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C.2.5 Markov processes
We now introduce a class of stochastic processes that are often encountered in physics—or, one

should rather say, which are often used to model physical phenomena due to their simplicity, since
they are entirely determined by the two densities pY,1 and pY,1|1.

:::::::
C.2.5 a

:::::::::::::::::
Markov property

A Markov (83) process is a stochastic process Y (t) for which for all n 2 N⇤ and arbitrary ordered
times t1 < t2 < · · · < tn�1 < tn < tn+1, the conditional probability densities obey the Markov
property

pY,1|n(tn+1, yn+1 | t1, y1; t2, y2; . . . ; tn�1, yn�1; tn, yn) = pY,1|1(tn+1, yn+1 | tn, yn). (C.22)

Viewing tn as being “now”, this property means that the (conditional) probability that the process
takes a given value yn+1 in the future (at tn+1) only depends on its present value yn, not on the
values it took in the past.

An even more drastically “memoryless” class of processes is that of fully random processes, for
which the value taken at a given time is totally independent of the past values. For such a process,
the conditional probability densities equal the joint probability densities—i.e. p

Y,n|m= p
Y,n

for
all m,n—, and repeated applications of Bayes’ theorem (C.13) show that the n-point density
factorizes into the product of n single-time densities,

p
Y,n

(t1, y1; . . . ; tn, yn) = p
Y,1

(t1, y1) · · · p
Y,1

(tn, yn).

One can check that a Markov process is entirely determined by the single-time probability density
pY,1(t1, y1) and by the transition probability pY,1|1(t2, y2 | t1, y1), or equivalently by pY,1(t1, y1) and
the two-time density pY,2(t1, y1; t2, y2).
For instance, the 3-time probability density can be rewritten as

pY,3(t1, y1; t2, y2; t3, y3) = pY,1|2(t3, y3 | t1, y1; t2, y2) pY,2(t1, y1; t2, y2)

= pY,1|1(t3, y3 | t2, y2) pY,1|1(t2, y2 | t1, y1) pY,1(t1, y1), (C.23)

where we have used twice Bayes’ theorem (C.13) and once the Markov property (C.22).

Remarks:

⇤ The Markov property (C.22) characterizes the n-point densities for ordered times. The value for
arbitrary t1, t2, . . . , tn follows from the necessary invariance [property (C.11b)] of pY,n when two
pairs (tj , yj) and (tk, yk) are exchanged.

⇤ The single-time probability density pY,1 and the transition probability pY,1|1(t2, y2 | t1, y1) are not
fully independent of each other, since they have to obey the obvious identity

pY,1(t2, y2) =

Z
pY,1|1(t2, y2 | t1, y1) pY,1(t1, y1) dy1. (C.24)

:::::::
C.2.5 b

::::::::::::::::::::::::::::::::::
Chapman–Kolmogorov equation

Integrating Eq. (C.23) over the intermediate value y2 of the stochastic process, while taking into
account the consistency condition (C.11c), gives

pY,2(t1, y1; t3, y3) = pY,1(t1, y1)

Z
pY,1|1(t3, y3 | t2, y2) pY,1|1(t2, y2 | t1, y1) dy2,

where t1 < t2 < t3.
(83). . . or Markoff in the older literature.
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Dividing by pY,1(t1, y1), one obtains the Chapman(bw)–Kolmogorov (bx) equation

pY,1|1(t3, y3 | t1, y1) =

Z
pY,1|1(t3, y3 | t2, y2) pY,1|1(t2, y2 | t1, y1) dy2 for t1 < t2 < t3, (C.25)

which gives a relation—a nonlinear integral-functional equation—fulfilled by the transition proba-
bility of a Markov process.

Reciprocally, two arbitrary nonnegative functions pY,1(t1, y1), pY,1|1(t2, y2 | t1, y1) obeying the
two identities (C.24) and (C.25) entirely define a unique Markov process.

Remark: The Chapman–Kolmogorov equation follows quite obviously when invoking the Markov
property in the more generic relation (C.15), which holds for every stochastic process. In contrast
to the latter, Eq. (C.25) is closed, i.e. does not depend on another function.

