat{\mathscr{T}} \hat{H} \hat{\mathscr{T}}^{\dagger}=\hat{H}$. Let $\hat{O}_{\mathrm{H}}(t)$ denote the Heisenberg representation (II.36) of an observable \hat{O}; one may then write

$$
\hat{\mathscr{T}} \hat{O}_{\mathrm{H}}(t) \hat{\mathscr{T}}^{\dagger}=\hat{\mathscr{T}} \mathrm{e}^{\mathrm{i} \hat{H} t / \hbar} \hat{O} \mathrm{e}^{-\mathrm{i} \hat{H} t / \hbar} \hat{\mathscr{T}}^{\dagger}=\hat{\mathscr{T}} \mathrm{e}^{\mathrm{i} \hat{H} t / \hbar} \hat{\mathscr{V}}^{\dagger} \hat{\mathscr{T}} \hat{O} \hat{\mathscr{T}}^{\dagger} \hat{\mathscr{T}} \mathrm{e}^{-\mathrm{i} \hat{H} t / \hbar} \hat{\mathscr{V}}^{\dagger}
$$

where the (anti)unitarity (III.72e) was used. Invoking now Eqs. III.72b) and III.73), and again the antiunitarity property yields the relation

$$
\begin{equation*}
\hat{\mathscr{T}} \hat{O}_{\mathrm{H}}(t) \hat{\mathscr{T}}^{\dagger}=\mathrm{e}^{-\mathrm{i} \hat{H} t / \hbar} \epsilon_{O} \hat{O} \mathrm{e}^{\mathrm{i} \hat{H} t / \hbar}=\epsilon_{O} \hat{O}_{\mathrm{H}}(-t), \tag{III.75}
\end{equation*}
$$

which shows that the time reversal operator acts on operators as it is supposed to, inversing the direction of time evolution.
Remark: In the presence of an external magnetic field $\overrightarrow{\mathscr{B}}_{\text {ext. }}$, the Hamiltonian \hat{H} is not invariant under time reversal. As a matter of fact, the magnetic field couples to operators of the system with signature -1 , as for instance the velocity of particles or their spins, so that the transformed of \hat{H} under time reversal corresponds to the Hamiltonian of the same system in presence of the opposite magnetic field $-\overrightarrow{\mathscr{B}}_{\text {ext. }}$:

$$
\begin{equation*}
\hat{\mathscr{T}} \hat{H}\left[\overrightarrow{\mathscr{B}}_{\text {ext }}\right] \cdot \hat{\mathscr{T}}=\hat{H}\left[-\overrightarrow{\mathscr{B}}_{\text {ext }}\right] . \tag{III.76}
\end{equation*}
$$

III. 3.5 b Behavior of correlation functions under time reversal

Let us come back to the generic setup of this Chapter, namely to a system with unperturbed Hamiltonian \hat{H}_{0}. We assume that the latter is invariant under time reversal, so that \hat{H}_{0} and $\hat{\mathscr{T}}$ commute. As a consequence, the canonical equilibrium density operator $\hat{\rho}_{\text {eq. }}$ also commutes with the time reversal operator.

Considering operators \hat{A} and \hat{B} with definite signatures under time reversal and their respective Heisenberg representations (III.3) with respect to \hat{H}_{0}, we can compute the equilibrium expectation value $\left\langle\hat{B}_{\mathrm{I}}(t) \hat{A}\right\rangle_{\text {eq. }}$:

Using the identities $\hat{\mathscr{T}} \hat{\rho}_{\text {eq. }} . \hat{\mathscr{T}}^{\dagger}=\hat{\rho}_{\text {eq. }}, \hat{\mathscr{G}} \hat{B}_{\mathrm{I}}(t) \cdot \hat{\mathscr{T}}^{\dagger}=\epsilon_{B} \hat{B}_{\mathrm{I}}(-t)$ and $\hat{\mathscr{T}} \hat{A} \hat{\mathscr{T}}^{\dagger}=\epsilon_{A} \hat{A}$ in the rightmost member of the equation, this becomes

$$
\begin{aligned}
\left\langle\hat{B}_{\mathrm{I}}(t) \hat{A}\right\rangle_{\text {eq. }} & =\epsilon_{A} \epsilon_{B} \sum_{n}\left\langle\phi_{n}\right|\left(\hat{\mathscr{T}}^{\dagger} \hat{\rho}_{\text {eq. }} \cdot \hat{B}_{\mathrm{I}}(-t) \hat{A}\left|\hat{\mathscr{G}} \phi_{n}\right\rangle\right) \\
& =\epsilon_{A} \epsilon_{B} \sum_{n}\left\langle\hat{\mathscr{T}} \phi_{n}\right| \hat{A}^{\dagger} \hat{B}_{\mathrm{I}}(-t)^{\dagger} \hat{\rho}_{\text {eq. }}\left(\hat{\mathscr{V}}\left|\phi_{n}\right\rangle\right),
\end{aligned}
$$

