
CHAPTER II

Distributions of statistical mechanics

The purpose of Statistical Mechanics is to explain the thermodynamic properties of macroscopic
systems starting from underlying microscopic models—possibly based on “first principle” theories. In
this chapter, we shall first argue that in practice such an approach unavoidably involves probabilities
to become predictive (Sec. II.1). The specific modalities of the implementation of probabilities are
then presented for both classical (Sec. II.2) and quantum mechanical (II.3) systems. We shall on
purpose introduce descriptions that are very parallel to each other, which will in following chapters
allow us to treat some problems only in the quantum mechanical framework and argue that the
same reasoning could have been adopted in a classical setup, and reciprocally. Eventually, Sec. II.4
deals with the missing information arising from the probabilistic nature of the description, and its
quantitative measure.

II.1 From the microscopic scale to the macroscopic world

II.1.1 Orders of magnitude and characteristic scales
The notion of a macroscopic system and the related variables are usually understood to apply

to a system whose characteristic scales are close to (or much larger than) the scales relevant for
a human observer, namely typical length scales of 1 mm – 1 m or larger, durations of 1 s, kinetic
energies of 1 J, and so on.

In opposition, microscopic scales—at which the laws of the dynamics of point particles ap-
ply(22)—are rather understood to refer to atomic or molecular scales. For instance, the typical dis-
tance between atoms or molecules—collectively called “particles” in the following for brevity(22)—in
a solid or a gas is about 10�10 to 10�8 m respectively, so that 1 cm3 of solid resp. gaseous phase
consists of N ⇡ 1024 resp. 1019 particles. The typical microscopic energy scale is the electron-volt,
where 1 eV is 1.6⇥10�19 J, while the typical durations range from ca. 10�15 s [= ~/(1 eV)] to 10�9 s
(typical time interval between two collisions of a particle in a gas under normal conditions).

Remarks:

⇤ In the case of the usual application of the concepts of Statistical Physics discussed above, the
interaction between microscopic degrees of freedom is mostly of electromagnetic nature. The dis-
tances between particles are too large for the strong or weak interactions to play a role, while
the masses remain small enough, to ensure that gravitational effects are negligible with respect to
electromagnetic ones—unless of course when investigating astrophysical objects.

⇤ The methods of Statistical Physics are also sometimes applied in circumstances in which the
particle number is much smaller than above. For instance, the 103–104 particles emitted in high-

(22)This generic denomination “(point) particles” does not necessarily involve a description in terms of particles. It
is rather a convenient shorthand expression for “elementary degrees of freedom”, which may possibly actually be
described by some quantum field theory.
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energy collisions of heavy nuclei are often considered as forming a statistical system—even worse, a
system possibly in local thermodynamic equilibrium.

⇤ At the other end of the length spectrum, some astrophysical and cosmological simulations treat
stars or even galaxies as pointlike objects constituting the “microscopic” scale in the respective
descriptions of galaxies or galaxy clusters.

II.1.2 Necessity of a probabilistic description

A typical macroscopic system consists in general of a large number of degrees of freedom, which
obey microscopic laws. Theoretically, one could think of simulating the evolution of such a system—
say for instance of 1023 particles—on a computer. The mere storage of the positions and momenta
at a given instant t0 of so many particles, coding them as real numbers in simple precision (4 Bytes),
already requires about 1012 hard disks with a capacity of 1 TB! This represents only the first step,
since one should still solve the equations of motion for the particles. . . As of late 2014, the most
extensive simulations of molecular dynamics study the motion of N . 107 particles over a time
duration . 1µs, i.e. for about 106–108 time steps.(23),(24)

In addition, the dynamical equations of such a many-body system are often characterized by
their sensitivity to the initial conditions, which grows with increasing particle number. Thus, two
trajectories in the phase space of a classical system that correspond to initial conditions which
only differ by an infinitesimal distance ✏ might after a duration �t be about ✏ e��t away from
each other, with some Lyapunov (t) exponent � > 0; that is, an originally infinitesimal error grows
exponentially. The system is then chaotic and any prediction regarding individual particles quickly
become hazardous.

