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I.2.4 Linear transport phenomena in simple fluids
As last example of application of the formalism of linear Markovian thermodynamic processes,

let us discuss transport phenomena in isotropic “simple” non-relativistic fluids, i.e. fluids made of a
single electrically neutral constituent, whose only species of (spherically symmetric) particles have
a mass m.

In such a system, the subsystems that coincide with the cells at the level of which local thermo-
dynamic equilibrium and local extensive quantities are defined—the so-called fluid particles—can
move with respect to each other. The local momenta ~P (t,~r) of the various cells thus differ from
each other, so that there is no global rest frame in which every local momentum would vanish. This
constitutes a new feature compared to the previous examples, and will require our determining the
proper variables, as defined in some fixed reference frame, for describing the system, before we can
apply the generic ideas of linear Markovian processes.

Hereafter, the dependence of fields on time t and position ~r will generally not be written. We
shall use Cartesian coordinates labeled by indices i, j. . . running from 1 to 3, whose position will
have no meaning. The components of ~r will be denoted as xi.

::::::
I.2.4 a

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
Extensive parameters, intensive quantities and fluxes

Each fluid cell is characterized by a set of local extensive variables, namely its total energy,
particle number, and momentum. Both energy and momentum clearly depend on the reference
frame. On the one hand, we shall consider a fixed inertial frame R 0—corresponding to the frame
in which the observer who describes the fluid is at rest. In that frame, energy and momentum will
be denoted by E and ~P .

In addition, we shall also use an inertial frame R ~v which at time t moves with respect to R 0 with
the same velocity ~v = ~v(t,~r) as the fluid particle located at position ~r. In that comoving frame, the
fluid particle is momentarily at rest, so that R ~v will be referred to as comoving (local) rest frame,
where “local” conveniently emphasizes that at a given instant, the velocity takes different values at
different points, resulting in the existence of different comoving rest frames. In R ~v, the energy of
the fluid cell reduces to its internal energy U while its momentum vanishes. Our first task is to find
what are the conjugate intensive variables and fluxes in the fixed frame R 0.

Let M(t,~r) ⌘ N(t,~r)m denotes the mass of fluid contained in the cell at position ~r at time t.
The energy E(t,~r) is then simply equal to the sum of the internal energy U(t,~r) and the kinetic
energy ~P (t,~r) 2/2M(t,~r) of the fluid particle. Thus, the characteristic extensive parameters of a
cell in the fixed frame R 0 read

E = U +
~P 2

2M
, N, Pi, i 2 {1, 2, 3}, (I.63a)

with respective densities (amount per unit volume)

e+
1

2
⇢~v 2, n , ⇢ vi, (I.63b)

where ⇢(t,~r) = mn(t,~r) is the mass density of the fluid.
Writing that the entropy does not depend on the choice of the inertial frame in which it is

measured and equating its values in R 0 and R ~v (see the derivation of YPi
in § I.1.3 a), one finds the

intensive variables conjugate to the extensive parameters (I.63) are

YE =
1

T
, YN = �

µ~v
T

= �
µ+ 1

2
m~v 2

T
, YPi

= �
vi
T

(I.64)

respectively, where µ denotes the chemical potential in the comoving rest frame. Note that the
temperature does not depend on the reference frame.

In non-relativistic fluid dynamics, the traditional variables are the mass density ⇢ (instead of n),
the flow velocity ~v (instead of the momentum density) and the thermodynamic pressure P (instead
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of the internal energy density). The latter is given by the Gibbs–Duhem(o) relation

P = Ts� e+ µn . (I.65)

Since the right-hand side also equals Ts �
�
e + 1

2
⇢~v 2

�
+

�
µ + 1

2
m~v 2

�
n , the pressure P keeps the

same value in every inertial frame.

