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consideration is isotropic,(11) this tensor is for symmetry reasons proportional to the identity

LLLEE = LEE1113.

The comparison between Eqs. (I.37a) and (I.37b) then gives the identification

 =
1

T 2
LEE . (I.37c)

Since LEE � 0 to ensure the positivity of the entropy production rate,  is also non-negative. The
flux (I.37a) thus transports energy from the regions of higher temperatures to the colder ones.

Combining Fourier’s law (I.37a) with the continuity equation (I.18a) applied to the energy
density e yields

@e

@t
= �~r · ~JE = ~r ·

�
 ~rT

�

Assuming that the heat conductivity is uniform in the medium under study,  can be factorized out
of the divergence, so that the right-hand side becomes 4T , with 4 the Laplacian. According to
a well known thermodynamic relation, at fixed volume the change in the internal energy equals the
product of the change in temperature with the heat capacity at constant volume cV , which results
in de = cV dT . If the heat capacity is independent of temperature, one readily obtains the evolution
equation

@T

@t
=



cV
4T. (I.38)

This is the generic form of a diffusion equation [see Eq. (I.40) below], with diffusion coefficient /cV .

::::::
I.2.3 b

::::::::::::::::::
Particle diffusion

Consider now “particles” immersed in a motionless and homogeneous medium, in which they can
move around—microscopically, through scatterings on the medium constituents—without affecting
the medium characteristics.(12) Examples are the motion of dust in the air, of micrometer-scale
bodies in liquids, but also of impurities in a solid or of neutrons in the core of a nuclear reactor.

Let n denote the number density of the particles. The transport of particles can be described
by Fick’s(i) law (1855) [14]

~JN = �D ~rn , (I.39a)

with ~JN the flux density of particle number and D the diffusion coefficient .

Remark: Relation (I.39a) is sometimes referred to as Fick’s first law, the second one being actually
the diffusion equation (I.40).

In the absence of temperature gradient and of collective motion of the medium, the general
relation (I.31) yields for the particle number flux density

~JN = LNN
~r

✓
�

µ

T

◆
(I.39b)

with LNN � 0. Relating the differential of chemical potential to that of number density with

dµ =

✓
@µ

@n

◆

T

dn ,

(11). . . which is strictly speaking never the case at the microscopic level in a crystal, since the lattice structure is
incompatible with local invariance under the whole set of three-dimensional rotations. Nevertheless, for lattices
with a cubic elementary mesh, isotropy holds, yet at the mesoscopic level.

(12)We shall come back to this physical setup in Chapter ??.
(i)A. Fick, 1829–1901

Nicolas Borghini

Nicolas Borghini
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the identification of Fick’s law (I.39a) with formula (I.39b) yields

D =
1

T

✓
@µ

@n

◆

T

LNN , (I.39c)

where the precise form of the partial derivative depends on the system under study.

:::::::::::::::::::
Diffusion equation

If the number of diffusing particles is conserved—which is for instance not the case for neutrons
in a nuclear reactor(13)—and if the diffusion coefficient is independent of position, the associated
continuity equation (I.18a) leads to the diffusion equation

@n(t,~r)
@t

= D4n(t,~r). (I.40)

To tackle this partial differential equation (considered on R3), one can introduce the Fourier
transform of the number density with respect to space coordinates

ñ(t,~k) ⌘
Z

n(t,~r) e�i~k·~r d3~r.

This transform then satisfies for each ~k the ordinary differential equation

@ñ(t,~k)
@t

= �D~k 2ñ(t,~k),

where it was assumed that the number density and its spatial derivatives vanish at infinity at every
instant. These assumptions respectively guarantee the finiteness of the overall particle number and
the absence of particle flux at infinity.

The solution to the ordinary differential equation reads ñ(t,~k) = e�D~k 2t ñ(0,~k), with ñ(0,~k) the
initial condition at t = 0 in Fourier space. An inverse Fourier transform then yields

n(t,~r) =
Z

e�D~k 2t ñ(0,~k) ei~k·~r d3~k

(2⇡)3
.

If the initial condition is n(0,~r) = n0 �(3)(~r)—which physically amounts to introducing a particle
density n0 at the point ~r = ~0 at time t = 0—then the Fourier transform is trivially ñ(0,~k) = n0, so
that the inverse Fourier transform above is simply that of a Gaussian, which gives

n(t,~r) = n0

(4⇡Dt)3/2
e�~r

2/4Dt. (I.41)

The typical width of the particle number density increases with
p
t. This growth of the width is

illustrated in Fig. I.1 in the case of one-dimensional diffusion—in which case the prefactor of the
exponential function scales as 1/

p
Dt.