As a consequence, one has to abandon the idea of a purely deterministic microscopic description
even in the case of a classical system, and adopt a new approach. Instead of attempting to describe
the exact microscopic state, or more briefly microstate, of a system at a given instant, one must
rather investigate the probability to find the system in a given microstate. In that approach,
one must characterize the system through (a manageable amount of) macroscopic quantities, that
altogether define a macrostate.

Such a macroscopic observable usually results from summing microscopic quantities over many
particles, and it is often defined as the expectation value of the sum or of the arithmetic mean.
Thanks to the central limit theorem (Appendix B.5) the fluctuations of the sum about this expec-
tation value are of relative magnitude 1/

p
N , i.e. very small when N & 1020, so that the observable

is known with high accuracy.
In practice, the empirical laws relating such macroscopic observables have been obtained by

repeating several measurements, the results of which have been averaged to get rid of experimental
uncertainties. For instance, establishing the local form of Ohm’s law (I.43b) relies on performing
many measurements of the electrostatic field in the conductor and of the resulting electric current
density, and the obtained law should rather read h ~Jel.i = �el.h ~E i, which describes the actual pro-
cedure better than the traditional form (I.43b), and again emphasizes the need for a statistical
approach.

(23)An explicit example is the simulation of the motions of 6.5 million atoms for about 200 ns within a multi-time-step
technique involving steps of 0.5, 2 and 4 fs for various “elementary processes” [23].

(24)The current tendency is not towards increasing these numbers by brute force, but rather to use “multiscale
approaches” in which part of the large scale phenomena are no longer described microscopically, but using macro-
scopic variables and evolution equations.

(t)A. Lyapunov, 1857–1918
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II.2 Probabilistic description of classical many-body systems
In the previous section, it has been argued that the description of a macroscopic physical sys-
tem should be based on a statistical approach. We now discuss the practical introduction of the
corresponding probabilities in the microscopic formalism of classical mechanics.

After recalling the basics of the phase-space based formalism for exactly known classical systems
(§ II.2.1), we introduce the notion of a probability density on phase space to account for incomplete
knowledge of the exact microscopic state of a system with a given finite number of constituents
(§ II.2.2). We next derive the evolution equations governing the dynamics of that density (§ II.2.3)
and of observables (§ II.2.4). Eventually, we shortly mention the generalization to systems whose
particle number is not fixed (§ II.2.5).

The purpose in the following is not only to present the necessary statistical concepts, but we
also aim at developing a formalism that is close enough to that introduced in Sec. II.3 for quantum-
mechanical systems—as will e.g. be reflected in formally identical evolution equations for the proba-
bility densities or the observables [see Eqs. (II.12) and (II.28) or (II.16) and (II.38)]. In this section
this might first seem to entail unnecessary complications; yet it will later turn out to be useful.

II.2.1 Description of classical systems and their evolution

::::::
II.2.1 a

::::::::::::::::::::::::::::
State of a classical system

Consider an isolated classical system of N identical pointlike particles in three-dimensional
Euclidean space. The microstate of the system at a time t is entirely characterized by the 3N spatial
coordinates q1, . . . , q3N of the particles and their 3N conjugate momenta p1, . . . , p3N . Together,
these positions and momenta constitute a point in a 6N -dimensional space, the phase space (or
�-space) of the system. Reciprocally, each point in this phase space corresponds to a possible
microstate of the system.

For such a system, a measurable quantity—or (classical) observable—is defined as a phase-space
function ON ({qa}, {pa}) of the 6N variables. We shall only consider observables without explicit
time dependence, i.e. the mathematical function ON remains constant over time.

Remarks:

⇤ A better notation for the N -particle phase space might be �6N , which specifies the phase-space
dimension, yet the denomination �-space is traditional and thus will be kept.

⇤ If the particles are not pointlike, but possess internal degrees of freedom that can be described
classically, then the formalism further applies taking into account these extra degrees of freedom.
The qa and pa are then generalized positions and momenta.

