
CHAPTER V

Reduced classical phase-space
densities and their evolution

The description of a classical N -body systems relies on the N -particle phase space �: the evolu-
tion of the system is represented by a trajectory ({qa(t)}, {pa(t)}) solution of the Hamilton equa-
tions (II.1)—corresponding to the sequence of microstates occupied by the system at successive
instants—, while observables are functions ON

�
{qa}, {pa}

�
on �. If, as is generally the case for

macroscopic systems, the system state is only known on a statistical basis, one also needs the
probability density ⇢N

�
t, {qa}, {pa}

�
on �, whose time evolution is governed by the Liouville equa-

tion (II.10b), see Sec. II.2.
In the large majority of cases, the macroscopic quantities of interest are a measure for the

expectation value of microscopic observables that only involve few particles, often only one or two.
For instance, the temperature is related to the average kinetic energy of the particles in the system,
which involves a single-particle observable. To compute the expectation values of such observables,
it is worthwhile to introduce reduced phase-space densities, which integrate out the irrelevant degrees
of freedom (Sec. V.1). From the Liouville equation for the �-space probability density ⇢N , one can
then derive the equations of motion governing the dynamics of the reduced densities (Sec. V.2).

In this Chapter and the following one, the positions and momenta of the N particles will be
denoted by ~ri and ~pi respectively, where i = 1, . . . , N labels the particle. Accordingly, the argument
of a function on the �-space of the N particles will be written {~ri}, {~pi} or ~r1,~p1, . . . ,~rN ,~pN instead
of {qa}, {pa}.

V.1 Reduced phase-space densities
Consider a system of N particles (without internal degrees of freedom), which for simplicity are first
assumed to be identical. Starting from the N -particle phase-space density ⇢N (t,~r1,~p1, . . . ,~rN ,~pN )
and integrating out the position and momentum coordinates of N � 1 particles, one defines the
single-particle phase-space density

f1(t,~r,~p) ⌘ ↵N,1

Z
⇢N (t,~r,~p,~r2,~p2, . . . ,~rN ,~pN ) d6(N�1)V (V.1a)

where d6(N�1)V is the infinitesimal volume element in the subspace spanned by the variables
~r2,~p2, . . . ,~rN ,~pN . The remaining single-particle phase space is often referred to as µ-space, to
distinguish it from the �-space.

Similarly, one introduces the two-particle phase-space density

f2(t,~r,~p,~r
0,~p 0) ⌘ ↵N,2

Z
⇢N (t,~r,~p,~r 0,~p 0,~r3,~p3, . . . ,~rN ,~pN ) d6(N�2)V . (V.1b)

More generally, integrating out the positions and momenta of N � k particles in the �-space
density ⇢N leads to a k-particle phase-space density fk.
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Remark: For a system of identical—i.e. quantum-mechanically indistinguishable—particles, the
density ⇢N should be symmetric under the exchange of any two particles, i.e. of the variables ~ri, ~pi
and ~rj , ~pj for any i, j. Accordingly, which N � k positions and momenta are being integrated out
in the definition of the reduced k-particle density fk is actually unimportant, and any choice leads
to the same reduced density.

The definitions (V.1a) and (V.1b) involve constants ↵N,1, ↵N,2. These are often chosen so that
the single- and two-particle phase-space densities are respectively normalized to

Z
f1(t,~r,~p) d

3~r d3~p = N, (V.2a)

i.e. the total number of particles, and
Z
f2(t,~r,~p,~r

0,~p 0) d3~r d3~p d3~r 0 d3~p 0 = N(N � 1), (V.2b)

that is, the total number of ordered pairs. More generally, one requires that the integral of fk be
equal to the total number of ordered k-tuples. This requirement dictates for identical particles the
choice ↵N,k = 1/(2⇡~)3k, independent of N . With these normalizations, f1(t,~r,~p) d3~r d3~p is the
average number of particles in the infinitesimal volume element d3~r d3~p around the µ-space point
(~r,~p) at time t, while f2(t,~r,~p,~r 0,~p 0) d3~r d3~p d3~r 0 d3~p 0 is the average number of ordered pairs with
one particle in the volume element d3~r d3~p around (~r,~p) and the other in d3~r 0 d3~p 0 around (~r 0,~p 0).
The various fk are thus number densities in the respective phase spaces, rather than probability
densities.