Remark: In Eq. (I.41) or on Fig. I.1, one sees that at any time t > 0 the Gaussian extends infinitely
far away from the origin. This means that particles could diffuse infinitely quickly away from where
they were situated at t = 0, in blatant violation of the main principle of Special Relativity: The
equation (I.40) allows faster-than-light diffusion, it does not respect causality .

::::::
I.2.3 c

::::::::::::::::::::::
Electrical conduction

Another example of particle transport is that of the moving charges in an electrical conductor in
the presence of an electric field ~E = �~r�, with � the electrostatic potential. The latter is assumed
to vary very slowly at the mesoscopic scale, so as not to spoil the local equilibrium assumption. If
q denotes the electric charge of the carriers—assuming a single species of moving charges—, then
(13)There, one should also include various source and loss terms, to account for the production of neutrons through

fission reactions, or their “destruction” through reactions with the nuclear fuel, with the nuclear waste present in
the reactor, or with the absorber bars that moderate the chain reaction, or their natural decay.
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n(t, x)

Figure I.1 – One-dimensional diffusion: starting from n(t = 0, x) = n0 �(x), the number
density n(t, x) = n0 e�x2/4Dt/

p
4⇡Dt is displayed at various times t (in arbitrary units).

the electric charge flux density, traditionally referred to as current density , is simply related to the
number flux density of the moving charges through

~Jel. = q~JN . (I.42a)

The relation between electric field and current density in a mesoscopically isotropic conductor
at constant temperature in the absence of magnetic field is (the microscopic version of) Ohm’s(j)

law
~Jel. = �el. ~E (I.42b)

with �el. the (isothermal) electrical conductivity .

To relate the electrical conductivity to the kinetic coefficients of § I.2.1, and more specifically
to LNN since ~Jel. is proportional to ~JN , one needs to determine the intensive variable conjugate to
particle number—or equivalently, thanks to the local equilibrium assumption, conjugate to particle
number density. Now, if e denotes the (internal) energy density in the absence of electrostatic
potential, then the energy density in presence of � becomes e + nq�: meanwhile, the particle
number density n remains unchanged. The entropy per unit volume then satisfies—as can most
easily be checked within the grand-canonical ensemble of statistical mechanics—the identity

s(e, n ,�) = s(e� nq�, n , 0),

which yields
@s

@n = �
µ+ q�

T
⌘ �

µ�

T
, (I.43)

with µ the chemical potential at vanishing electric potential. µ� is referred to as electrochemical
potential .

Assuming a uniform temperature in the conductor, the linear relation (I.31) for the flux of
particle number then reads

~JN = LNN
~r

✓
�
µ+ q�

T

◆
. (I.44)

(j)G. S. Ohm, 1789–1854
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Invoking again the uniformity of temperature, this gives

~JN = �
1

T

✓
@µ

@n

◆

T

LNN
~rn �

q

T
LNN

~r�,

where the first term is the same as in § I.2.3 b, while the second can be rewritten with the help
of the electric field. If the particle-number density is uniform, the first term vanishes, and the
identification with Eqs. (I.42a) and (I.42b) yields the electrical conductivity

�el. =
q2

T
LNN . (I.45)

:::::::::::::::::
Einstein relation

Equations (I.39c) and (I.45) show that the diffusion coefficient D and the electrical conductivity
� are both related to the same kinetic coefficient LNN , so that they are related to each other:

D =
�el.
q2

✓
@µ

@n

◆

T

. (I.46)

Let µel. denote the electrical mobility of the charge carriers, which is the proportionality factor
between the mean velocity ~vav. they acquire in an electric field ~E and this field

~vav. = µel.
~E . (I.47)

Obviously, the determination of µel. requires a microscopic model for the motion of the charges.
At the macroscopic level, the electric current density is simply the product of the mean velocity

of charges times the charge density, i.e.
~Jel. = nq~vav. = nqµel.

~E ,

which after identification with Ohm’s law (I.42b) gives �el. = nqµel.. Together with Eq. (I.46), one
obtains

D =
µel.

q
n
✓
@µ

@n

◆

T

. (I.48)

For a classical ideal gas, one has
✓
@µ

@n

◆

T

=
kBT

n , which gives

D =
µel.

q
kBT, (I.49)

which is a special case of a general relation derived by A. Einstein(k) in his 1905 paper on Brownian
motion [15].

