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energy-eigenstates basis. If Â is an observable, then ˆ̇A coincides with the value taken at t = 0
by the derivative dÂI(t)/dt for a system evolving with Ĥ0 only, i.e. in the absence of external
perturbation.

Replacing Â by ˆ̇A in the spectral form (III.23) of Kubo’s correlation function, one finds

KBȦ(⌧) = i
X

n,n0

⇡n � ⇡n0

�~ Bnn0An0ne
�i!

n0n⌧ ,

i.e.
KBȦ(⌧) =

2i

�
⇠BA(⌧). (III.50)

In turn, relation (III.48), becomes

�BA(⌧) = �KBȦ(⌧)⇥(⌧). (III.51)

This relation is sometimes referred to as Kubo formula, since in his original article [33] Kubo
expressed the linear response to a perturbation with the help of �KBȦ(⌧) instead of the retarded
propagator �BA(⌧) used in § III.1.2.

Identifying the right-hand sides of Eqs. (III.37) and (III.38) and differentiating the resulting
relation with respect to time, one finds

dKBA(⌧)

d⌧
= �

2i

�
⇠BA(⌧).

Equation (III.50) then yields
dKBA(⌧)

d⌧
= �KBȦ(⌧). (III.52)

III.3.3 Properties and relations in frequency space

:::::::
III.3.3 a

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Detailed balance relation and properties of the spectral density

Recalling the spectral decomposition (III.14) of the Fourier transform of the non-symmetrized
correlation function:

C̃BA(!) = 2⇡
X

n,n0

⇡nBnn0An0n �(!n0n� !).

one sees that the exchange of the dummy indices n and n0 and the relation ⇡n/⇡n0 = e��~!
nn0 yield,

under consideration of the constraint imposed by the �-term, the detailed balance relation

C̃BA(�!) = C̃AB(!) e
��~!. (III.53)

This relation is a generic property of systems at canonical equilibrium.
The two obvious limits of this relation can be readily discussed. For ~! ⌧ kBT , i.e. in the

“classical regime”, one finds the symmetric (in particular when B̂ = Â) relation C̃BA(�!) ' C̃AB(!).
On the other hand, the asymmetry—which reflects the difference between the probabilities for the
absorption or emission of energy by the system—becomes large in the “quantum limit” ~! � kBT ,
and in particular for vanishingly small T , in which case C̃BA(�!) ' 0 for negative frequencies.

Either by Fourier transforming the identities (III.46b) and (III.47a) or by invoking directly the
definition (III.20), one finds that the spectral density obeys the properties

• ⇠̃BA(!) = �⇠̃AB(�!); (III.54a)

• ⇠̃BA(!)
⇤ = ⇠̃A†B†(!) = �⇠̃B†A†(�!); (III.54b)

• if Â = Â† and B̂ = B̂†, ⇠̃BA(!)
⇤ = �⇠̃BA(�!) = ⇠̃AB(!). (III.54c)
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As we shall now see, the functions �̃BA(!), C̃BA(!), S̃BA(!) and K̃BA(!) can all be expressed in
terms of the spectral density ⇠̃BA(!). There follows relations similar to Eqs. (III.54) for the other
spectral representations, which we shall not list.

:::::::
III.3.3 b

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Relations between different correlation functions in frequency space

::::::::::::::::::::::::::::::::::::::
Relation between �̃BA(!) and ⇠̃BA(!)

Using the decomposition (III.20) of the spectral density, relation (III.41) can be rewritten as

_

�BA(z) =
1

⇡

Z 1

�1

⇠̃BA(!)

! � z
d!. (III.55)

This identity constitutes yet another spectral representation of _

�BA(z), valid in the whole complex
plane.

Renaming the integration variable !0, setting z = ! + i" and taking the limit " ! 0+ under
consideration of Eq. (III.40), one naturally recovers Eq. (III.29)

�̃BA(!) =
1

⇡
lim
"!0+

Z 1

�1

⇠̃BA(!0)

!0 � ! � i"
d!0. (III.29)

Equation (III.55) can be further exploited to yield another relation between �̃BA(!) and ⇠̃BA(!).
Writing the principal value of 1/(!0

�!) [cf. Eq. (A.2b)] in two different ways and subtracting them,
one finds

lim
"!0+

⇥
_

�BA(! + i")�
_

�BA(! � i")
⇤
= 2i⇠̃BA(!), (III.56)

i.e. the difference between the values of _

�BA(z) in the upper and lower complex half-planes on
each side of the point ! 2 R is proportional to ⇠̃BA(!). Along a portion of the real axis where
⇠̃BA(!) is continuous—which might happen in a system in the thermodynamic limit, when the
Bohr frequencies span a continuous spectrum—and non-vanishing, _