where the second identity follows from applying property (III.72d) with $|\phi\rangle=\hat{\rho}_{\text {eq. }} \cdot \hat{B}_{\mathrm{I}}(-t) \hat{A}\left|\hat{\mathscr{T}} \phi_{n}\right\rangle$, $\hat{\mathcal{A}}=\hat{\mathscr{T}}$, and $\langle\psi|=\left\langle\phi_{n}\right|$, while using the hermiticity of $\hat{\rho}_{\text {eq. }}$. The term $\left(\hat{\mathscr{T}}\left|\phi_{n}\right\rangle\right)$ can then be rewritten as $\left|\hat{\mathscr{T}} \phi_{n}\right\rangle$. Since the vectors $\left\{\hat{\mathscr{T}}\left|\phi_{n}\right\rangle\right\}$ form an orthogonal basis, the sum on the righthand side actually represents a trace

$$
\left\langle\hat{B}_{\mathrm{I}}(t) \hat{A}\right\rangle_{\text {eq. }}=\epsilon_{A} \epsilon_{B} \operatorname{Tr}\left[\hat{A}^{\dagger} \hat{B}_{\mathrm{I}}(-t)^{\dagger} \hat{\rho}_{\text {eq }}\right]=\epsilon_{A} \epsilon_{B}\left\langle\hat{A}^{\dagger} \hat{B}_{\mathrm{I}}(-t)^{\dagger}\right\rangle_{\text {eq. }} .
$$

If both \hat{A} and \hat{B} are Hermitian and using stationarity, this gives

$$
\left\langle\hat{B}_{\mathrm{I}}(t) \hat{A}\right\rangle_{\mathrm{eq} .}=\epsilon_{A} \epsilon_{B}\left\langle\hat{A}_{\mathrm{I}}(t) \hat{B}\right\rangle_{\text {eq }} .
$$

One similarly shows $\left\langle\hat{A} \hat{B}_{\mathrm{I}}(t)\right\rangle_{\text {eq. }}=\epsilon_{A} \epsilon_{B}\left\langle\hat{B} \hat{A}_{\mathrm{I}}(t)\right\rangle_{\text {eq. }}$, which leads to the reciprocity relations

$$
\begin{equation*}
\xi_{B A}(t)=\epsilon_{A} \epsilon_{B} \xi_{A B}(t), \tag{III.77a}
\end{equation*}
$$

and after Fourier transforming

$$
\begin{equation*}
\tilde{\xi}_{B A}(\omega)=\epsilon_{A} \epsilon_{B} \tilde{\xi}_{A B}(\omega) \tag{III.77b}
\end{equation*}
$$

This result constitutes the generalization of the Onsager reciprocal relations introduced in $£[.2 .2 \mathrm{~b}$, which are the zero-frequency limit of the second relation here (see also §III.4.1 a).

When the system is in an external magnetic field $\overrightarrow{\mathscr{B}}_{\text {ext. }}$, one shows with the help of Eq. III.76) that relation III.77b) generalizes to

$$
\begin{equation*}
\tilde{\xi}_{B A}\left(\omega, \overrightarrow{\mathscr{B}}_{\text {ext. }}\right)=\epsilon_{A} \epsilon_{B} \tilde{\xi}_{A B}\left(\omega,-\overrightarrow{\mathscr{B}}_{\text {ext. }}\right) . \tag{III.78}
\end{equation*}
$$

Starting from this relation or, in the absence of magnetic field, from Eq. (III.77b, one easily derives similar relations for the other spectral representations $\tilde{\chi}_{B A}(\omega), \tilde{S}_{B A}(\omega), K_{B A}(\omega)$.

Remarks:

* In combination with relation (III.54b, Eq. [III.77) shows that the spectral function $\tilde{\xi}_{B A}(\omega)$ is real and odd when $\epsilon_{A} \epsilon_{B}=1$, or purely imaginary and even if $\epsilon_{A} \epsilon_{B}=-1$.
* Using relation (III.48) between the linear response function and the inverse Fourier transform of the spectral function, one deduces from Eq. (III.77) the identities

$$
\begin{equation*}
\chi_{B A}(t)=\epsilon_{A} \epsilon_{B} \chi_{A B}(t) \quad, \quad \tilde{\chi}_{B A}(\omega)=\epsilon_{A} \epsilon_{B} \tilde{\chi}_{A B}(\omega) . \tag{III.79}
\end{equation*}
$$