::::::
I.2.3 d

::::::::::::::::::::::::
Thermoelectric effects

We now turn to a first example of systems in which several quantities can be transported at
the same time, namely that of isotropic electrical conductors, in which both heat and particles—
corresponding to the charge carriers—can be transferred simultaneously from one region to the
other.

For the sake of simplicity, we consider a single type of moving particles, with electric charge q.
Throughout the section it will be assumed that their number density is uniform, i.e. ~rn vanishes.
On the other hand, these charges are able to move collectively, resulting in an electric current density
~Jel. = q~JN . In the system reigns a slowly spatially varying electrostatic potential �, which results
as seen in § I.2.3 c in the replacement of the chemical potential µ by the electrochemical potential
µ� defined by Eq. (I.43).
(k)A. Einstein, 1879–1955



20 Thermodynamics of irreversible processes

In the linear regime, the transports of particles and energy are governed by the constitutive
equations [Eq. (I.31)]

~JN = LNN
~r

✓
�
µ�

T

◆
+ LNE

~r

✓
1

T

◆
, (I.50a)

~JE = LEN
~r

✓
�
µ�

T

◆
+ LEE

~r

✓
1

T

◆
, (I.50b)

where Curie’s symmetry principle has already been accounted for, while Onsager’s reciprocal relation
reads LNE = LNE since both particle number and energy are invariant under time reversal.

Instead of ~JE , it is customary to consider the heat flux (density) ~JQ defined as

~JQ = T ~JS = ~JE � µ�
~JN , (I.51)

where the second identity follows from Eq. (I.27a).
Inspecting the entropy production rate (I.27b)

�S = ~JQ · ~r

✓
1

T

◆
�

1

T
~JN · ~rµ�, (I.52)

one finds that the affinities conjugate to ~JQ and ~JN are ~r(1/T ) and �(1/T )~rµ�, respectively.
Using these new fluxes and affinities as variables, we can introduce alternative linear relations

~JN = �L11

1

T
~rµ� + L12

~r

✓
1

T

◆
, (I.53a)

~JQ = �L21

1

T
~rµ� + L22

~r

✓
1

T

◆
, (I.53b)

with new kinetic coefficients Ljk, which are related to the original ones by

L11 = LNN ,
L12 = LNE � µ�LNN , L21 = LEN � µ�LNN ,
L22 = LEE � µ�

�
LEN + LNE) + µ2

�
LNN .

(I.53c)

Again a reciprocal relation L21 = L12 holds when LEN = LNE .

:::::::::::::::::
Heat conduction

Let us first investigate the transport of heat in a situation where the particle number flux
vanishes, ~JN = ~0, i.e. for an open electric circuit ~Jel. = ~0. Equation (I.53a) gives

~rµ� = �
1

T

L12

L11

~rT. (I.54)

Inserting this identity in the expression of the heat flux (I.53b) then yields

~JQ = �
L11L22 � L12L21

T 2 L11

~rT. (I.55)

Since L11 = LNN � 0 and L11L22 � L12L21 = LNNLEE � LNELEN � 0, the ratio is a non-
negative number. Now, since the particle flux vanishes, ~JQ = ~JE . The comparison of Eq. (I.55)
with Fourier’s law (I.37a) allows us to interpret the prefactor of ~rT in relation (I.54) as the heat
conductivity . With the help of the relations (I.53c) it can be rewritten as

 =
L11L22 � L12L21

T 2 L11

=
LNNLEE � LNELEN

T 2 LNN
. (I.56)
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This result differs from the expression (I.37c) of the heat conductivity in an insulator, which is not
unexpected since in the case of a electric conductor, both phonons and moving charges contribute
to the transport of heat.

:::::::::::::::
Seebeck effect

Consider again the case of an open circuit, ~JN = ~0. In such a circuit, a temperature gradient
induces a gradient of the electrochemical potential, see Eq. (I.54). This constitutes the Seebeck (l)

effect (1821). The relationship is traditionally written in the form

1

q
~rµ� = �✏S ~rT, (I.57a)

which defines the Seebeck coefficient ✏S of the conductor.(14) Since the number density of moving
charges is assumed to be uniform, ~rµ� = q~r� = �q ~E , so that Eq. (I.57a) can be recast as

~E = ✏S ~rT, (I.57b)

with ~E the electric field.
Comparing Eqs. (I.54) and (I.57a), one finds at once

✏S =
1

qT

L12

L11

. (I.58)

The Seebeck effect is an instance of indirect transport, since its magnitude, measured by ✏S , is
proportional to the cross-coefficient L12.