::::::
II.2.1 b

:::::::::::::::::::::::::
Evolution of the system

The time evolution of the system is represented in �-space by the trajectory ({qa(t)}, {pa(t)})
of the representative point, which describes a succession of microstates. The “velocity” tangent
to this trajectory is the 6N -dimensional vector u whose 6N components are the time derivatives
{q̇a(t)}, {ṗa(t)}.

The dynamics of the system—or equivalently, of the representing point in �-space—is fully de-
termined by specifying the time-independent Hamilton(u) function HN ({qa}, {pa}). More precisely,
the trajectory ({qa(t)}, {pa(t)}) is governed by the Hamilton equations

q̇a(t) ⌘
dqa(t)

dt
=

@HN

@pa
= {qa, HN},

ṗa(t) ⌘
dpa(t)

dt
= �

@HN

@qa
= {pa, HN}, a = 1, . . . , 3N,

(II.1)

(u)W. R. Hamilton, 1805–1865
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where the derivatives of the Hamilton function, and accordingly the Poisson(v) brackets, are to be
computed at the point in �-space where the system sits at time t, i.e. at ({qa = qa(t)}, {pa = pa(t)})
for 1  a  3N . The Poisson bracket of two functions f , g on phase space is itself a function on �
defined by(25)

{f, g} ⌘

3NX

a=1

✓
@f

@qa
@g

@pa
�

@f

@pa

@g

@qa

◆
, (II.2)

where the arguments of the Poisson bracket and of the derivatives have been dropped for the sake
of brevity.

It is important to realize that the Hamilton equations of motion are fully deterministic once the
Hamilton function is fixed: given an initial condition ({qa(t0)}, {pa(t0)}), the microstate at any time
t is uniquely determined by Eqs. (II.1).(26) Accordingly, there is only a single trajectory through
each individual point of the �-space, so that the notation u({qa}, {pa}) is non-ambiguous.

II.2.2 Phase-space density
In a many-body system, the precise microstate corresponding at a given time to determined

macroscopic properties—for example, given volume, particle number N and energy—is not exactly
known. As a consequence, one introduces a probability distribution ⇢N (t, {qa}, {pa}) on the �-space,
the N -particle phase-space density , which is as always non-negative and normalized to unity

⇢N
�
t, {qa}, {pa}

�
� 0 8{qa}, {pa} and

Z

�

⇢N
�
t, {qa}, {pa}

�
d6NV = 1, (II.3)

where the integral runs over the whole �-space. ⇢N (t, {qa}, {pa}) d6NV is the probability that the
microstate of the system at time t lies in the infinitesimal volume element d6NV around the point
({qa}, {pa}). The phase-space volume element d6NV should represent a uniform measure on �, so
that

d6NV = CN

3NY

a=1

dqa dpa, (II.4a)

with CN a normalization factor. A possible choice for the latter—and admittedly the most natural—
is simply CN = 1. Another choice, which is less natural yet allows one to recover classical mechanics
as a limiting case of quantum mechanics, is to adopt for a system of N indistinguishable particles
the measure

d6NV =
1

N !

3NY

a=1

dqa dpa
2⇡~ , (II.4b)

with ~ the reduced Planck(w) constant. A further advantage of this choice is that d6NV is dimen-
sionless, and thus the probability density ⇢N as well.

Remark: To interpret probabilities as counting the number of favorable cases among all possible
outcomes, Gibbs introduced the idea of mentally considering many copies of a system—which alto-
gether constitute a statistical ensemble—, where the copied systems all have the same macroscopic
properties, although the corresponding microstates differ.

