
CHAPTER IV

Brownian motion

In this Chapter, we study the very general paradigm provided by Brownian motion. Originally, this
motion is that a “heavy” particle, called Brownian particle, immersed in a fluid consisting of much
lighter particles—in Robert Brown’s(bd) original observations, this was some pollen grain in water.
Due to the successive collisions with the fluid constituents, the Brownian particle is constantly
moving, going in always changing, apparently random directions, even if the fluid itself is at rest:
the position ~x(t) and the velocity ~v(t) of the Brownian particle are then naturally modeled as
stochastic processes, driven by a fluctuating force.

The interest of this rather specific physical problem lies in the fact that the dynamical equation
governing the motion of the Brownian particle actually also applies to many stochastic collec-
tive properties of a macroscopic system as they approach their equilibrium values. Accordingly,
the techniques used for solving the initial question extend to a much wider class of problems in
nonequilibrium statistical physics and even beyond. This notwithstanding, we shall throughout this
chapter retain the terminology of the original physical problem.

In Sec. IV.1, we introduce the approach pioneered by Paul Langevin,(be) which describes the
dynamics of the Brownian particle velocity on time scales larger than the typical autocorrelation
time of the fluctuating force acting on the particle by explicitly solving the evolution equation for
given initial conditions. We then adopt in Sec. IV.2 an alternative description, in which we rather
focus on the time evolution of the probability distribution of the velocity. That approach is quite
generic and can be used for any Markov process, so that we discuss a straightforward extension
in an appendix (IV.A). Next, we investigate a generalization of the Langevin model, in which
the friction force exerted by the fluid on the Brownian motion is non-local in time, i.e. we take
into consideration memory effects in the autocorrelation function of the fluctuating Langevin force
(Sec. IV.3). Eventually, we introduce in Sec IV.4 quantum-mechanical models analogous to classical
Brownian motion, in that the spectral properties of some of their operators are similar to those of
the Langevin model of Sec. IV.1 or the generalization of Sec. IV.3.

For the sake of simplicity, we consider throughout this Chapter one-dimensional Brownian mo-
tion only, with the exception of Sec. IV.4. The generalization to motion in two or more dimensions
is straightforward.

IV.1 Langevin dynamics
Following P. Langevin’s modeling, the dynamics of a Brownian particle much heavier than the
constituents of the medium in which it evolves can be viewed as resulting from the influence of two
complementary forces, namely an instantaneous friction force and a fluctuating force. After writing
down the corresponding dynamical equation for the velocity of the Brownian particle (§ IV.1.1), we
study its solution for given initial conditions (§ IV.1.2), as well as the resulting time evolution of the
displacement from the initial position (§ IV.1.3). We then turn in § IV.1.4 to the dynamics of the
fluctuations of the velocity for a Brownian particle at equilibrium with its environment. Eventually,
(bd)R. Brown, 1773–1858 (be)P. Langevin, 1872–1946
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anticipating on applications of the Brownian-motion paradigm to other problems, we introduce the
spectral function associated to the Langevin model at equilibrium (§ IV.1.5), as well as the linear
response of the model to an external force (§ IV.1.6).

IV.1.1 Langevin model
Let M denote the mass of the Brownian particle and v(t) its velocity.

:::::::
IV.1.1 a

::::::::::::::::::::
Langevin equation

The classical model introduced by P. Langevin [48] consists in splitting the total force exerted
by the fluid constituents on the Brownian particle into two contributions:

• First, a Brownian particle in motion with a velocity v with respect to the fluid sees more fluid
constituents coming from the direction in which it is moving as from the other direction. The
larger v is, the more pronounced the imbalance is.
To account for this effect, one introduces a friction force opposed to the instantaneous direction
of motion—i.e. to the velocity at the same instant—and increasing with velocity. The simplest
possibility is that of a force proportional to v(t), which will be denoted as �M�v(t) with � > 0.

This actually corresponds to the viscous force exerted by a Newtonian fluid on an immersed
body, in which case the “friction coefficient” M� is proportional to the shear viscosity ⌘ of
the fluid.