Accordingly, relation (III.57) becomes

$$
\tilde{\xi}_{B A}(\omega)=\frac{1}{2 \mathrm{i}}\left[\tilde{\chi}_{B A}(\omega)-\epsilon_{A} \epsilon_{B} \tilde{\chi}_{B A}(\omega)^{*}\right]
$$

If observables \hat{A} and \hat{B} have the same parity under time reversal, then $\tilde{\xi}_{B A}(\omega)$ is the imaginary part of $\tilde{\chi}_{B A}(\omega)$, as in the case $\hat{B}=\hat{\sim}^{\dagger}{ }^{\dagger}$ [Eq. (III.58]]. On the other hand, if they have opposite parities, then the above identity reads $\tilde{\xi}_{B A}(\omega)=-\mathrm{i} \operatorname{Re} \tilde{\chi}_{B A}(\omega)$: the dissipative part of the susceptibility is now its real part.

Accordingly, the rather standard notation $\chi_{B A}^{\prime \prime}(\tau)$ for the function called in these notes $\xi_{B A}(\tau)$ can be misleading in a twofold way: firstly, despite the double-primed notation, it is not the imaginary part of the retarded propagator $\chi_{B A}(\tau)$ even though $\tilde{\chi}_{B A}^{\prime \prime}(\omega)$ is that of $\tilde{\chi}_{B A}(\omega)$. Secondly, $\chi_{B A}^{\prime \prime}(\tau)$ is the inverse Fourier transform of $\tilde{\chi}_{B A}^{\prime \prime}(\omega)$ only if \hat{A} and \hat{B} behave similarly under time reversal.

III. 4 Examples and applications

The overall presentation of this Section is missing.
A further example will be given in Sec. IV.4.

III.4.1 Green-Kubo relation

An important application of the formalism of linear response is the calculation of the transport coefficients which appear in the phenomenological constitutive relations of non-equilibrium thermodynamics.

III.4.1 a Linear response revisited

Under consideration of relation (III.48) or (III.51) and dropping the nonlinear terms, the Kubo formula (III.8) can be recast as either

$$
\begin{equation*}
\left\langle\hat{B}_{\mathrm{I}}(t)\right\rangle_{\text {n.eq. }}=\langle\hat{B}\rangle_{\text {eq. }}+2 \mathrm{i} \int_{0}^{\infty} \xi_{B A}(\tau) f(t-\tau) \mathrm{d} \tau \tag{III.83}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\left\langle\hat{B}_{\mathrm{I}}(t)\right\rangle_{\mathrm{n} . \mathrm{eq.}}=\langle\hat{B}\rangle_{\text {eq. }}+\int_{0}^{\infty} \beta K_{B \dot{A}}(\tau) f(t-\tau) \mathrm{d} \tau \tag{III.84}
\end{equation*}
$$

where the latter is in fact the form originally given by Kubo.
Let us assume that the expectation value of \hat{B} at equilibrium vanishes: for instance, \hat{B} is a flux as introduced in Chapter To emphasize this interpretation, we denote the responding observable by $\hat{\mathcal{J}}_{b}$, instead of \hat{B}. Accordingly, to increase the similarity with Sec. I.2, we call the generalized force $\mathscr{F}_{a}(t)$ instead of $f(t)$, and we rename \hat{A}_{a} the observable coupling to $\mathscr{F}_{a}(t)$.

Fourier transforming relations (III.83) or III.84 leads to

$$
\begin{equation*}
\left\langle\tilde{\mathcal{J}}_{b}(\omega)\right\rangle_{\text {n.eq. }}=L_{b a}(\omega) \tilde{\mathscr{F}}_{a}(\omega) \tag{III.85a}
\end{equation*}
$$

where we also adopted a new notation for the susceptibility:

$$
\begin{equation*}
L_{b a}(\omega) \equiv \beta \int_{0}^{\infty} K_{\mathcal{J}_{b} \dot{A}_{a}}(\tau) \mathrm{e}^{\mathrm{i} \omega \tau} \mathrm{~d} \tau=2 \mathrm{i} \int_{0}^{\infty} \xi_{\mathcal{J}_{b} A_{a}}(\tau) \mathrm{e}^{\mathrm{i} \omega \tau} \mathrm{~d} \tau \tag{III.85b}
\end{equation*}
$$

Summing over different generalized forces, whose effects simply add up at the linear approximation, the Fourier-transformed Kubo formula (III.85a) is a straightforward generalization of Eq. I.31) accounting for frequency dependent fluxes and affinities. The real novelty is that the "generalized kinetic coefficient" $L_{b a}(\omega)$ is no longer a phenomenological factor as in Sec. I.2 instead, there is now an explicit formula to compute it using time-correlation functions at equilibrium of the system, Eq. III.85b.