Integrating the single-particle phase-space density (V.1a) normalized according to Eq. (V.2a)
over momentum, one recovers the usual particle number density (in position space)

n(t,~r) ⌘
Z
f1(t,~r,~p) d

3~p. (V.3a)

Remarks:

⇤ Up to the normalization [N !/(N � k)! instead of 1], the reduced phase-space densities fk are
marginal distributions (see Appendix B.4.1) of the �-space density ⇢N .

⇤ Given the normalization adopted here, the densities fk are dimensionful quantities. It is some-
times preferable to work with dimensionless densities, namely fk ⌘ (2⇡~)3kfk, which correspond to
the simpler normalization constant ↵N,k = 1 for all k. Integrating f1 over a spatial volume on which
the system is homogeneous then yields the so-called phase-space occupancy—where “phase space”
actually means momentum space.

The various results of this chapter, as e.g. the BBGKY hierarchy (V.14), still hold when replacing
the reduced densities fk by the dimensionless fk, provided every momentum-space volume element
d3~p appearing in an integral is replaced by d3~p/(2⇡~)3. For instance,

n(t,~r) ⌘
Z

f1(t,~r,~p)
d3~p

(2⇡~)3 . (V.3b)

⇤ The reduced densities fk depend on the underlying statistical ensemble. Here, since the number
of particles N is fixed, we are implicitly considering the canonical ensemble, yet this is just for the
sake of simplicity.

In the “grand-canonical” case of a fluctuating particle number, integrating the phase-space density
⇢ defined in § II.2.5 over the irrelevant degrees of freedom yields the reduced k-particle density

fk =
1X

N=k

⇡Nfk|N�k
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where fk|N�k is the (“canonical”) reduced k-particle distribution under the condition that there
are exactly N particles in the system while ⇡N is the probability that this is the case. Accordingly,
f1 is then normalized to hNi, f2 to hN(N � 1)i, and so on.
The reader can check that for a classical ideal gas, f2(t,~r,~p,~r 0,~p 0) = f1(t,~r,~p)f1(t,~r 0,~p 0) in the
grand-canonical case—which can be interpreted as signaling the absence of correlations between
particles—, while the identity does not hold when the total particle number is fixed.

With the help of the µ-space density f1, the expectation value of a single-particle observable
O1(~r,~p) reads

⌦
O1(t)

↵
t
=

Z
O1(~r,~p) f1(t,~r,~p) d

3~r d3~p
Z
f1(t,~r,~p) d

3~r d3~p
. (V.4)

The expectation value of a two-particle observable can similarly be expressed as an average weighted
by the two-particle density f2.

V.2 Time evolution of the reduced phase-space densities
We now deduce from the Liouville equation (V.5) in �-space the equations of motion for the reduced
phase-space densities, first for a system of particles in the absence of vector potential (§ V.2.2), then
for charged particles in a external vector potential (§ V.2.3).

V.2.1 Description of the system
Consider identical pointlike particles of mass m, without internal degrees of freedom, whose

positions and canonical momenta will be denoted by ~ri and ~pi. For a system of N such particles,
the Liouville equation (II.10b) can be recast as

@⇢N
�
t, {~rj}, {~pj}

�

@t
+

NX

i=1

~̇ri · ~r~ri⇢N
�
t, {~rj}, {~pj}

�
+

NX

i=1

~̇pi · ~r~p
i
⇢N

�
t, {~rj}, {~pj}

�
= 0, (V.5a)

where ~r~ri , ~r~p
i
stand for the three-dimensional gradients whose coordinates are the derivatives with

respect to the canonical variables ~ri, ~pi. In turn, ~̇ri—i.e. the velocity ~vi of particle i—and ~̇pi denote
the time derivatives of the canonical variables. Invoking the Hamilton equations of motion (II.1)
and dropping the variables for brevity, the Liouville equation becomes

@⇢N
@t

+
NX

i=1

~r~p
i
HN · ~r~ri⇢N �

NX

i=1

~r~riHN · ~r~p
i
⇢N = 0 (V.5b)

with HN the Hamilton function of the system, which will be discussed later in this section.