• The fluid constituents also exert a fluctuating force F
L
(t), due to their random individual

collisions with the Brownian particle. This Langevin force, also referred to as noise term,
will be assumed to be independent of the kinematic variables (position and velocity) of the
Brownian particle.

Since both friction and noise terms introduced by this decomposition are actually two aspects of
a single underlying phenomenon—the microscopic scatterings of fluid constituents on the Brownian
particle—, one can reasonably anticipate the existence of a relationship between them, i.e. between
the friction coefficient � and a characteristic property of F

L
(t), as we shall indeed find in § IV.1.2 b.

Assuming for the moment that there is no additional force acting on the Brownian particle, i.e.
that it is “free”,(60) the equation of motion reads

M
dv(t)

dt
= �M�v(t) + F

L
(t) with v(t) =

dx(t)

dt
. (IV.1)

This Langevin equation is an instance of a linear stochastic differential equation, i.e. an equation
including a randomly varying term—here F

L
(t)—with given statistical properties—which we shall

specify in the next paragraph in the case of the Langevin force. The solution v(t) to such an equation
for a given initial condition is itself a stochastic process.

Accordingly, one should distinguish—although we shall rather sloppily use the same notations—
between the stochastic processes FL(t), v(t) and below x(t), and their respective realizations.
If FL(t) is a realization of the corresponding stochastic process, then Eq. (IV.1) is an ordinary
(linear) differential equation for v(t), including a perfectly deterministic term FL . Its solution
v(t) for a given initial condition is a well-determined function in the usual sense.
The reader should keep in mind this dual meaning of the notations when going through the
following § IV.1.2–IV.1.6.

Remarks:
⇤ Strictly speaking, the classical collisions of the fluid particles on the Brownian particle are not

random, but entirely governed by the deterministic Liouville equation for the total system. The
(60)This assumption will be relaxed in § IV.1.6.
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randomness of the macroscopically-perceived Langevin force comes from the fact that it is in practice
impossible to fully characterize the microstate of the fluid, which has to be described statistically.

⇤ As mentioned at the end of § I.2.1, the relaxation of a thermodynamic extensive variable towards
its equilibrium value can be described, provided the system is near equilibrium, by a first order linear
differential equation. Such an extensive variable is in fact the expectation value of the sum over many
particles of a microscopic quantity, so that it can fluctuate around its average. These fluctuations
can be modeled by adding a fluctuating (generalized) force in the evolution equation (I.33), which
then becomes of the Langevin type (IV.1):

d�X a(t)

dt
= �

X

c

�ac�X c(t) + Fa,L , (IV.2)

with Fa,L a fluctuating term.

:::::::
IV.1.1 b

:::::::::::::::::::::::::::::
Properties of the noise term

The fluid in which the Brownian particle is immersed is assumed to be in a stationary state,
for instance at thermodynamic equilibrium—in which case it is also in mechanical equilibrium, and
thus admits a global rest frame, with respect to which v(t) is measured. Accordingly, the Langevin
force acting upon the particle is described by a stationary process, that is, the single-time average
hF

L
(t)i is time-independent, while the two-point average hF

L
(t)F

L
(t0)i only depends on the difference

t0 � t.
In order for the particle to remain (on average) motionless when it is at rest with respect to

the fluid, the single-time average of the Langevin force should actually vanish. Since we assumed
F

L
(t) to be independent of the particle velocity, this remains true even when the Brownian particle

is moving: ⌦
F

L
(t)

↵
= 0. (IV.3a)

In consequence, the autocorrelation function (C.5) of the force simplifies to

(⌧) =
⌦
F

L
(t)F

L
(t+ ⌧)

↵
. (IV.3b)

As always for stationary processes, (⌧) only depends on |⌧ |. (⌧) is assumed to be integrable, with
Z 1

�1
(⌧) d⌧ ⌘ 2DvM

2, (IV.3c)

which defines the parameter Dv.
Let ⌧c be the autocorrelation time over which (⌧) decreases. ⌧c is typically of the order of the

time interval between two collisions of the fluid particles on the Brownian particle. If ⌧c happens
to be much smaller than all other time scales in the system, then the autocorrelation function can
meaningfully be approximated by a Dirac distribution

(⌧) = 2DvM
2�(⌧). (IV.3d)

More generally, one may write
(⌧) = 2DvM

2�⌧c(⌧), (IV.3e)
where �⌧c is an even function, peaked around the origin with a typical width of order ⌧c, and
whose integral over R equals 1.