�BA(z) thus has a cut.
The first term in Eq. (III.56) is given by Eq. (III.40). For the value in the lower half-plane, using

Eq. (III.41) gives
_

�BA(! � i") =
1

~
X

n,n0

(⇡n� ⇡n0)Bnn0An0n
1

!n0n� ! + i"
=

1

~
X

n,n0


(⇡n� ⇡n0)B⇤

nn0A⇤
n0n

1

!n0n� ! � i"

�⇤
.

Recognizing in A⇤
n0n, B⇤

n0n the matrix elements of Â†, B̂† in the basis { |�ni}, the rightmost term
can be rewritten as [

_

�A†B†(! + i")]⇤. Invoking Eq. (III.40) again, one finds

lim
"!0+

_

�BA(! � i") = lim
"!0+

[
_

�A†B†(! + i")]⇤ = �̃A†B†(!)⇤.

All in all, Eq. (III.56) thus becomes

⇠̃BA(!) =
1

2i

⇥
�̃BA(!)� �̃A†B†(!)⇤

⇤
. (III.57)

Since the susceptibilities �̃BA(!) and �̃A†B†(!) are in general not equal, even if Â and B̂ are
Hermitian, ⇠̃BA(!) will differ from the imaginary part of �̃BA(!).

In the specific case B̂ = Â†, Eq. (III.57) shows that the spectral function is the imaginary part
of the generalized susceptibility

⇠̃A†A(!) = Im �̃A†A(!). (III.58)

As we have seen in § III.2.2, the spectral density characterizes energy dissipation in the system. As
a consequence, the imaginary part of the susceptibility �̃BA(!) is often referred to as “dissipative
part”, even if B̂ 6= Â†.(50)

(50)This denomination can actually be dangerous if Â and B̂ behave differently under time reversal, see the second
remark at the end of § III.3.5.
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Remark: The relation between Im �̃A†A(!) and dissipation can be recovered by the following heuris-
tic argument. Viewing Â(t) as the “generalized displacement” conjugate to the force f(t) in the
Hamiltonian (in the Heisenberg picture with respect to Ĥ0), then the power dissipated by the
system is the product of the force with the “velocity”, namely

dEtot.

dt
= f(t)

⌧
dÂ(t)

dt

�

n.eq.

.

Assuming a harmonic force f(t) = f!Â cos!t = f! Re
�
Âe�i!t

�
, the linear response of Â = Â† is

given by hÂ†
in.eq. = f!

⇥
Re �̃A†A(!) cos!t + Im �̃A†A(!) sin!t

⇤
. Differentiating with respect to t

yields at once the instantaneous power, which after averaging over one period of the force yields for
the mean rate of energy dissipation

dEtot.

dt
=

f2
!

2
! Im �̃A†A(!),

which is of course equivalent to Eq. (III.31).

::::::::::::::::::::::::::::::::::::::
Relation between C̃BA(!) and ⇠̃BA(!)

Comparing the spectral decomposition (III.14) of the Fourier transform of the non-symmetrized
correlation function with the spectral density (III.20), one sees that the only change is the replace-
ment of 2⇡n by (⇡n � ⇡n0)/~.

The specific form (III.2b) of the canonical equilibrium populations leads to the identity

⇡n = (⇡n � ⇡n0)
⇡n

⇡n � ⇡n0
= (⇡n � ⇡n0)

1

1� e��(E
n0�En)

= (⇡n � ⇡n0)
1

1� e��~!
n0n

.

As the term �(!n0n� !) in Eq. (III.14) or (III.20) imposes !n0n = ! in the exponent, one finds

C̃BA(!) =
2~

1� e��~! ⇠̃BA(!). (III.59)

:::::::::::::::::::::::::::::::::::::::
Relation between K̃BA(!) and ⇠̃BA(!)

Consider the spectral representation (III.22) of the Fourier transform of Kubo’s canonical corre-
lation function. The term �(!�!n0n) allows us to replace the Bohr frequencies in the denominator
by !. Comparison with the decomposition (III.20) of the spectral density then yields at once the
identity

K̃BA(!) =
2

�

⇠̃BA(!)

!
. (III.60)

::::::::::::::::::::::::::::::::::::::
Relation between S̃BA(!) and ⇠̃BA(!)