After having introduced the phase-space density ⇢n, the position ({qa(t)}, {pa(t)}) in �-space
at time t may be viewed as a 6N -dimensional random variable. Again, the microstate at t is not
random if ({qa(t= t0)}, {pa(t= t0)}) is known at some time t0, but randomness enters due to our
knowledge of the initial condition only on a statistical basis.
(25)The sign convention for Poisson brackets is not universal... The choice taken here is the same as in Goldstein [24]

or Arnold [25], while Landau & Lifshitz adopt the opposite convention [26].
(26)This even holds irrespective of whether t lies in the future or in the past of t0.
(v)S. Poisson, 1781–1840 (w)M. Planck, 1858–1947
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In turn, the value taken at time t by an observable ON ({qa}, {pa}), namely

ON (t) ⌘ ON
�
{qa=qa(t)}, {pa=pa(t)}

�
, (II.5)

is also a random variable, whose successive moments are given by the usual formulae (see App. B).
For instance, the average value at time t is

hON (t)it =

Z

�

ON
�
{qa}, {pa}

�
⇢N
�
t, {qa}, {pa}

�
d6NV (II.6a)

and the variance reads
�2

ON
(t) =

⌦
ON (t)2

↵
t
� hON (t)i2t , (II.6b)

where the subscript t emphasizes the use of the phase-space density at time t in computing the
expectation value.

Remark: Even though it has been assumed that the observable On has no explicit time dependence,
the moments of the observable do depend on the instant at which they are computed.

II.2.3 Time evolution of the phase-space density
Consider a fixed volume V of the N -particle phase space �, and let N (t) denote the number

of particles inside that volume at time t. We can write the rate of change of this number in two
alternative ways.

Expressing first the number of particles with the help of the phase-space density

N (t) = N

Z

V
⇢N
�
t, {qa}, {pa}

�
d6NV , (II.7)

one finds that N (t) changes because the phase-space density is evolving in time:

dN (t)

dt
= N

Z

V

@⇢N
�
t, {qa}, {pa}

�

@t
d6NV . (II.8)

Alternatively, one can view the change in N (t) as due to the flow of particles through the surface
@V enclosing the volume V . Let en({qa}, {pa}) denote the unit vector normal to @V at a given
point, oriented towards the exterior of V , and u({qa}, {pa}) be the velocity-vector tangent to the
trajectory passing through the point ({qa}, {pa}). One then has

dN (t)

dt
= �N

Z

@V
⇢N
�
t, {qa}, {pa}

�
u({qa}, {pa}) · en({q

a
}, {pa}) d

6N�1
S.

The divergence theorem transforms the surface integral over @V into a volume integral over V :
dN (t)

dt
= �N

Z

V
r ·

⇥
⇢N
�
t, {qa}, {pa}

�
u({qa}, {pa})

⇤
d6NV , (II.9)

where r denotes the (6N -dimensional) gradient in phase space.
Equating Eqs. (II.8) and (II.9) and arguing that they hold for an arbitrary volume V , one

obtains the local conservation equation in �-space (for the sake of brevity, the variables will from
now on be omitted)

@⇢N
@t

+r ·
�
⇢Nu

�
= 0. (II.10a)

The divergence term can be rewritten as

r ·
�
⇢Nu

�
=

3NX

a=1

@

@qa
�
⇢N q̇a

�
+

3NX

a=1

@

@pa

�
⇢N ṗa

�

=
3NX

a=1

✓
@⇢N
@qa

q̇a +
@⇢N
@pa

ṗa

◆
+

3NX

a=1

✓
@q̇a

@qa
+

@ṗa
@pa

◆
⇢N .
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With the help of the Hamilton equations (II.1) this gives the Liouville(x) equation(27)

@⇢N
@t

+
3NX

a=1

✓
@⇢N
@qa

@HN

@pa
�

@⇢N
@pa

@HN

@qa

◆
=

@⇢N
@t

+
�
⇢N , HN

 
= 0. (II.10b)

Introducing the Liouville operator (or Liouvillian) L defined by(28)

iL ⌘

3NX

a=1

✓
@HN

@pa

@

@qa
�

@HN

@qa
@

@pa

◆
=
�
· , HN

 
, (II.11)

where the dot stands for the phase-space function on which the operator acts, Eq. (II.10b) can be
recast in the form

@⇢N
@t

+ iL⇢N = 0. (II.12)

Like the Hamilton function, the Liouville operator for an isolated system is time-independent,
which allows one to formally integrate the Liouville equation as

⇢N (t, {qa}, {pa}) = e�iLt ⇢N
�
t=0, {qa}, {pa}

�
, (II.13)

with ⇢N
�
t=0, {qa}, {pa}

�
the initial phase-space density at t = 0. To account for this result, e�iLt

is sometimes called time propagation operator .