Remarks:
⇤ Throughout this Chapter, expectation values denoted with angular brackets h· · · i—as e.g. in

Eq. (IV.3a) or (IV.3b)—represent averages over different microscopic configurations of the “fluid”
with the same macroscopic properties.

⇤ In the case of multidimensional Brownian motion, one usually assumes that the correlation matrix
ij(⌧) of the Cartesian components of the fluctuating force is diagonal, which can be justified in
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the case the underlying microscopic dynamics involve interactions depending only on inter-particle
distances (see § IV.4.1 a).

⇤ Equations (IV.3) constitute “minimal” assumptions, which will allow us hereafter to compute
the first and second moments of the stochastic processes v(t) and x(t), but do not fully specify the
Langevin force F

L
(t). A possibility for determining entirely the statistical properties of F

L
(t) could

be to assume that it is Gaussian, in addition to stationary.

Since FL(t) actually results from summing a large number of random processes—the microscopic
forces due to individual collisions with the fluid constituents—with the same probability distri-
bution, this assumption of Gaussianity simply reflects the central limit theorem (Appendix B.5).

IV.1.2 Relaxation of the velocity
We now wish to solve the Langevin equation (IV.1), assuming that at the initial time t = t0,

the velocity of the Brownian particle is fixed, v(t0) = v0.
Under this initial condition, the solution to the Langevin equation for t > t0 reads(61)

v(t) = v0 e
��(t�t0) +

1

M

Z t

t0

F
L
(t0) e��(t�t0) dt0 for t > t0. (IV.4)

Since F
L
(t0) is a stochastic process, so is v(t). The first moments of its distribution can easily be

computed.

Remark: The integral on the right-hand side of the previous equation has to be taken with a grain
of salt, as it is not clear whether F

L
is integrable.

:::::::
IV.1.2 a

::::::::::::::::::
Average velocity

Averaging Eq. (IV.4) over an ensemble of realizations, one finds thanks to property (IV.3a)

hv(t)i = v0 e
��(t�t0) for t > t0. (IV.5)

That is, the average velocity relaxes exponentially to 0 with a characteristic relaxation time

⌧r ⌘
1

�
. (IV.6)

Since its average value depends on time, v(t) is not a stationary process.

:::::::
IV.1.2 b

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Variance of the velocity. Fluctuation–dissipation theorem

Recognizing the average velocity (IV.5) in the first term on the right-hand side of Eq. (IV.4),
one also obtains at once the variance

�v(t)
2
⌘

D⇥
v(t)�hv(t)i

⇤
2
E
=

1

M2

Z t

t0

Z t

t0

⌦
F

L
(t0)F

L
(t00)

↵
e��(t�t0) e��(t�t00) dt0 dt00 for t > t0. (IV.7)

If the simplified form (IV.3d) of the autocorrelation function of the Langevin force holds—which
for the sake of consistency necessitates at least ⌧c ⌧ ⌧r—, this variance becomes

�v(t)
2 = 2Dv

Z t

t0

e�2�(t�t0) dt0 =
Dv

�

�
1� e�2�(t�t0)

�
for t > t0. (IV.8)

�2
v thus vanishes at t = t0—the initial condition is the same for all realizations—, then grows, at

first almost linearly
�v(t)

2
' 2Dv(t� t0) for 0  t� t0 ⌧ ⌧r, (IV.9)

(61)Remember that this expression, as well as many other ones in this section, holds both for realizations of the
stochastic processes at play—in which case the meaning is clear—and by extension for the stochastic processes
themselves.
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before saturating at large times

�v(t)
2
'

Dv

�
for t� t0 � ⌧r. (IV.10)

Equation (IV.9) suggests that Dv is a diffusion coefficient in velocity space.