As was done above for C̃BA(!), one sees that the spectral decomposition of the Fourier transform
of the symmetric correlation function and the spectral function (III.20) only differ in that the latter
involves the difference ⇡n � ⇡n0 of the populations of different energy eigenstates, while the former
involves their sum. Invoking again the form (III.2b) of the equilibrium populations, one obtains the
identity

⇡n + ⇡n0 = (⇡n � ⇡n0)
⇡n + ⇡n0

⇡n � ⇡n0
= (⇡n � ⇡n0)

1 + e��~!
n0n

1� e��~!
n0n

= (⇡n � ⇡n0) coth
�~!n0n

2
.

As before, !n0n is set to ! by the term �(!n0n�!), so that the argument of the hyperbolic cotangent
in the rightmost member is actually independent of n and n0. Equation (III.18) then yields

S̃BA(!) = ~ coth �~!
2

⇠̃BA(!). (III.61)
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For |�~!| ⌧ 1, one has coth(1
2
�~!) ⇠ 2/�~!. One thus finds with the help of relation (III.60)

S̃BA(!) ⇠
2

�!
⇠̃BA(!) = K̃BA(!).

That is, S̃BA(!) and K̃BA(!) tend towards each other in the classical limit ~ ! 0

:::::::
III.3.3 c

::::::::::::::::::::::::::::::::::::::::::::::::::::
Recapitulation of the various correlation functions

Let us summarize the main results we have found above for the various correlation functions
we have introduced, indicating the physical phenomenon in which they naturally appear, as well as
various relations among them.

t-space !-space

Spectral function
(dissipation)

⇠BA(t) =
1

2~

D⇥
B̂I(t), Â

⇤E

eq.
⇠̃BA(!) =

⇡

~
X

n,n0

(⇡n� ⇡n0)⇥

=
�

2i
KBȦ(t) ⇥Bnn0An0n �(!n0n� !)

Response function /
susceptibility

�BA(t) = 2i⇥(t)⇠BA(t)

= �⇥(t)KBȦ(t)
�̃BA(!) =

1

⇡
lim
"!0+

Z 1

�1

⇠̃BA(!0)

!0 � ! � i"
d!0

Symmetric correlation
function
(fluctuations)

SBA(t) =
1

2

D�
B̂I(t), Â

 
+

E

eq.
S̃BA(!) = ~ coth �~!

2
⇠̃BA(!)

Canonical correlation KBA(t) =
function
(relaxation for t � 0)

K̃BA(!) =
2

�!
⇠̃BA(!)1

�

Z �

0

D
e�Ĥ0Â e��Ĥ0B̂I(t) d�

E

eq.

Table III.1 – Summary of the various correlation functions in linear response theory.

III.3.4 Fluctuation–dissipation theorem
Equations (III.59), (III.60), and (III.61) relate the Fourier transforms of the non-symmetrized,

canonical and symmetric correlation functions to the spectral function ⇠̃BA(!). We now discuss the
physical content of these relations and present an example of application.

:::::::
III.3.4 a

:::::::::::::::::::::::::::::::::::::::
First fluctuation–dissipation theorem

Consider first the special case B̂ = Â, with Â an observable, thus Hermitian. Together with
Eq. (III.58), one has the series of identities

Im �̃AA(!) = ⇠̃AA(!) =
�!

2
K̃AA(!) =

1� e�~!

2~ C̃AA(!) =
tanh �~!

2

~ S̃AA(!). (III.62)

The two leftmost functions are associated with dissipation in the system when it is excited by a
perturbation coupling to Â (§ III.2.2). That is, they represent (part of) the dynamical response
of the system when it is driven out of equilibrium by an external constraint. Meanwhile, the two
rightmost functions encode the temporal (auto)correlation and spontaneous fluctuations of Â in the
system at thermodynamic equilibrium. These two pairs of correlation functions thus model a priori
different physical phenomena: their interrelation expressed by Eq. (III.62) is thus non-trivial, and
constitutes the so-called fluctuation–dissipation theorem.

Traditionally, the denomination fluctuation–dissipation theorem is rather attached to relations
in which the Fourier transform of the correlation function which stands for fluctuations is explicitly
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written as a time integral; for instance,

Im �̃AA(!) =
1

2kBT

Z 1

�1
!KAA(t) e

i!t dt, (III.63)

where � has been replaced by its expression in terms of the temperature, or

Im �̃AA(!) =
tanh �~!