:::::::
C.2.5 c

::::::::::::::::::::::::::::::::
Examples of Markov processes

::::::::::::::::
Wiener process

The stochastic process defined by the “initial condition” pY,1(t=0, y) = �(y) for y 2 R and the
Gaussian transition probability (for 0 < t1 < t2)

pY,1|1(t2, y2 | t1, y1) =
1p

2⇡(t2 � t1)
exp


�
(y2 � y1)2

2(t2 � t1)

�
(C.26a)

is called Wiener process.
One easily checks that the transition probability (C.26a) satisfies the Chapman–Kolmogorov

equation (C.25), and that the probability density at time t > 0 is given by

pY,1(t, y) =
1

p
2⇡t

e�y2/2t. (C.26b)

The Wiener process is obviously not a stationary process, since for instance the second moment⌦
[Y (t)]2

↵
= t depends on time.

Remark: The single-time probability density (C.26b) is solution of the diffusion equation

@f

@t
=

1

2

@2f

@y2
(C.27)

with diffusion coefficient D = 1

2
.

:::::::::::::::::
Poisson process

Consider now the integer-valued stochastic process Y (t) defined by the Poisson-distributed [cf.
Eq. (B.11)] transition probability (0  t1  t2)

pY,1|1(t2, n2 | t1, n1) =
(t2 � t1)n2�n1

(n2 � n1)!
e�(t2�t1) for n2 � n1 (C.28)

and 0 otherwise, and by the single-time probability density pY,1(t=0, n) = �n,0. That is, a realization
y(t) is a succession of unit steps taking place at arbitrary instants, whose number between two given
times t1, t2 obeys a Poisson distribution with parameter t2 � t1.

Y (t) is a non-stationary Markov process, called Poisson process.

Remark: In both Wiener and Poisson processes, the probability density of the increment (y2 � y1
resp. n2�n1) between two successive instants t1, t2 only depends on the time difference t2� t1, not
on t1 (or t2) alone. Such increments are called stationary . Since in addition successive increments
are independent, both processes are instances of Lévy(by) processes.
(bw)S. Chapman, 1888–1970 (bx)A. N. Kolmogorov, 1903–1987 (by)P. Lévy, 1886–1971



136 Basic notions on stochastic processes

:::::::
C.2.5 d

::::::::::::::::::::::::::::::
Stationary Markov processes

An interesting case in physics is that of stationary Markov processes. For such processes, the
transition probability pY,1|1(t2, y2 | t1, y1) only depends on the time difference ⌧ ⌘ t2 � t1, which is
hereafter reflected in the use of the special notation

TY ;⌧ (y2 | y1) ⌘ pY,1|1(t1 + ⌧, y2 | t1, y1). (C.29)

Using this notation, the Chapman–Kolmogorov equation (C.25) takes the form (both ⌧ and ⌧ 0 are
nonnegative)

TY ;⌧+⌧ 0(y3 | y1) =

Z
TY ;⌧ 0(y3 | y2) TY ;⌧ (y2 | y1) dy2. (C.30)

If a Markov process is also stationary, the single-time probability density pY,1(y) does not depend
on time. Invoking a setup in which the probability density would first be time-dependent, i.e. in
which the stochastic process Y is not (yet) stationary, pY,1 characterizes the large-time “equilibrium”
distribution, reached after a sufficiently large ⌧ , irrespective of the “initial” distribution y(t) at some
time t = t0. Taking as initial condition pY,1(t= t0, y) = �(y � y0), where y0 is arbitrary, one finds

pY,1(y) = lim
⌧!+1

TY ;⌧ (y | y0).