Besides the densities (I.63b) and intensive variables (I.64), whose respective gradients are the
various affinities, we still have to introduce the flux densities of the extensive parameters. Following
the generic expansion (I.29a), these fluxes generally consist of a contribution depending on the
affinities, which describes the response of the system to a departure from equilibrium, and of affinity-
independent equilibrium fluxes, which we shall now determine.

For that purpose, it is convenient to first establish the form of the equilibrium fluxes in the
comoving local rest frame R ~v before performing a Galilean transformation with velocity �~v to
obtain the expressions in the fixed reference frame R 0.

In an equilibrated isotropic fluid at rest, invariance under rotations implies that the vectorial
fluxes of internal energy and of particle number should vanish. Moreover, the momentum flux
density, which is a tensor of order 2, must be proportional to the identity tensor, again to satisfy
rotational symmetry, as argued in § I.2.2 a. To interpret the proportionality coefficient, one should
realize that the flux of the i-th component of linear momentum through a surface perpendicular to
the i-axis represents a normal force on that surface. In mechanical equilibrium, this force is balanced
by the i-component of the force exerted by the remainder of the fluid on the surface element, i.e.
in a fluid at rest through the hydrostatic pressure. All in all, one thus finds that the equilibrium
fluxes in the comoving local rest frame are

~J eq.
E

��
R~v

=~0, ~J eq.
N

��
R~v

=~0, JJJ eq.
~P

��
R~v

= P 1113, (I.66)

where the latter identity can be expressed in term of components as (J eq.
~P

)ij = P �ij .
When performing the Galilean transformation with velocity �~v to the fixed reference frame R 0,

two effects have to be taken into account. First, the transported quantities may be modified, as is
the case of energy density or momentum density. Secondly, a flux is defined as the quantity flowing
per unit time through a motionless surface, and the motionless surfaces in both frames differ.

To account consistently for both these effects, one should first consider an infinitesimal Galilean
transformation from a frame R ~v 0 with velocity ~v 0 (with respect to R 0) to a frame R ~v 0+d~v 0 with
velocity ~v 0 + d~v 0. In R ~v 0, the characteristic densities at a point moving with velocity ~v in R 0

take the values [cf. Eq. (I.63b)]

e+
1

2
⇢(~v �~v 0)2, n , ⇢(vi � v0i).

Viewed in R ~v 0+d~v 0, the densities at the same point become, to first order in d~v 0

e+
1

2
⇢(~v�~v 0

�d~v 0)2= e+
1

2
⇢(~v�~v 0)2�⇢(~v�~v 0) ·d~v 0, n , ⇢(vi�v0i�dv0i) = ⇢(vi�v0i)�n m dv0i.

From the latter formulae, one deduces the variations of the densities in the infinitesimal Galilean
transformation, namely

d

✓
e+

1

2
⇢ ~w 2

◆
= ⇢ ~w · d~w, dn = 0, d

�
⇢ ~w

�
= n m d~w,

where we have set ~w = ~v �~v 0 and accordingly d~w = �d~v 0.
Consider now the fluxes of the extensive quantities at the same position and time. Recognizing
in the infinitesimal variation of the energy density above the product of the momentum density
⇢ ~w with the velocity increment, one deduces that the change in energy flux due to the variation
of the transported energy density will involve the momentum flux, again multiplied by the

(o)P. Duhem, 1861–1916
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velocity increment. Similarly, the variation of momentum density involves the particle number
density, so that the change in momentum flux will involve the flux of particle number.
On the other hand, the motion with velocity d~w = �d~v 0 in R ~v 0+d~v 0 of a surface which is
motionless in R ~v 0 contributes to any flux an amount given to first order in d~w by the product
of the corresponding density, as measured in R ~v 0, with d~w

All in all, the differences between the values of the equilibrium fluxes measured in R ~v 0+d~v 0 and
R ~v 0 read

dJ eq.
E,i =

3X

j=1

(Jeq.~P
)ij dwj +

✓
e+

1

2
⇢ ~w 2

◆
dwi, d~J eq.

N = n d~w, d(Jeq.~P
)ij = J

eq.
N,j m dwi + ⇢wi dwj .