In Chapter [1, the considered affinities and fluxes were implicitly quasi-static-the gradients of intensive thermodynamic quantities were time-independent-, which is the regime for which transport coefficients are defined. For instance, the electric conductivity $\sigma_{\text {el }}$ is defined as the proportionality factor between a constant electric field and the ensuing direct current. Accordingly, the kinetic coefficients $L_{b a}$ in the constitutive relation (I.31 are actually the zero-frequency limits of the corresponding susceptibilities:

$$
\begin{equation*}
L_{b a}=\lim _{\omega \rightarrow 0} \frac{1}{k_{B} T} \int_{0}^{\infty} K_{\mathcal{J}_{b} \dot{A}_{a}}(\tau) \mathrm{e}^{\mathrm{i} \omega \tau} \mathrm{~d} \tau=\frac{1}{k_{B} T} \int_{0}^{\infty} K_{\mathcal{J}_{b} \dot{A}_{a}}(\tau) \mathrm{d} \tau \tag{III.86}
\end{equation*}
$$

This constitutes the general form of the Green ${ }^{(\mathrm{ax})}$-Kubo-relation 40, 41, 33].

[^2]
III.4.1 b Example: electric conductivity

As example of application of the Green-Kubo-relation, consider a system made of electrically charged particles, with charges q_{i}, submitted to a uniform classical external electric field $\overrightarrow{\mathscr{E}}(t)$, which plays the role of the generalized force. This field, which derives from an electrostatic potential $\Phi(\vec{r})=-\vec{r} \cdot \overrightarrow{\mathscr{E}}(t)$, perturbs the Hamiltonian, coupling to the positions of the charge carriers:

$$
\hat{W}(t)=-\sum_{i} q_{i} \Phi\left(\hat{\vec{r}}_{i}\right)=\overrightarrow{\mathscr{E}}(t) \cdot \hat{\vec{D}} \quad \text { where } \quad \hat{\vec{D}} \equiv \sum_{i} q_{i} \hat{\overrightarrow{\vec{r}}}_{i}
$$

with $\hat{\vec{r}}_{i}$ the position operator of the i-th particle.
Quite obviously, we are interested in the electric current due to this perturbation, namely

$$
\hat{\vec{J}}_{\mathrm{el} .}(t) \equiv \sum_{i} q_{i} \frac{\mathrm{~d} \hat{\vec{r}}_{i}(t)}{\mathrm{d} t}
$$

In the notations of the present Chapter, \hat{A} is the component of $\hat{\vec{D}}$ along the direction of $\overrightarrow{\mathscr{E}}$-let us for simplicity denote this component by $\hat{D}_{z}-$, while the role of \hat{B} is played by any component $\hat{J}_{\text {el., } j}$ of $\hat{\vec{J}}_{\text {el. }}$. Additionally, one sees that $\hat{B}=\hat{\dot{A}}$ in the case $\hat{B}=\hat{J}_{\text {el. }, z}$.

Focussing on the latter case, Kubo's linear response formula reads in Fourier space

$$
\hat{J}_{\mathrm{el},, z}(\omega)=\tilde{\chi}_{J_{z} D_{z}}(\omega) \mathscr{E}_{z}(\omega) \equiv \sigma_{z z}(\omega) \mathscr{E}_{z}(\omega)
$$

where for obvious reasons we have introduced for the relevant generalized susceptibility the alternative notation $\sigma_{z z}(\omega)$. The zero-frequency limit of $\sigma_{z z}$ is the electric conductivity, which according to the Green-Kubo-relation (III.86) is given by

$$
\sigma_{\text {el. }}=\frac{1}{k_{B} T} \int_{0}^{\infty} K_{J_{z} J_{z}}(\tau) \mathrm{d} \tau
$$

i.e. by the integral of the time-autocorrelation function of the component of the electric current along the direction of the electric field.

Let us again emphasize that given a microscopic model of the system, the canonical correlation function can be calculated, which then allows one to compute the electric conductivity, which in $\S I .2 .3 \mathrm{c}$ was a mere phenomenological coefficient.

[^0]: ${ }^{(49)}$ The properties involving $C_{B A}, S_{B A}$ or $\xi_{B A}$ can be read at once from their definitions (III.12) resp. (III.16), or invoking their respective spectral representations. Those pertaining to $K_{B A}$ can be shown with the help of the decomposition III.23), in particular using the invariance of the ratio under the exchange $n \leftrightarrow n^{\prime}$.

[^1]: ${ }^{(54)}$ For further details, see e.g. Messiah [29] Chapter 15, in particular Secs. 3-5 \& 15-22.

[^2]: ${ }^{(a x)}$ M. S. Green, 1922-1979

