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VI.2 Boltzmann equation
We now derive the equation governing the dynamics of the single-particle density f̄(t,~r,~p)—denoted
by f̄1 in § VI.2.1–VI.2.3—for the system with the properties presented in the previous section, where
we only consider elastic two-to-two scattering processes.

The derivation presented in this section is of a rather heuristic spirit, emphasizing the physical
meaning of the terms on the right hand side of the Boltzmann equation. An alternative derivation,
starting from the BBGKY hierarchy, is given in the appendix (VI.A) to this Chapter.

VI.2.1 General formulation
Since f̄1(t,~r,~p) is an instance of single-particle density—admittedly, on a coarse-grained version

of space-time, yet this makes no difference here—, its evolution equation could be derived in the
same manner as in the previous chapter V. Accordingly, in the absence of collisions f̄1 obeys the
single-particle Liouville equation [cf. (V.15)]

@ f̄1(t,~r,~p)

@t
+ ~v · ~r~r f̄1(t,~r,~p) + ~F · ~r~p f̄1(t,~r,~p) = 0.

This result can also be derived by counting particles within a volume d3~r d3~p about point (~r,~p) at
time t, then by investigating where these particles are at a later time t + dt, invoking Liouville’s
theorem (II.15) to equate the new volume they occupy to the old one.(84)

Traditionally, the influence of collisions on the evolution is expressed by introducing a symbolic
collision term (@ f̄1/@t)coll. in the right member
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The role of the collision term is to describe the change induced by scatterings in the number of
particles f̄1(t,~r,~p) d3~r d3~p/(2⇡~)3 inside an infinitesimal volume element about point (~r,~p).

The purpose of next subsection will be to give substance to this as yet empty notation. In
particular, we shall split the collision term into a “gain term”—describing the particles that enter
the volume d3~r d3~p after a collision—and a “loss term”—corresponding to the particles which are
scattered away from d3~r d3~p:
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Remark: In the same spirit as the right-hand side of Eq. (VI.8), one can designate the second and
third terms of the left member as the rates of change of f̄1 respectively caused by the motion of the
particles and by the external force:
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VI.2.2 Computation of the collision term
We now derive the form of the two contributions to the collision term (VI.9), starting with the

loss term.

:::::::
VI.2.2 a

:::::::::::
Loss term

Consider a volume element d3~r d3~p1 about the point (~r,~p1). A particle inside this range at time
t can scatter on a partner also situated at ~r—collisions are local—having a momentum ~p2 up to
d3~p2. After the collision, the outgoing particles have momenta ~p3, ~p4, with a probability related
(84)This proof can for instance be found in the textbooks by Huang [54, Chap. 3.1] or Reif [45, Chap. 13.2].
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to the transition rate w(~p1,~p2 ! ~p3,~p4). Integrating over all possible final momenta yields the
total scattering probability for initial particles with momenta ~p1, ~p2. Since d3~p1 is infinitesimally
small, any scattering process will give both colliding particles a different final momentum, so that
any collision automatically leads to a decrease of the number of particles inside d3~p1 (unless the
particles exactly exchange their momenta).

To obtain the number of particles that are scattered away from d3~p1, one has to multiply the
transition rate per unit volume for the collision of one pair of particles with momenta ~p1, ~p2 by the
total number of particles 1 and 2 per unit volume in the respective momentum ranges at time t.
Very generally, this number is given by(85)

f̄2(t,~r,~p1,~r,~p2) d
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d3~p1
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d3~p2
(2⇡~)3 ,

with f̄2 the (coarse-grained) joint two-particle density. Eventually, one integrates over all possible
momenta ~p2 of the partner, which yields, after dividing by d3~r d3~p1/(2⇡~)3✓
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In terms of the differential cross section, this loss term reads
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Remark: The integrand of the latter expression (VI.11b) actually involves quantities measured in
different reference frames: ~p1, ~p2 are with respect to the frame in which the system is studied, while
primed quantities are in the respective center-of-momentum frames of the binary collisions—which,
for a fixed ~p1, depends on ~p2!

:::::::
VI.2.2 b

:::::::::::
Gain term

The gain term describes particles which at time t acquire the momentum ~p1 up to d3~p1 in the
final state of a collision. We thus need to consider scattering processes ~p3,~p4 ! ~p1,~p2, where the
values of the initial momenta and of ~p2 are irrelevant and thus will be integrated over.