Remark: The above results remain valid even if the simplified form (IV.3d) does not hold, provided
the discussion is restricted to times t siginificantly larger than the autocorrelation time ⌧c of the
Langevin force.

Using definition (IV.3b), the right-hand side of Eq. (IV.7) can be recast as
e�2�t

M2

Z
t

t0

Z
t

t0

(t0 � t00) e�(t
0+t

00) dt0 dt00 =
e�2�t

2M2

Z
t�t0

t0�t

(⌧) d⌧

Z 2t

2t0

e�(t
0+t

00) d(t0 + t00).

The integral over t0 + t00 is straightforward, while for that over ⌧ , one may for t � t0 � ⌧c
extend the boundaries to �1 and +1 without changing much the result. Invoking then the
normalization (IV.3c), one recovers the variance (IV.8). 2

According to Eq. (IV.5), the average velocity vanishes at large times, so that the variance (IV.10)
equals the mean square velocity. That is, the average kinetic energy of the Brownian particle tends
at large times towards a fixed value

hE(t)i '
MDv

2�
for t� t0 � ⌧r. (IV.11)

In that limit, the Brownian particle is in equilibrium with the surrounding fluid. If the latter
is at thermodynamic equilibrium at temperature T—one then refers to it as a thermal bath or
thermal reservoir—then the average energy of the Brownian particle is according to the equipartition
theorem equal to 1

2
kBT , which yields

Dv =
kBT

M
�. (IV.12)

This identity relates a quantity associated with fluctuations—the diffusion coefficient Dv, see
Eq. (IV.9)—with a coefficient modeling dissipation, namely �. This is thus an example of the more
general fluctuation–dissipation theorem discussed in § III.3.4.

Since Dv characterizes the statistical properties of the stochastic Langevin force [Eq. (IV.3c)],
Eq. (IV.12) actually relates the latter to the friction force.

IV.1.3 Evolution of the position of the Brownian particle. Diffusion
Until now, we have focused on the velocity of the Brownian particle. Instead, one could study

its position x(t), or equivalently its displacement from an initial position x(t0) = x0 at time t0.

Integrating the velocity (IV.4) from the initial instant until time t yields the formal solution

x(t) = x0 +
v0
�

�
1� e��(t�t0)

�
+

1

M

Z t

t0

F
L
(t0)

1� e��(t�t0)

�
dt0 for t > t0. (IV.13)

x(t), and in turn the displacement x(t)� x0, is also a stochastic process, whose first two moments
we shall now compute.

:::::::
IV.1.3 a

:::::::::::::::::::::::
Average displacement

First, the average position at time t is simply

hx(t)i = x0 +
v0
�

�
1� e��(t�t0)

�
for t > t0, (IV.14)

thanks to the vanishing expectation value (IV.3a) of the Langevin force.
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For t� t0 ⌧ ⌧r, hx(t)i' x0+v0(t� t0), i.e. the motion is approximately uniform. In the opposite
limit t � t0 � ⌧r, the mean displacement hx(t)i� x0 tends exponentially towards the asymptotic
value v0/�.

:::::::
IV.1.3 b

::::::::::::::::::::::::::::::
Variance of the displacement

The first two terms in the right member of Eq. (IV.13) are exactly the average position (IV.14),
that is, the last term equals precisely x(t) � hx(t)i, or equivalently [x(t) � x0] � hx(t)� x0i. The
variance of the position is thus equal to the variance of the displacement, and is given by

�x(t)
2 =

1

M2�2

Z t

t0

Z t

t0

⌦
F

L
(t0)F

L
(t00)

↵⇥
1� e��(t�t0)

⇤⇥
1� e��(t�t00)

⇤
dt0 dt00 for t > t0. (IV.15)

When the autocorrelation function of the Langevin force can be approximated by the simplified
form (IV.3d), this yields

�x(t)
2 =

2Dv

�2

Z t

t0

⇥
1� e��(t�t0)

⇤
2
dt0 =

2Dv

�2


t� t0 �

2� 2e��(t�t0)

�
+

1� e�2�(t�t0)

2�

�
for t > t0.