These equations can be viewed as defining partial differential equations, which can be integrated
from ~w = ~0 (i.e. from the local rest frame comoving with the fluid at velocity ~v) to ~w = ~v (the
fixed frame), starting with known initial conditions at velocity ~w = ~0—namely the equilibrium
fluxes (I.66). One first finds ~J eq.

N , which is then injected in the equations for (Jeq.~P
)ij . Solving

the latter, the result can be used in the equations for J
eq.
E,i.

In the fixed reference frame R 0, the equilibrium fluxes read

~J eq.
E =

✓
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⇢~v 2 + P

◆
~v, ~J eq.

N = n~v,
�
Jeq.
~P

�
ij
= P �ij + ⇢ vivj . (I.67)

These equilibrium fluxes have to be complemented with affinity-dependent terms, to yield the to-
tal fluxes. For the sake of simplicity, we shall restrict ourselves to Markovian, memoryless transport
processes.

By definition of the non-relativistic flow velocity as the average velocity of particles in the fluid
cell under consideration, the flux of particle number does not receive any such extra term, and will
always remain equal to its equilibrium value, ~JN = ~J eq.

N .
As a consequence (cf. the derivation above), the difference between the values of the momen-

tum flux components
�
J~P

�
ij

taken in the frames R 0 and R ~v is the same as for the corresponding
equilibrium fluxes, namely ⇢ vivj . The only dependence of

�
J~P

�
ij

on any affinity thus already af-
fects its value in the local rest frame of the fluid, in which the diagonal tensor P �ij becomes an
affinity-dependent tensor ⇡⇡⇡ with components ⇡ij called stress tensor .

Eventually, this stress tensor plays a role in the change of frame for the energy flux, with ⇡⇡⇡ ·~v
replacing P ~v. Additionally, one also has to allow for an affinity-dependent contribution ~JU to the
energy flux in the local rest frame. Altogether, one obtains the fluxes

~JE =

✓
e+

1

2
⇢~v 2

◆
~v + ~JU +⇡⇡⇡ ·~v, ~JN = n~v,

�
J~P

�
ij
= ⇡ij + ⇢ vivj , (I.68)

where the functional dependences of ~JU and the stress tensor ⇡⇡⇡ on the various affinities depend on
the model under consideration, i.e. concretely on the specific fluid under study.

Remark: One can also show that angular momentum conservation implies that the stress tensor is
symmetric.

::::::
I.2.4 b

::::::::::::::::::::
Conservation laws

Having obtained the fluxes in the fixed inertial frame R 0, we can now insert their expressions
and those of the densities (I.63b) in the general local balance equation (I.18a), where the source/sink
term will vanish since energy, particle number and momentum are conserved.

Starting with particle number density, or equivalently—to respect the tradition—with the mass
density ⇢ = nm, the simple flux m~JN = ⇢~v leads to the continuity equation

@⇢

@t
+ ~r ·

�
⇢~v

�
= 0, (I.69)

which expresses local mass conservation.
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In a second step, we can consider the balance equation for momentum, for the sake of simplicity
component by component. The momentum density ⇢ vi and flux J ij

~P
give for every i 2 {1, 2, 3}

@(⇢ vi)

@t
+

3X

j=1

@

@xj

�
⇡ij + ⇢ vivj

�
= 0.

A simple calculation using the mass balance equation (I.69) to cancel two terms allows one to rewrite
this relation as

⇢


@vi
@t

+
�
~v · ~r

�
vi

�
+

3X

j=1

@⇡ij
@xj

= 0. (I.70)

Since the stress tensor component ⇡ij represents the amount of momentum in direction i flowing
per unit time through a unit surface perpendicular to direction j, it equals according to Newton’s(p)

second law the i-th component of the force per unit area on a surface normal to the direction j.
Following Newton’s third law, this equals the negative of the force per unit area exerted by the
remainder of the fluid on the cell under study, so that this local balance equation actually expresses
the fundamental principle of Newtonian dynamics.