In both this Chapter and the following we shall implicitly work in the “thermodynamic limit”
of infinitely many particles occupying an infinitely large volume, thereby allowing for an infinitely
large total energy of the system. As a result, the Cartesian components of both spatial and mo-
mentum variables can take values spanning the whole real axis from �1 to +1. Now, to ensure
its normalizability [Eq. (II.3)], the probability density ⇢N must vanish when any of the phase-space
variables goes to infinity: the partial differential equation (V.5a) is thus to be complemented with
the boundary conditions

lim
|~ri|!1

⇢N
�
t, {~rj}, {~pj}

�
= 0 and lim

|~p
i
|!1

⇢N
�
t, {~rj}, {~pj}

�
= 0 8i 2 {1, . . . , N}. (V.6)
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Accordingly, integrals of the type
Z

~r~ri⇢N
�
t, {~rj}, {~pj}

�
d3~ri resp.

Z
~r~p

i
⇢N

�
t, {~rj}, {~pj}

�
d3~pi (V.7)

over the whole allowed range for ~ri resp. ~pi identically vanish.

For the sake of completeness, let us briefly mention some of the necessary changes taking place if
the spatial volume V occupied by the system is not infinite—as is e.g. the case of a gas enclosed
in a fixed box. In short, the treatment becomes slightly more tedious.

First, the total number N of particles is then finite, and so is the total energy of the system. As
a result, the (kinetic) energy of an individual particle cannot be infinitely large, which means
that the range of allowed momentum values is finite: the behavior of ⇢N at the edges of the
momentum range is no longer obvious, although it is natural to assume that ⇢N vanishes.

Since the spatial volume is finite, the variables ~ri are also restricted to a finite range. It is
then necessary to specify the boundary conditions at these spatial edges (“walls”). A useful
choice is to assume that the boundaries behave like perfect mirrors for the particles, which are
thus reflected elastically according to the Snell(bq)–Descartes(br) law of reflection: this has the
advantage of ensuring the conservation of kinetic energy; however such a particle-wall collision
does not conserve (linear) momentum, which is unsatisfactory. The “proper” approach is then
to resort to a microscopic description of the walls themselves, which become part of the system
under study.

Let us now specify the Hamilton function HN of the system. For the sake of simplicity, we shall
assume that the particles can only interact with each other pairwise, i.e. we discard possible genuine
three-, four-, . . . , many-body interaction terms. These two-body interactions can be described in
terms of an interaction potential W ,(75) which will be assumed to depend on the inter-particle
distance only.

We also allow for the possible presence of external potentials acting on the particles. Here one
has to distinguish between two possibilities. Thus, a scalar potential V (t,~r)—e.g. electrostatic,
(Newtonian) gravitational, or a potential well enclosing particles in a specified volume—only con-
stitutes a minor modification, since it does not affect the canonical momentum ~pi conjugate to
position. In contrast, any vector potential ~A(t,~r) directly enters the canonical momentum, so that
we shall have to discuss the gauge invariance of the evolution equations for the reduced phase-space
densities.

In the absence of vector potential, the Hamilton function of the system is thus of the type

HN =
NX

i=1

~p 2

i

2m
+

NX

i=1

V (t,~ri) +
X

1i<jN

W
���~ri �~rj

���. (V.8)

For a system of electrically charged particles with charge q in an external electromagnetic field
described by scalar and vector potentials (�, ~A), the Hamiltonian reads

HN =
NX

i=1

⇥
~pi � q ~A(t,~ri)

⇤
2

2m
+

NX

i=1

q�(t,~ri) +
X

1i<jN

W
���~ri �~rj

���, (V.9)

where the energy corresponding to the scalar potential has been denoted by q� instead of V .