2

~

Z 1

�1
SAA(t) e

i!t dt. (III.64)

More generally, for an arbitrary pair of observables Â, B̂ one can simply Fourier transform the
Kubo formula [Eq. (III.51)]

�BA(t) =
1

kBT
⇥(t)KBȦ(t),

which gives

�̃BA(!) =
1

kBT

Z 1

0

KBȦ(t) e
i!t dt. (III.65)

Following Kubo [36], this identity is referred to as first fluctuation–dissipation theorem.(51)

Remarks:

⇤ Kubo’s canonical function can be associated with a mechanical reaction of the system when it is
perturbed (§ III.2.3). Yet the third term of Eq. (III.62) also becomes identical to the two rightmost
ones in the classical limit, in which case it is rather related to the equilibrium dynamics of the
fluctuations of Â. Accordingly, in relation (III.65) the “fluctuation” part of the theorem is played
by the canonical correlation function.

⇤ As explained in the second remark at the end of § III.3.5, which part, real of imaginary, of the
susceptibility is dissipative depends on the time-reversal signatures of the two observables Â and B̂.
In practice, Eq. (III.65) is often considered with B̂ = ˆ̇A, time-reversal parity is opposite to that
of Â. In that case the dissipative part of �̃BA(!) is the real part, as e.g. in the example of next
paragraph.

⇤ The “second” fluctuation–dissipation theorem will be discussed in Chap. IV on Brownian motion.

:::::::
III.3.4 b

::::::::::::::::::::::::::::::::::::::
Application: Johnson–Nyquist noise

Consider an arbitrary passive electric circuit,(52) which can either be closed on itself or submitted
to a voltage Vext.(t), at thermodynamic equilibrium at temperature T . Let I(t) denote the electric
current through the circuit. In the absence of external voltage, I(t) vanishes at equilibrium.

Assume first that the circuit is submitted to Vext.(t). The average electric current hI(t)in.eq.
in the circuit can be computed within the (classical) theory of linear response, where the angular
brackets denote the result of a “typical” measurement, as obtained by averaging over many repeated
measurements so as to minimize the uncertainty of a single observation.

The external voltage Vext.(t) couples to the electric charge Q flowing in the circuit, which thus
plays the role of the excited (classical) observable A. In turn, the responding observable B is here
the electric current I(t). Going to frequency space, the response of hI(t)in.eq. to the excitation
Vext.(t) is governed by the generalized admittance �̃IQ(!), which is simply the inverse of the electric
impedance Z(!) of the circuit:

⌦
I(t)

↵
n.eq.

= �̃IQ(!)Ṽext.(!) with �̃IQ(!) =
1

Z(!)
.

(51)... or fluctuation–dissipation theorem of the first kind.
(52)... consisting of linear elements only: resistors, inductors, capacitors and memristors.
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Consider now the case in which the circuit is closed on itself, i.e. Vext.= 0. The circuit is in an
equilibrium state, and the electric current I(t) fluctuates around its average value hI(t)ieq. = 0.

The fluctuation–dissipation theorem (III.65) relates �̃IQ(!) to the fluctuations of the electric
current. Since Q̇ = I, one thus has under consideration of the classical limit (III.107) of the canonical
correlation function

�̃IQ(!) =
1

kBT

Z 1

0

⌦
I(t)I(0)

↵
eq.

ei!t dt. (III.66)

Since hI(t)I(0)ieq. is a real and even function of t, the complex conjugate of the right member can
be expressed as the integral of the same integrand between �1 and 0. Taking half the sum of
Eq. (III.66) and its complex conjugate thus yields

Re
1

Z(!)
=

R(!)

|Z(!)|2
=

1

2kBT

Z 1

�1

⌦
I(t)I(0)

↵
eq.

ei!t dt, (III.67)

with R(!) the real part—the resistive part—of the impedance Z(!). This is a relation between the
resistance and impedance on the one hand and the fluctuations of the current in the electric circuit
on the other side. Performing the inverse Fourier transform and setting t = 0, one finds

⌦
I2
↵
eq.

=
2kBT

⇡

Z 1

0

R(!)

|Z(!)|2
d!, (III.68)

where the evenness of R(!)/|Z(!)|2, which can be read directly off Eq. (III.67), has been used. These
thermal fluctuations of the electric current were first measured by Johnson(as) [37] and computed
by Nyquist(at) [38], and now referred to as Johnson–Nyquist noise.