(IV.16)
This variance vanishes at t = t0—the initial condition is known with certainty—, grows as (t� t0)3

for times 0  t� t0 ⌧ ⌧r, then linearly at large times

�x(t)
2
'

2Dv

�2
(t� t0) for t� t0 � ⌧r. (IV.17)

Since Eq. (IV.16) also represents the variance of the displacement, one finds under consideration
of Eq. (IV.13)D⇥

x(t)� x0
⇤
2
E
= �x(t)

2 + hx(t)� x0i
2

= �x(t)
2 +

v2
0

�2
�
1� e��(t�t0)

�
2
'

2Dv

�2
(t� t0) for t� t0 � ⌧r. (IV.18)

The last two equations show that the position of the Brownian particle behaves as the solution
of a diffusion equation at large times, with a diffusion coefficient (in position space)

D =
Dv

�2
, (IV.19)

(cf. § I.2.3 b).

:::::::
IV.1.3 c

::::::::::::::::::::::::::::::::
Viscous limit. Einstein relation

In the limit M ! 0, � ! 1 at constant product ⌘v ⌘ M�, which physically amounts to neglect-
ing the influence of inertia (M dv/dt) compared to that of friction (�⌘vv)—hence the denomination
“viscous limit”—, the Langevin equation (IV.1) becomes

⌘v
dx(t)

dt
= F

L
(t). (IV.20a)

In that limit, the autocorrelation function (IV.3d) of the fluctuating force in the limit of negligibly
small autocorrelation time is denoted by

(⌧) = 2D⌘2v �(⌧), (IV.20b)
which defines the coefficient D.

In this context, the displacement can be directly computed by integrating Eq. (IV.20a) with the
initial condition x(t0) = x0, yielding

x(t) = x0 +
1

⌘v

Z t

t0

F
L
(t0) dt0 for t > t0. (IV.21)

With the autocorrelation function (IV.20b), this gives at onceD⇥
x(t)� x0

⇤
2
E
= 2D(t� t0) for t � t0, (IV.22)
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which now holds at any time t � t0, not only in the large time limit as in Eq. (IV.18). That is, the
motion of the Brownian particle is now a diffusive motion at all times.

Combining now Eq, (IV.19) with the fluctuation–dissipation relation (IV.12) and the relation
⌘v = m�, one obtains

D =
kBT

⌘v
. (IV.23)

If the Brownian particles are charged, with electric charge q, then the friction coefficient ⌘v is related
to the electrical mobility µel. by µel. = q/⌘v (see § IV.1.6 below), so that Eq. (IV.23) becomes the
Einstein relation

D =
kBT

q
µel. (IV.24)

[cf. Eq. (I.50)].

IV.1.4 Autocorrelation function of the velocity at equilibrium
In this paragraph and the following one, we assume that the Brownian particle is in equilibrium

with the surrounding environment. This amounts to considering that a large amount of time has
passed since the instant t0 at which the initial condition was fixed, or equivalently that t0 is far
back in the past, t0 ! �1.

Taking the latter limit in Eq. (IV.4), the velocity at time t reads

v(t) =
1

M

Z t

�1
F

L
(t00) e��(t�t00) dt00, (IV.25)

where we have renamed the integration variable t00 for later convenience. As could be anticipated,
v0 no longer appears in this expression: the initial condition has been “forgotten”.

One easily sees that the average value hv(t)i vanishes, and is thus in particular time-independent.
More generally, one can check with a straightforward change of variable that v(t) at equilibrium is
a stationary stochastic process, thanks to the assumed stationarity of F

L
(t). We shall now compute

the autocorrelation function of v(t), which characterizes its fluctuations.
Starting from the velocity (IV.25), one first finds the correlation function between the velocity

and the fluctuating force

hF
L
(t)v(t+ ⌧)i =

1

M

Z t+⌧

�1

⌦
F

L
(t)F

L
(t00)

↵
e��(t+⌧�t00) dt00.