Remarks:
⇤ An equivalent formulation of the Liouville equation, which follows from Eq. (II.10a) under con-

sideration of the Hamilton equations, which yield r · u = 0 (see the identity in footnote 27),
is

@⇢N
@t

+ u ·r⇢N =
D⇢N
Dt

= 0, (II.14)

with
D

Dt
⌘

@

@t
+ u ·r the material (or convective, substantial , hydrodynamic) derivative.

⇤ Equations (II.10b), (II.12) or (II.14) represent the Eulerian(y) viewpoint on the Liouville equation.
Alternatively, one can adopt the Lagrangian(z) viewpoint and follow individual trajectories in �-
space in their motion.

More precisely one should consider a continuous distribution of microstates, to ensure that the
phase-space volume they occupy at a given instant has a non-zero measure. This collection of
�-space points is then sometimes referred to as a phase(-space) fluid , and its motion—along the
corresponding trajectories—as the flow of that fluid.

The corresponding statement of the Liouville equation, which is then known as Liouville theorem,
is the following:

The volume in phase space occupied by a collection of microstates for a system
obeying the Hamilton equations of motion remains constant in time. (II.15)

That is, the volume of the phase-space fluid is an integral constant of the motion. Accordingly, one
often states that the flow of trajectories in phase space is incompressible.
(27)Here it is implicitly assumed that the Hamilton function HN is sufficiently regular—namely that the second partial

derivatives are continuous—so as to have the identity
@q̇a

@qa
=

@

@qa

@HN

@pa
=

@

@pa

@HN

@qa
= �@ṗa

@pa
.

(28)The conventional—and not universally adopted—factor i has the advantage that it leads to results that are easily
compared to the quantum-mechanical ones.

(x)J. Liouville, 1809–1882 (y)L. Euler, 1707–1783 (z)J.-L. Lagrange, 1736–1813
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⇤ The Liouville equation (II.10b) or (II.12) shows that if the phase-space density ⇢N is a function of
the Hamilton function HN only, then it is stationary. This is for instance the case at thermodynamic
equilibrium(29), but not only.

II.2.4 Time evolution of macroscopic observables
As mentioned above, classical observables are defined as time-independent functions on phase

space, which however acquire an implicit time dependence when computed along the �-space tra-
jectory of a system, see Eq. (II.5). Differentiating ON (t) with the chain rule gives

dON (t)

dt
=

3NX

a=1


@ON

@qa
q̇a(t) +

@ON

@pa
ṗa(t)

�
,

where the derivatives with respect to the �-space coordinates are taken at the point ({qa(t)}, {pa(t)})
along the system phase-space trajectory. Under consideration of the Hamilton equations (II.1), this
derivative becomes

dON

dt
=

3NX

a=1

✓
@ON

@qa
@HN

@pa
�

@ON

@pa

@HN

@qa

◆
=
�
ON , HN

 
= iLON , (II.16)

where we have used the definitions of the Poisson bracket (II.2) and of the Liouville operator (II.11).
Invoking again the time-independence of the Liouville operator for an isolated system, the dif-

ferential equation (II.16) can formally be integrated as

ON (t) = eiLtON (t=0), (II.17)

with ON (t=0) the initial value of the observable at time t = 0.
The expectation value of the observable, obtained by averaging over possible initial conditions

at t = 0 then reads

hON (t)i
0
=

Z

�

⇢N
�
t=0, {qa}, {pa}

�
ON (t) d6NV

=

Z

�

⇢N
�
t=0, {qa}, {pa}

�
eiLtON (t=0) d6NV . (II.18)

Alternatively, one can directly average ON ({qa}, {pa}) with the phase-space density at time t,
as done in Eq. (II.6a):

hON (t)it =

Z

�

ON
�
{qa}, {pa}

�
⇢N
�
t, {qa}, {pa}

�
d6NV .