Let V (t) denote the fictitious fluctuating voltage which, if applied to the circuit, would give rise to
the same fluctuating current I(t). One can show that the Fourier transforms of their autocorrelation
functions are related to each other through

Z 1

�1

⌦
I(t)I(0)

↵
eq.

ei!t dt =
1

|Z(!)|2

Z 1

�1

⌦
V (t)V (0)

↵
eq.

ei!t dt. (III.69)

Comparing this relation with Eq. (III.67), one finds
kBT

⇡
R(!) =

1

2⇡

Z 1

�1

⌦
V (t)V (0)

↵
eq.

ei!t dt, (III.70)

which constitutes the Nyquist theorem relating the resistive part of the circuit impedance to the
Fourier transform of the time-autocorrelation function of the voltage fluctuations at thermodynamic
equilibrium.

Proof of Eq. (III.69):
The operation leading from V (t) to I(t) is an instance of linear filter , i.e. an operation relating
an “input” yin.(t) and an “output” yout.(t) such that a) the output depends linearly on the input;
b) the filter properties are independent of time; and c) the output cannot predate the input
(causality). yout.(t) is then expressed in function of yin.(t� t0) by a convolution over time, as in
relation (III.8), which in frequency space becomes a simple multiplication

ỹout.(!) = G(!)ỹin.(!),

with G(!) the transfer function of the filter. Here, G(!) is the admittance 1/Z(!).
If yin.(t) and yout.(t) are now fluctuating quantities that can be viewed as stationary stochastic
processes, their spectral functions are respectively proportional to |ỹin.(!)|2 and |ỹout.(!)|2

Sout.(!) = |G(!)|2Sin.(!).

According to the Wiener(au)–Khinchin(av) theorem (C.46), these spectral functions are the
(as)J. B. Johnson, 1887–1970 (at)H. Nyquist, 1889–1976 (au)N. Wiener, 1894–1964 (av)A. Ya. Khinchin,
1894–1959
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Fourier transforms of the respective autocorrelation functions, that is
Z 1

�1

⌦
yout.(t)yout.(0)

↵
eq.

ei!t dt = |G(!)|2
Z 1

�1

⌦
yin.(t)yin.(0)

↵
eq.

ei!t dt,

which with yin.(t) = V (t), yout.(t) = I(t), G(!) = 1/Z(!) proves Eq. (III.69). 2

Remark: One may “guess” that kBT in the numerator on the right-hand side of the Nyquist re-
lation (III.70) is actually the classical limit kBT � ~! of 1

2
~! coth(~!/2kBT ), which appears for

instance on the right-hand side of Eq. (III.61).(53) That is, relation (III.70) would be the high-
temperature limit of

~!
2⇡

coth
~!

2kBT
R(!) =

1

2⇡

Z 1

�1

⌦
V (t)V (0)

↵
eq.

ei!t dt.

The inverse Fourier transform of this identity reads
⌦
V (t)V (0)

↵
eq.

=

Z 1

�1
~! coth

~!
2kBT

R(!) e�i!t d!

2⇡
=

1

⇡

Z 1

�1

✓
1

e~!/kBT � 1
+

1

2

◆
~!R(!) e�i!t d!.

Setting t = 0, one recovers the “generalized Nyquist relation”
⌦
V 2

↵
eq.

=
2

⇡

Z 1

0

✓
1

e~!/kBT � 1
+

1

2

◆
~!R(!) d!. (III.71)

This was historically the first quantum-mechanical instance of fluctuation–dissipation relation, as
derived by Callen and Welton(aw) [39].

III.3.5 Onsager relations
Using the symmetries of a problem often allows one to deduce interesting relations as well as

simplifications. We discuss here a first example, in the case of symmetry under time reversal. A
further example will be given illustrated on an explicit example in § ??, when discussing quantum
Brownian motion.

Equation (III.46b) relates ⇠BA, i.e. the response of B̂ to a excitation coupled to Â, to ⇠AB,
which describes the “reciprocal” situation of the change in the expectation value of Â induced by
a perturbation coupling to B̂. More precisely, it is a relation between ⇠BA(t) and ⇠AB(�t), that is
with reversed time direction, which is slightly unsatisfactory.

To obtain an equation relating ⇠BA(t) and ⇠AB(t), with the same time direction in both corre-
lation functions, one needs to introduce the time reversal operator ˆT and to discuss the behavior
of the various observables under its operation.

:::::::
III.3.5 a

::::::::::::::::::::::::::::::::::::::
Time reversal in quantum mechanics

Accordingly, let us briefly recall some properties of the operator ˆT which represents the action
of the time-reversal operation on spinless particles.(54) These follow from the fact that ˆT is an
antiunitary operator, i.e. an antilinear operator whose adjoint equals its inverse.