Eventually, the energy density (I.63b) and flux (I.68) yield for the local balance equation for
energy in the fixed reference frame

@

@t

✓
e+

1

2
⇢~v 2

◆
+ ~r · ~JE =

@

@t
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e+

1

2
⇢~v 2

◆
+

3X

i=1

@

@xi

"✓
e+
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2
⇢~v 2

◆
vi + ~JU +

3X

j=1

⇡ijvj

#
= 0.

To simplify this equation, one views 1

2
⇢~v 2 as ⇢ times 1

2
~v 2 and then differentiates with the product

rule. The terms proportional to 1

2
~v 2 vanish thanks to the continuity equation (I.69). Those pro-

portional to ⇢ can be rewritten with the help of the identity ~r
�
1

2
~v 2

�
=

�
~v · ~r

�
~v+~v⇥

�
~r⇥~v

�
, and

one recognizes the sum over i of ⇢vi multiplied with the term within square brackets in Eq. (I.70).
A further application to the product rule leads then to

@e

@t
+ ~r ·

�
e~v + ~JU

�
+

3X

i,j=1

⇡ij
@vj
@xi

= 0. (I.71)

Interestingly, the kinetic energy density no longer appears in this equation, which can be interpreted
as describing the change in the internal energy due to dissipation (~JU ) and to the work of forces
exerted on neighboring fluid cells (⇡ij).

::::::
I.2.4 c

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Linear Markovian transport processes in a simple fluid

Let us now explicitly consider a model for the fluid, by assuming that the fluxes (I.68)—and
more precisely the energy flux ~JU and the stress tensor ⇡⇡⇡—are linear functions of the affinities,
i.e. of the first derivatives of the intensive variables (I.64) with respect to space coordinates. This
assumption defines Newtonian fluids, which are those governed by the resulting dynamical laws
derived from Eqs. (I.70) and (I.71).

In the linear regime, one only needs to introduce first-order kinetic coefficients Lab relating the
fluxes to the affinities as in Eq. (I.31). Enumerating the former, the two vectors ~JN and ~JU and
the order 2 tensor JJJ~P amount altogether to 15 components. Similarly, the gradients of the intensive
variables (I.64) also represent 15 different scalar fields, so that a naive approach would necessitate
15⇥ 15 kinetic coefficients Lab. Fortunately, the problem can be considerably simplified thanks to
the general principles of § I.2.2 and to system-specific properties, resulting in a small number of
coefficients.
(p)I. Newton, 1642–1727
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A first important remark is that by definition of the flow velocity ~v, the particle-number flux ~JN

always remains equal to its equilibrium contribution ~J eq.
N = n ~v, irrespective of the affinities. This

means that all coefficients LNa vanish. Thanks to the Onsager relations, all reciprocal coefficients
LaN also vanish. Thus a gradient in chemical potential does not lead to any dissipation in a simple
fluid: chemical potential plays no direct role in entropy production.(18)

Using the second consequence listed in § I.2.2 of Curie’s symmetry principle applied to isotropic
media, the vectorial flux (resp. affinity) for energy cannot couple to the affinity (resp. flux) for
momentum, which is a tensor of order 2. That is, the tensors of order 3 coupling E and ~P identically
vanish. All in all, this means that there is no indirect transport in a simple fluid.

According to the first of the consequences of isotropy given in § I.2.2, the transport of energy—a
scalar quantity—involves a tensor LLLEE of order 2 proportional to the identity, i.e. effectively a single
kinetic coefficient LEE . To write down this relation explicitly, it is convenient to move to a rest
frame in which the fluid is locally at rest, so that the energy flux has a simple expression.