For fixed ~p3, ~p4 and for a given ~p2 known up to d3~p2, the number of particles with final momenta
in the proper range for a unit number density of incoming particles is given by [cf. Eq. (VI.4b)]
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Multiplying by the two-particle distribution f̄2(t,~r,~p3,~r,~p4), which gives the density of particles
with the respective momenta in the initial state, and integrating over these momenta as well as
over the momentum ~p2 of the partner particle, one finds the number of “gained” particles per unit
volume
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Dividing both sides by d3~p1/(2⇡~)3 and invoking the microreversibility property (VI.5c), this may
be recast as
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(85)The reader upset by the presence of the factor d3~r despite the fact that we are interested in the number of pairs
per unit volume may want to consider the number of pairs with both particles in the volume element d3~r, writing
it first in the form

f̄2(t,~r,~p1,~r2,~p2) d
3~r d3~r2
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1
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d3~p

2

(2⇡~)3
and then letting ~r2 = ~r—and accordingly d3~r2 = d3~r. The announced number of pairs per unit volume is then
obtained by dividing by (a single factor of) d3~r.
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Equivalently, one may write
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where relation (VI.7) was used.

VI.2.3 Closure prescription: molecular chaos
Gathering the loss and gain terms (VI.11a) and (VI.12a) together, the collision term, or collision

integral , on the right-hand side of the Boltzmann equation reads✓
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(VI.13a)
or equivalently [cf. Eqs (VI.11b) and (VI.12b)]✓
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As anticipated from the discussion of the BBGKY hierarchy in the previous chapter, the collision
integral for the evolution of the single-particle density involves the two-particle density f̄2. In turn,
one can derive the collision term for the dynamics of the latter, which depends on f̄3, and so forth.

Boltzmann’s proposal was to transform the collision integral (VI.13a) into a term involving f̄1
only, by invoking the assumption of molecular chaos , or Stoßzahlansatz, according to which the
velocities of the particles before the collision are uncorrelated

f̄2(t,~r,~p1,~r,~p2) = f̄1(t,~r,~p1) f̄1(t,~r,~p2) before a collision at instant t. (VI.14)

Just after a collision, two particles that have scattered off each other are correlated—reversing
their velocities, one makes them collide, which is a rare event. Yet before they meet and collide
again, they will undergo many scatterings with other, random particles, which wash out any trace
of this correlation, and justifies the above assumption.

Remark: Molecular chaos is thus a weaker assumption that the factorization (V.23) in the Vlasov
equation, which holds at any instant and for all positions of the two particles.

Under this assumption and inserting the resulting collision integral in the right-hand side of
Eq. (VI.8), one obtains the Boltzmann kinetic equation or Boltzmann transport equation(86)
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(VI.15a)
where the prefactor 1� �1,2/2 was introduced to ensure that the formula also holds without double
counting when particles 1 and 2 are identical (in which case �1,2 = 1, otherwise is �1,2 = 0).
Equivalently, the Boltzmann equation may recast as
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(86)From now on, we drop the notation f̄1 and only use f̄.
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Remarks:

⇤ One often introduces the abbreviations f̄(1) ⌘ f̄(t,~r,~p1), f̄(2) ⌘ f̄(t,~r,~p2), and so on, so that the
collision integral is shortly written as
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To shorten expressions even further, we shall also use
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⇤ The generalization of the Boltzmann equation to the case of a mixture of substances is straight-
forward: in the collision term for the evolution of the position-velocity-space density of a component,
one has to sum the contribution from the (elastic two-to-two) scattering processes of the particles of
that substance with each other—taking into account the 1

2
factor to avoid double-counting—, and

the contributions from collisions with particles of other components.