In the case where the simplified form (IV.3d) of the autocorrelation function of the Langevin force
holds, this becomes

⌦
F

L
(t)v(t+ ⌧)

↵
= 2DvM

Z t+⌧

�1
�(t� t00) e��(t+⌧�t00) dt00 =

(
2DvM e��⌧ for ⌧ > 0,

0 for ⌧ < 0.
(IV.26)

That is, the velocity of the Brownian particle at a given time is only correlated to past values of
the Langevin force, and the correlation dies out on a typical time scale of order ��1 = ⌧r.

The autocorrelation function of the velocity is then easily deduced from

⌦
v(t)v(t0)

↵
=

1

M

Z t

�1

⌦
F

L
(t00)v(t0)

↵
e��(t�t00) dt00,

which follows from Eq. (IV.25). In the regime where the approximation (IV.26) is valid, that is
neglecting the autocorrelation time ⌧c of the Langevin force, this yields

⌦
v(t)v(t0)

↵
=

Dv

�
e��|t�t0|. (IV.27)
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This autocorrelation function only depends on the modulus of the time difference, as expected for
a stationary stochastic process, and decreases exponentially with an autocorrelation time given by
the relaxation time ⌧r. Note that for t0 = t, we recover the large-time limit (IV.10) of the variance
of the velocity.

If the environment is at thermal equilibrium at temperature T , relation (IV.12) gives
⌦
v(t)v(t0)

↵
=

kBT

M
e��|t�t0|. (IV.28)

Remark: Inspecting the average velocity (IV.5) and autocorrelation function (IV.27), one sees that
they obey the same first-order linear differential equation, with the same characteristic relaxation
time scale ⌧r.

IV.1.5 Harmonic analysis
In the regime in which the Brownian particle is in equilibrium with the fluid, the velocity

v(t) becomes a stationary stochastic process, as is the fluctuating force F
L
(t) itself. One can thus

apply to them the concepts introduced in Appendix C.3, and in particular introduce their Fourier
transforms(62)

F̃
L
(!) ⌘

Z
F

L
(t) ei!t dt, ṽ(!) ⌘

Z
v(t) ei!t dt. (IV.29)

In Fourier space, the Langevin equation (IV.1) leads to the relation

ṽ(!) =
1

M

1

� � i!
F̃

L
(!). (IV.30)

One also introduces the respective spectral densities of the stochastic processes(62)

SF (!) ⌘ lim
T !1

1

T

D��F̃
L
(!)

��2
E
, Sv(!) ⌘ lim

T !1

1

T

D��ṽ(!)
��2
E
. (IV.31)

For these spectral densities, Eq. (IV.30) yields at once the relation

Sv(!) =
1

M2

1

�2 + !2
SF (!). (IV.32)

The spectral density of the velocity if thus simply related to that of the force, for which we shall
consider two possibilities.

:::::::
IV.1.5 a

:::::::::::::
White noise

A first possible ansatz for SF (!), compatible with the assumptions in § IV.1.1 b, is that of a
frequency-independent spectral density, i.e. of white noise

SF (!) = SF . (IV.33a)

According to the Wiener–Khinchin theorem (C.46), the autocorrelation function of the fluctuating
force is then the Fourier transform of a constant, i.e. a Dirac distribution

⌦
F

L
(t)F

L
(t+ ⌧)

↵
=

Z
SF e�i!⌧ d!

2⇡
= SF �(⌧). (IV.33b)

This thus constitutes the case in which Eq. (IV.3d) holds, with SF = 2DvM2.
With this simple form for SF (!), the spectral density (IV.32) of the velocity is given by the

Lorentzian distribution
Sv(!) =

2Dv

�2 + !2
,

(62)Remember that, formally, one defines the transforms considering first the restrictions of the processes to a finite-
size time interval of width T , and at the end of calculations one takes the large-T limit. Here we drop the subscript
T designating these restrictions to simplify the notations.

Nicolas Borghini
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