This follows from the identities

p
Y,1

(t0 + ⌧, y) =

Z
p
Y,2

(t0 + ⌧, y; t0, y
0) dy0 =

Z
p
Y,1|1(t0 + ⌧, y | t0, y

0) p
Y,1

(t0, y
0) dy0

=

Z
TY ;⌧ (y | y

0) p
Y,1

(t0, y
0) dy0,

which with the assumed initial distribution p
Y,1

(t0, y0) gives the result. 2

::::::::::::::::::::::::::::::
Ornstein–Uhlenbeck process

An example of stationary Markov process is the Ornstein(bz)–Uhlenbeck (ca) process [49] defined
by the (time-independent) single-time probability density

pY,1(y) =
1

p
2⇡

e�y2/2 (C.31a)

and the transition probability

TY ;⌧ (y2 | y1) =
1p

2⇡(1� e�2⌧ )
exp


�
(y2 � y1e�⌧ )2

2(1� e�2⌧ )

�
. (C.31b)

One can show that the Ornstein–Uhlenbeck process is also Gaussian and that its autocorrelation
function is (⌧) = e�⌧ .

Doob’s(cb) theorem actually states that the Ornstein–Uhlenbeck process is, up to scalings or
translations of the time argument, the only nontrivial(84) process which is Markovian, Gaussian
and stationary.

:::::::
C.2.5 e

:::::::::::::::::::::::::::::::::::::::
Master equation for a Markov process

For an homogeneous Markov process Y (t), i.e. a process for which the probability transition
pY,1|1(t2, y2 | t1, y1) only depends on the time difference ⌧ ⌘ t2 � t1, one can derive under minimal
assumptions a linear integrodifferential equation for the transition probability, which constitutes
the differential form of the Chapman–Kolmogorov equation for the process.
(84)The fully random process mentioned below the introduction of the Markov property (C.22) may also be Gaussian

and stationary.
(bz)L. Ornstein, 1880–1941 (ca)G. Uhlenbeck, 1900–1988 (cb)J. L. Doob, 1910–2004
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Remark: The assumption on the probability transition does not automatically imply that the process
is stationary; yet in analogy with Eq. (C.29) we shall denote it by TY ;⌧ (y2 | y1).

:::::::::::::::::
Master equation

Let us assume that for time differences ⌧ much smaller than some time scale ⌧c, the transition
probability is of the form

TY ;⌧ (y2 | y1) = [1� �(y1)⌧ ] �(y2 � y1) + �(y2 | y1)⌧ + o(⌧), (C.32a)

where o(⌧) denotes a term that is much smaller than ⌧ in the limit ⌧ ! 0. The nonnegative quantity
�(y2 | y1) is readily interpreted as being the transition rate from y1 to y2, and �(y1) is its integral
over y2

�(y1) =

Z
�(y2 | y1) dy2, (C.32b)

thereby ensuring that the integral of the transition probability TY ;⌧ (y2 | y1) over all possible final
states y2 gives unity.

Consider now the Chapman–Kolmogorov equation (C.30). Rewriting TY ;⌧ 0(y3 | y2) with the help
of Eq. (C.32a), i.e. under the assumption that ⌧ 0 ⌧ ⌧c, and leaving aside the negligible term o(⌧ 0),
one finds

TY ;⌧+⌧ 0(y3 | y1) =
⇥
1� �(y3) ⌧

0⇤
TY ;⌧ (y3 | y1) + ⌧ 0

Z
�(y3 | y2) TY ;⌧ (y2 | y1) dy2.

Note that we need not make any assumption on ⌧ here. Taylor-expanding TY ;⌧+⌧ 0 with respect to
⌧ 0 and dividing both sides by ⌧ 0, this gives in the limit ⌧ 0 ! 0 the integrodifferential equation

@TY ;⌧ (y3 | y1)

@⌧
= ��(y3)TY ;⌧ (y3 | y1) +

Z
�(y3 | y2) TY ;⌧ (y2 | y1) dy2,

where the derivative on the left-hand side has to be taken with a grain of salt in case ⌧ 0 may (for
physical reasons pertaining to the system being considered) actually not become vanishingly small.