In the Galilean transformation from the fixed frame R 0 to the frame R ~v0 comoving with the
fluid at point M0, where the fluid velocity at time t0 is ~v0, the position and velocity respectively
transform according to ~r 0 = ~r�~v0(t� t0), which implies the identity of derivatives @/@x0i = @/@xi,
and ~v 0(t,~r 0) = ~v(t,~r) � ~v0, where primed resp. unprimed quantities refer to R ~v0 resp. R 0. Since
temperature is the same in all frames, the affinity conjugate to energy is ~r(1/T ), so that the relation
between this affinity and the energy flux in the comoving rest frame reads

~JU = LEE
~r

✓
1

T

◆
, (I.72a)

where LEE is as always non-negative.
In turn, the i-th component in R ~v0 of the affinity ~FPj

is given by

@

@x0i

✓
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v0j
T

◆����
t0,M0

=
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@xi

✓
�
vj� v0,j

T

◆����
t0,M0

= �
1

T

@vj
@xi

����
t0,M0

,

where the term proportional to @(1/T )/@xi vanishes since it multiplies vj�v0,j taken at time t0 and
at the point M0. The remaining task is thus to express the components of stress tensor ⇡⇡⇡, which
equals the momentum flux in the comoving local rest frame, as function of the derivatives @vk/@xl.
This necessitates a tensor LLL~P ~P of order 4 with components Lijkl

~P ~P
such that

⇡ij =
3X

k,l=1

Lijkl
~P ~P

@vk
@xl

.

Invoking again the local isotropy of the fluid, this tensor can only be a linear combination of the
three order-4 tensors invariant under rotations, namely those with (Cartesian) components �ij�kl,
�ik�jl and �il�jk, with three respective kinetic coefficients.

As noted above, ⇡⇡⇡ must be symmetric (⇡ij = ⇡ji) to ensure angular momentum conservation,
so that the coefficients of �ik�jl and �il�jk must be identical. Instead of considering ⇡ij as linear
combination of �ij�kl and �ik�jl + �il�jk, one traditionally—and equivalently—writes down a linear
combination of �ij�kl and the traceless tensor 1

2

�
�ik�jl + �il�jk

�
�

1

3
�ij�kl. Introducing the two

necessary non-negative coefficients L(1)

~P ~P
, L(2)

~P ~P
, the relation between the stress tensor components

and the affinities conjugate to momentum reads

⇡ij = P �ij �
L(1)

~P ~P

T

3X

k,l=1

�ij�kl
@vk
@xl
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L(2)

~P ~P

T

3X

k,l=1


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2
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�ik�jl + �il�jk

�
�

1

3
�ij�kl

�
@vk
@xl

,

(18)A gradient in chemical potential, or equivalently in particle number density, at uniform temperature will lead via
the equations of state to a gradient in pressure P—cf. the example of an ideal gas—, which results in a macroscopic
flow through Eq. (I.70). In turn, this motion will lead to dissipation due to the viscous effects described by the
transport coefficients ⌘ and ⇣.
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where we also included the equilibrium part P �ij . With the help of the traceless symmetric tensor
��� with components

�ij ⌘
1

2

✓
@vi
@xj

+
@vj
@xi

◆
�

1

3

�
~r ·~v

�
�ij , (I.72b)

the stress tensor can be rewritten more concisely as

⇡⇡⇡ = P 1113 �

L(1)

~P ~P

T

�
~r ·~v

�
1113 �

L(2)

~P ~P

T
��� (I.72c)

i.e. component-wise

⇡ij = P �ij �
L(1)

~P ~P

T

�
~r ·~v

�
�ij �

L(2)

~P ~P

T
�ij . (I.72d)

This relation and Eq. (I.72a) are the characteristic “constitutive equations” for a Newtonian fluid.

Let us now interpret the three kinetic coefficients LEE , L(1)

~P ~P
and L(2)

~P ~P
in terms of more traditional

transport coefficients. First, Eq. (I.72a) is clearly reminiscent of Fourier’s law

~JU = �~rT with  =
LEE

T 2
(I.73)

like in the case of an insulator [Eq. (I.37a)]. LEE is thus related to the heat conductivity, which is
non-negative, as it should be.