VI.2.4 Phenomenological generalization to fermions and bosons

The collision term of the Boltzmann equation can easily be modified so as to accommodate
the Pauli(cc) exclusion principle between particles with half-integer spins.(87) Considering the two-
to-two collision ~pi,~pj ! ~pk,~pl, where all particles are fermions,(cd) the “repulsive” behavior of the
latter can be phenomenologically accounted for by preventing the scattering process to happen when
one of the final states ~pk or ~pl is already occupied. That is, one postulates that the rate for the
process is not only proportional to the product f̄(i)̄f(j) of the phase-space densities of the initial
particles—where we use the same shorthand notation as in Eq. (VI.15c)—, but also to the product
[1 � f̄(k)][1 � f̄(l)] involving the densities of the final state particles. The collision integral of the
Boltzmann equation thus reads
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(VI.16)
A similar generalization, which simulates the “attractive” character of bosons, consists in en-

hancing the rate of the process ~pi,~pj ! ~pk,~pl, when there are already particles in the final state.
This is done by multiplying the rate by the factor [1 + f̄(k)][1 + f̄(l)], which yields
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(VI.17)
We shall see below that these seemingly ad hoc generalizations (VI.16)–(VI.17) lead for instance to
the proper equilibrium distributions.

An issue is naturally the actual meaning of f̄ in the generalized kinetic equations obtained with
the above collision terms, since phase space is usually not considered as an interesting concept in
quantum mechanics, where the Heisenberg uncertainties prevent a particle from being localized
at a well-defined point in µ-space.

(87)This idea seems to date back to Landau, in his work on the theory of Fermi liquids [56].

(cc)W. Pauli, 1900–1958 (cd)E. Fermi, 1901–1954
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VI.2.5 Additional comments and discussions
Now that we have established the actual form of the Boltzmann equation, especially of its

collision term, we wish to come back to the assumptions made in § VI.1.1, to discuss their role in a
new light.

An important point is the coarse graining of both time and position space. Thanks to it, the
momenta of the colliding particles skip instantaneously from their initial values ~p1, ~p2 to the final
ones, without going through intermediate values as would happen otherwise—except in the unreal-
istic case when the particles are modelled as hard spheres. If this transition were not instantaneous,
particle 1—a similar reasoning holds for the other colliding particle (2), as well as for particles 3
and 4 in the gain term—would at the time t of the collision no longer have the momentum ~p1 it
had “long” before the scattering. Accordingly, the distribution of particle 1 in the loss part of the
collision integral should not be f̄(t,~r,~p1), but rather one of the following possibilities:

• f̄ evaluated at time t, yet for the position ~r 0
1

and momentum ~p 0
1

of particle 1 at that very
instant: in a classical description of the scattering process, ~r 0

1
and ~p 0

1
depend for instance on

the impact parameter of the collision; whereas they are not even well-defined in a quantum
mechanical description.

• f̄ evaluated at momentum ~p1, yet at a time t� ⌧ , before the collision, at which particle 1 still
had this momentum, and accordingly at some position ~r1 6= ~r.

In the former case, one loses the locality in position space, while in the latter one has to abandon
locality both in time and space. The advantage of adopting a coarse-grained description is thus to
provide an evolution equation which is local both in t and ~r, as is the case of Eq. (VI.15).

Thanks to the time locality of the Boltzmann equation, the evolution of f̄ is “Markovian” in the
wide sense of § I.2.1, i.e. its rate of change is memoryless and only depends on f̄ at the same
instant.

Another assumption is that the time scale on which the coarse graining is performed is much
smaller than the average duration between two successive collisions of a particle, and similarly that
the spatial size of the coarse-grained cells is much smaller than the mean free path. This allows
one to meaningfully treat f̄ as a continuous—and even differentiable—function of t and ~r, and thus
amounts to assuming that the system properties do not change abruptly in time or spatially.

Eventually, one can note that the molecular chaos assumption (VI.14) provides a closed equation
for f̄, yet at the cost of introducing nonlinearity, whereas the successive equations of the BBGKY
hierarchy (V.14) are all linear.

VI.3 Balance equations derived from the Boltzmann equation
We now investigate various balance equations that hold in a system obeying the Boltzmann equation,
beginning with conservation laws, then going on with the celebrated H-theorem. Motivated by this
theorem, we then define various equilibrium distributions.

VI.3.1 Conservation laws

:::::::
VI.3.1 a

::::::::::::::::::::::::::::::::::::
Properties of the collision integral

Let Icoll.(1, 2, 3, 4) denote the integrand of the collision integral on the right-hand side of the
Boltzmann equation (VI.15):
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Nicolas Borghini
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