Using Eq. (II.13), this becomes

hON (t)it =

Z

�

ON
�
{qa}, {pa}

�
e�iLt ⇢N

�
t=0, {qa}, {pa}

�
d6NV . (II.19)

Both points of view actually yield the same result— i.e. hON (t)i
0
= hON (t)it—, which means

that one can attach the time dependence either to the observables or to the phase-space density,
which stands for the macrostate of the system.

The equivalence can be seen by computing the time derivatives of Eqs. (II.18)—which is the
average of Eq. (II.16) over initial positions—and (II.19). Replacing the Liouville operator by
its expression in terms of the Hamilton function, and performing a few partial integrations to
handle the Poisson brackets, one finds that these time derivatives coincide at any time t. Since
the “initial” conditions at t = 0 also coincide, the identity of hON (t)i

0
and hON (t)it follows.

(29). . . in which case ⇢N / e��HN with � ⌘ 1/kBT .
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Remark: More generally, the identity
Z

�

g⇤({qa}, {pa})Lh({qa}, {pa}) d
6NV =

Z

�

(Lg)⇤({qa}, {pa})h({q
a
}, {pa}) d

6NV ,

holds for every pair of phase-space functions g({qa}, {pa}) and h({qa}, {pa}) that vanish sufficiently
rapidly at infinity, where f⇤ denotes the complex conjugate function to f . Recognizing in the phase-
space integral of g⇤h an inner product hg, hi, the above identity can be recast as hg,Lhi = hLg, hi,
which expresses the fact that the Liouville operator is Hermitian for the inner product. In turn, the
operators e±itL , which govern the evolution of the density ⇢N or of observables ON (t), are unitary
for this product, i.e. hg, e�itLhi = heitLg, hi or equivalently:

Z

�

g({qa}, {pa}) e
�itLh({qa}, {pa}) d

6NV =

Z

�

h
eitLg({qa}, {pa})

i
h({qa}, {pa}) d

6NV . (II.20)

II.2.5 Fluctuating number of particles
Until now, we have assumed that the particle number N is exactly known. It is however often

not the case, so that N also becomes a random variable, with a discrete probability distribution.
The formalism can easily be generalized to accommodate for this possibility. The new phase

space � is the union—to be precise, the direct sum—of the individual N -particle phase spaces �6N

(see first Remark in § II.2.1 a) for every acceptable value of N , i.e. for N 2 N.(30) The probability
density ⇢ on this phase space consists of (the tensor product of) densities ⇢̃N proportional to the
respective N -particle densities ⇢N , yet normalized so that

⇡N =

Z
⇢̃N (t, {qa}, {pa}) d

6NV

represents the probability to have N particles in the system at time t.

An observable O is also defined as a tensor product of functions ON on each N -particle phase
space, with the expectation value

hO(t)it =
1X

N=0

Z
ON ({qa}, {pa}) ⇢̃N (t, {qa}, {pa}) d

6NV .

II.3 Probabilistic description of quantum mechanical systems
In this section, we first recall in § II.3.1 the basics of the density-operator formalism for the descrip-
tion of quantum systems with a large number of degrees of freedom—which for brevity will often
be referred to as “macroscopic systems”. We then discuss the time evolution of the density operator
(§ II.3.2) as well as that of the expectation values of observables of the system (§ II.3.3). Eventually,
we consider the case in which the Hamilton operator governing the evolution of the system can be
split into two terms, namely a time-independent one and a time-dependent “perturbation” that is
switched on at some initial instant (§ II.3.4).

II.3.1 Randomness in quantum mechanical systems
Unlike classical physics, whose predictions for the outcome of measurements are deterministic

when the (micro)state of a system is known, quantum mechanics already involves probabilities for
predictions on “exactly” prepared systems, described as pure states. Accordingly, there are two
(30)The case N = 0 has to be considered as well, corresponding here to a 0-dimensional phase space reduced to a

single point.

Nicolas Borghini
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