As was already mentioned, ⇡ij is the i-component of the force per unit area acting on a surface
normal to the j-direction. Empirically, this force per unit area is related to the gradient along
direction j of the i-th component of velocity through Newton’s law of viscosity(19)

⇡ij = �⌘
@vi
@xj

, (I.74)

with ⌘ the fluid shear viscosity . Identifying this empirical law with relation (I.72d) for i 6= j yields

⌘ =
L(2)

~P ~P

2T
. (I.75)

Eventually, the parameter L(1)

~P ~P
is related to the transport parameter referred to as volume

viscosity (or at times second viscosity or bulk viscosity(20)) ⇣, which only plays a role in compressible
flows (~r ·~v 6= 0), in particular in the damping of sound waves. To obtain the proper usual form for
the equation of motion of a compressible flow, one must set

⇣ =
L(1)

~P ~P

T
. (I.76)

With Eqs. (I.75) and (I.76), the stress tensor component (I.72c) becomes

⇡⇡⇡ = P 111� ⇣
�
~r ·~v

�
111� 2⌘���. (I.77)

Rewriting Eqs. (I.70) and (I.71) in the linear regime in which the internal energy and momentum
fluxes are respectively given by Eqs. (I.73) and (I.77), one obtains in the case of position-independent
viscosity coefficients the Navier (q)–Stokes(r) equation

⇢
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+
�
~v · ~r
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~v

�
= �~rP + ⌘


4~v +

1

3
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~r ·~v

��
+ ⇣~r

�
~r ·~v

�
(I.78)

(19)This law is defined for a fluid flowing uniformly along the i-direction, so that the velocity only depends on xj ,
which ensures that both @vi/@xi—and thereby ~r ·~v—and @vj/@xi vanish.

(20)Some authors, as e.g. in Ref. [21], reserve the name “bulk viscosity” to the combination ⇣ + 2

3
⌘. The lack of unity

in the terminology shows how little this coefficient has actually been studied!
(q)C.L. Navier, 1785–1836 (r)G. G. Stokes, 1819–1903
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and the energy balance equation
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(I.79)

::::::
I.2.4 d

::::::::::::::::::::
Entropy production

To conclude this application of the thermodynamics of linear irreversible processes to simple
fluids, let us write down the balance equation for entropy (I.20).

For that purpose, we first need the expression of the entropy flux density. Using the general
formula (I.22) in the comoving local rest frame R ~v, in which ~JN = ~0 and Y~P = ~0 since both are in
the general case proportional to the fluid velocity, yields

(~JS)R~v
=

1

T
~JU . (I.80a)

Transforming back to the fixed frame R 0, the entropy density s is invariant, so that the entropy
flux only changes because surfaces at rest in R ~v are now moving:

~JS =
1

T
~JU + s~v (I.80b)

Inserting in the general formula (I.30) for entropy production the fluxes (I.68), from which one
subtracts their equilibrium values (I.67), and the corresponding affinities, one finds(21)
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In the linear approximation where the energy and momentum fluxes are respectively given by
Eqs. (I.73) and (I.77), this becomes
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The rightmost term between square brackets is symmetric under the exchange of the indices i and j,
so that one can replace the factor @vj/@xi in front by half of the symmetrized version, i.e. according
to definition (I.72b) by �ij +

1

3
(~r ·~v)�ij . Canceling out the minus signs, one thus obtains
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The remaining product can then be expanded. Multiplying an order-2 tensor by �ij and summing
over i and j amounts to taking the trace of the tensor. Since �ij is traceless, the products �ij�ij
yield 0, while �ij�ij gives 3. In the end, there remains

�S = T 2
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. (I.82)

Since the three transport coefficients , ⌘ and ⇣ are non-negative, the entropy production rate is
also always non-negative—as needed for the second law of thermodynamics.

(21)This is most obvious in the comoving frame, holds however in a general frame.
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