To instantiate the Seebeck effect, one can use a circuit consisting of two conductors A and B
made of different materials, a “thermocouple”, whose junctions are at different temperatures T2 and

A A
�1 �4

B

T2 • •T3

Figure I.2 – Schema of a thermocouple to evidence the Seebeck effect.

T3, as illustrated in Fig. I.2. There appears then between the points 1 and 4 a voltage

�4 � �1 =
1

q

Z
4

1

~rµ� · d~̀=

Z T3

T2

�
✏(A)

S � ✏(B)

S

�
dT.

This voltage can be measured with a high-resistance (so as not to close the circuit) voltmeter,(15) so
that the Seebeck coefficient of one of the materials, say B, can be assessed when all other quantities
(T2, T3, ✏(A)

S ) are known. Conversely, when using materials whose coefficients are known, this
thermocouple allows the measurement of temperature differences.

Remark: Similar phenomena were recently discovered in magnetic materials, either conductors or
insulators. Thus, in ferromagnetic materials, a so-called spin Seebeck effect was discovered [16], in
which a temperature gradient induces a gradient in the “spin voltage” µ"

� µ#, where µ" resp. µ#

denotes the electrochemical potential of spin up resp. down electrons.(16)

(14)This coefficient, characteristic of the conducting material, is often denoted by S, which I wanted to avoid here.
(15)One can easily convince oneself that the temperature of the voltmeter is irrelevant.
(16)For a review on “spin caloritronics”—the interplay of heat and spin transport—see Ref. [17]. The theory of the

spin Seebeck effect is reviewed in Ref. [18].
(l)T. J. Seebeck, 1770–1831
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An exact analogue of the “usual” spin-independent electric Seebeck effect is the magnetic Seebeck
effect theorized in Ref. [19], in which a temperature gradient induces a magnetic field in a material
with magnetic dipoles [20].

:::::::::::::
Peltier effect

The Peltier (m) effect (1834) consists in the observation that in a conductor at uniform tem-
perature, a current density ~Jel. is accompanied by a heat flux. This relation is usually written
as

~JQ = ⇧ ~Jel., (I.59)

which defines the Peltier coefficient ⇧ of the conducting material.
Setting ~rT = ~0 in Eqs. (I.53a)–(I.53b) and eliminating (1/T )~rµ� between the two equations

leads at once to
⇧ =

1

q

L21

L11

. (I.60)

This is again an indirect transport phenomenon, somehow “reverse” to the Seebeck effect since it
involves the reciprocal kinetic coefficient L21 instead of L12.

Consider the junction between two different conducting materials A and B at the same temper-
ature depicted in Fig. I.3. An electric current ~Jel. crosses the junction without change, as dictated
by local charge conservation. In each conductor, this current is accompanied by heat fluxes ~J (A)

Q

A

~Jel., ~J
(A)

Q

B

~Jel., ~J
(B)

Q

Figure I.3 – Schema of an isothermal junction to evidence the Peltier effect.

and ~J (B)

Q , which differ since ⇧(A)
6= ⇧(B). To ensure energy conservation, a measurable amount of

heat
dQ

dt

����
Peltier

=
�
⇧(A)

�⇧(B)
�
Jel.

is released per unit time and unit cross-sectional area at the junction, with Jel. ⌘
�� ~Jel.

��. Note that
dQ/dt can be negative, which means that heat is actually absorbed from the environment at the
junction.

Comparing now the Seebeck coefficient (I.58) with the Peltier coefficient (I.60), one sees that the
relation L21 = L12—which follows from Onsager’s reciprocal relation between LEN and LNE—leads
to

⇧ = ✏ST, (I.61)

which is known as second Kelvin(n) relation (or sometimes second Thomson relation(17)).

Coming back to the fluxes (I.53a)–(I.53b) in the most general case of non-vanishing gradients
in temperature as well as in electrochemical potential, and eliminating (1/T )~rµ� between the two
relations, one find with the help of Eqs. (I.56), (I.60) and (I.61) the heat flux

~JQ = � ~rT + ✏S T q ~JN . (I.62)

The first term corresponds to thermal conduction, the second to convection.

(17)... which is historically more accurate, since William Thomson had not yet been ennobled as Lord Kelvin when
he empirically found this relation in 1854.

(m)J. Peltier, 1785–1845 (n)W. Thomson, Lord Kelvin, 1824–1907
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