Using Eq. (C.32b) for �(y3) and relabeling the variables (y1 ! y0, y2 ! y0, y3 ! y), this can
be rewritten as

@TY ;⌧ (y | y0)

@⌧
=

Z ⇥
�(y | y0) TY ;⌧ (y

0
| y0)� �(y0 | y) TY ;⌧ (y | y0)

⇤
dy0. (C.33)

This evolution equation—which is fully equivalent to the Chapman–Kolmogorov equation—for the
transition probability TY ;⌧ is called master equation. It has the structure of a balance equation,
with a gain term, involving the rate �(y | y0), and a loss term depending on the rate �(y0 | y). It is
a linear integrodifferential equation, of first order with respect to ⌧ .

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Evolution equation for the single-time probability density

From the master equation (C.33) for the transition probability, one can deduce an equation
governing the dynamics of the single-time probability density, which turns out to possess exactly
the same structure.

Rewriting Eq. (C.24) in the form

pY,1(⌧, y) =

Z
TY ;⌧ (y | y0) pY,1(t=0, y0) dy0, (C.34)

and differentiating with respect to ⌧ , one obtains with the help of the master equation

@pY,1(⌧, y)

@⌧
=

Z ⇥
�(y | y0) TY ;⌧ (y

0
| y0)� �(y0 | y) TY ;⌧ (y | y0)

⇤
pY,1(t=0, y0) dy0 dy

0.
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Performing the integration over y0 and using relation (C.34), this yields

@pY,1(⌧, y)

@⌧
=

Z ⇥
�(y | y0) pY,1(⌧, y

0)� �(y0 | y) pY,1(⌧, y)
⇤
dy0, (C.35)

formally identical to the equation for TY ;⌧ , and accordingly also referred to as master equation.

Remark: When applied to a physical system, Eq. (C.35) allows the computation of the single-time
probability density at any time from an initial distribution pY,1(t=0, y) and the transition rates �.

C.3 Spectral decomposition of stationary processes
In this Section, we focus on stationary stochastic processes and introduce an alternative description
of their statistical properties, based on Fourier transformation (§ C.3.1). This approach in partic-
ularly leads to the Wiener–Khinchin theorem relating the spectral density to the autocorrelation
function (§ C.3.2).

C.3.1 Fourier transformations of a stationary process
Consider a stationary process Y (t). In general, a given realization y(t) will not be an inte-

grable function, e.g. because it does not tend to 0 as t goes to infinity. In order to talk of Fourier
transformations of the realization, one thus has to first introduce a finite time interval [0, T ] with
nonnegative T , and to work with continuations of the restriction of y(t) to this interval, before
letting T go to infinity.

:::::::
C.3.1 a

::::::::::::::::::
Fourier transform

Let first yT (t) denote the function that coincides with y(t) for 0 < t < T , and vanishes outside
the interval. yT (t) may be seen as the realization of a stochastic process YT (t).

One can meaningfully define the Fourier transform of yT (t) with the usual formula

ỹT (!) ⌘

Z
yT (t) e

i!t dt =

Z T

0

y(t) ei!t dt. (C.36a)

ỹT (!) is now the realization of a stochastic function ỸT (!). The inverse transform reads

yT (t) =

Z
ỹT (!) e

�i!t d!

2⇡
. (C.36b)

Taking the limit T ! 1 defines for each realization y(t) a corresponding ỹ(!). The latter is
itself the realization of a process Ỹ (!), and one symbolically writes for the stochastic processes
themselves

Ỹ (!) =

Z
Y (t) ei!t dt, Y (t) =

Z
Ỹ (!) e�i!t d!

2⇡
. (C.37)

Remark: The reader can check that thanks to the assumed stationarity of the process, we could
have started with restrictions of the realizations to any interval of width T , for instance [� T

2
, T
2
],

without changing the result after taking the limit T ! 1.

:::::::
C.3.1 b

:::::::::::::::
Fourier series

Alternatively, one can consider the T -periodic function which coincides with y(t) on the interval
[0, T ]. This T -periodic function can be written as a Fourier series, which of course equals y(t) for
0 < t < T :

y(t) =
1X

n=�1
cn e

�i!nt for 0 < t < T , (C.38a)

where the angular frequencies and Fourier coefficients are as usual given by

Nicolas Borghini
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