Let Â denote an antilinear operator. If |1i, |2i are two kets of the Hilbert space H on which
Â is acting, and �1, �2 two complex constants, one has

Â
�
�1|1i+ �2|2i

�
= �⇤

1 Â |1i+ �⇤
2 Â |2i. (III.72a)

That is, if � 2 C
Â� = �⇤

Â. (III.72b)
(53)This educated guess is motivated by the fact that 1

2
~! coth(~!/2kBT ) is actually the average energy at temper-

ature T of the harmonic oscillator with frequency !.
(54)For further details, see e.g. Messiah [29] Chapter 15, in particular Secs. 3–5 & 15–22.
(aw)T. A. Welton, 1918–2010
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Accordingly, relation (III.57) becomes

⇠̃BA(!) =
1

2i

⇥
�̃BA(!)� ✏A✏B �̃BA(!)

⇤⇤.

If observables Â and B̂ have the same parity under time reversal, then ⇠̃BA(!) is the imaginary part
of �̃BA(!), as in the case B̂ = Â† [Eq. (III.58)]. On the other hand, if they have opposite parities,
then the above identity reads ⇠̃BA(!) = �i Re �̃BA(!): the dissipative part of the susceptibility is
now its real part.

Accordingly, the rather standard notation �00
BA

(⌧) for the function called in these notes ⇠BA(⌧) can
be misleading in a twofold way: firstly, despite the double-primed notation, it is not the imaginary
part of the retarded propagator �BA(⌧) even though �̃00

BA
(!) is that of �̃BA(!). Secondly, �00

BA
(⌧)

is the inverse Fourier transform of �̃00
BA

(!) only if Â and B̂ behave similarly under time reversal.

III.3.6 Sum rules
Consider definition (III.19) with ⌧ = t � t0. Rewriting the right-hand side with the help of the

stationarity property and expressing ⇠BA(⌧) as inverse Fourier transform of the spectral density,
one obtains Z 1

�1
⇠̃BA(!) e

�i!(t�t0) d!

2⇡
=

1

2~

D⇥
B̂I(t), ÂI(t

0)
⇤E

eq.
. (III.80)

Let us differentiate this identity k times with respect to t and l times with respect to t0:

(�i)k�l
Z 1

�1
!k+l ⇠̃BA(!) e

�i!(t�t0) d!

2⇡
=

1

2~

*
dkB̂I(t)

dtk
,
dlÂI(t0)

dt0 l

�+

eq.

.

Given Eq. (III.3), each successive differentiation on the right-hand side gives rise to a commutator
(with Ĥ0) divided by i~. This leads to k nested commutators in the left member of the commutator,
and l nested commutators in its right member. Setting then t0 = t = 0, one finds

(�1)l

⇡

Z 1

�1
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1
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*"
· · ·

h⇥
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⇤
, Ĥ0

i
· · ·

�

| {z }
k commutators

,


· · ·

h⇥
Â, Ĥ0

⇤
, Ĥ0

i
· · ·

�

| {z }
l commutators

#+

eq.

.

(III.81)
The term on the left-hand side of this identity is, up to the prefactor, the moment of order k + l of
the spectral function ⇠̃BA(!). The larger k + l is, the more sensitive the moment becomes to large
values of !, that is, to the short-time behavior of the inverse Fourier transform ⇠BA(t).

The sum rules (III.81) for the various values of k, l express the moments of the spectral function
in terms of equilibrium expectation values of commutators. If the latter can be computed, using
commutation relations, then the sum rules represent conditions that theoretical models for the
spectral function ⇠̃BA(!) should satisfy.

According to Eq. (III.50), the right-hand side of Eq. (III.80) also equals �KBȦ(t� t0)/2i:
1

2~
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⇤E

eq.
=

1

2i

Z �

0

D
ˆ̇A(t0� i~�)B̂I(t)

E

eq.
d�.

Differentiating as above k times with respect to t and l times with respect to t0, and setting t0 = t,
one obtains the alternative sum rules

�1
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k commutators
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�

| {z }
l commutators

#+

eq.

=

Z �

0

*
dl+1ÂI(�i~�)

dtl+1

dkB̂I(0)

dtk

+

eq.

d�.

(III.82)
Up to a factor ��1, the right-hand side of this identity is the canonical correlation function of the
(l + 1)-th time derivative of Â and the k-th derivative of B̂, taken at t = 0.
Examples of applications of these sum rules will be given in § IV.4.1 b.

Nicolas Borghini
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