In the remainder of this Chapter, we shall use the shorthand notations Wij ⌘ W
���~ri �~rj

��� for
the interaction potential, as well as

~Fi ⌘ �~r~riV (~ri) (V.10a)

(75)More precisely, W
���~ri �~rj

��� is the interaction potential energy.
(bq)W. Snellius, 1580–1626 (br)R. Descartes, 1596–1650



V.2 Time evolution of the reduced phase-space densities 121

and
~Kij ⌘ �~r~riW

���~ri �~rj
��� (V.10b)

for the forces upon particle i due to the external potential V and to particle j 6= i, respectively. In
accordance with Newton’s third law,

~Kij = � ~Kji, (V.10c)
which follows from ~r~rjWij = �~r~riWij and the relabeling of particles.

Remarks:
⇤ The above forms of the Hamilton function implicitly assume that the forces at play in the system

are additive, as is always the case in Newtonian physics.

⇤ In the absence of interactions, the Hamilton function (V.8) clearly reduces to that of a classical
ideal gas.

V.2.2 System of neutral particles
In the absence of external vector potential, the equations of motion (II.1) resulting from the

Hamilton function (V.8) read

~̇ri = ~r~p
i
HN =

~pi
m
, ~̇pi = �~r~riHN = ~Fi +

X

j 6=i

~Kij (V.11)

for every particle i. The first equation simply states that linear momentum and canonical momentum
coincide, from where it follows that the second equation is Newton’s second law.

Accordingly, the Liouville equation (V.5) becomes

@⇢N
@t

+
NX

i=1

~vi · ~r~ri⇢N +
NX

i=1

~Fi ·
~r~p

i
⇢N +

NX

i=1

NX

j=1

j 6=i

~Kij ·
~r~p

i
⇢N = 0. (V.12)

::::::
V.2.2 a

:::::::::::::::::::
BBGKY hierarchy

The reduced k-particle phase density fk(t,~r1,~p1, . . . ,~rk,~pk) follows from the �-space probability
density ⇢N after integrating out the degrees of freedom of the remaining N � k particles. Similarly,
integrating the Liouville equation (V.12) over the positions and momenta ~rj , ~pj of N � k particles
gives the evolution equation obeyed by fk.

This integration is made simpler by the boundary conditions (V.6): since the velocity ~vi resp.
the force ~Fi is independent of ~ri resp. ~pi, it can be factored outside of the integralZ

~vi · ~r~ri⇢N d3~ri resp.
Z

~Fi ·
~r~p

i
⇢N d3~pi, (V.13)

leaving an integral of the type (V.7) that vanishes. Additionally, we shall assume that we are allowed
to exchange the integration and partial differentiation operations when needed.

Integrating the Liouville equation (V.12) over the positions and momenta of the N � 1 particles
labeled 2, 3, . . . , N and multiplying with the proper normalization factor ↵N,1 = 1/(2⇡~)3 yields
for the evolution of the single-particle density (V.1a) the equation

@f1(t,~r1,~p1)

@t
+~v1 · ~r~r1f1(t,~r1,~p1) +

~F1 ·
~r~p

1
f1(t,~r1,~p1)

+
NX

j=2

1

(2⇡~)3

Z
~K1j ·

~r~p
1
⇢N

�
t, {~ri}, {~pi}

�
d6(N�1)V (2, . . . , N) = 0,

where the notation d6(N�1)V (2, . . . , N) emphasizes the labels of the particles which are integrated
out. In the integral in the second line, it is convenient to write

d6(N�1)V (2, . . . , N) =
1

N � 1

d3~rj d3 ~pj
(2⇡~)3 d6(N�2)V (2, . . . , j�1, j+1, . . . , N)
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to isolate particle j from the N �2 particles i 6= j. The latter are then straightforwardly dealt with:
integrating over their phase-space coordinates yields, together with the factor 1/(2⇡~)6 = ↵N,2,
precisely the two-particle phase-space density f2(t,~r1,~p1,~rj ,~pj), i.e.

1

(2⇡~)3

Z
~K1j ·

~r~p
1
⇢N

�
t, {~ri}, {~pi}

�
d6(N�1)V (2, . . . , N) =

1

N�1

Z
~K1j ·

~r~p
1
f2(t,~r1,~p1,~rj ,~pj) d

3~rj d
3~pj .

Thanks to the indistinguishability of the particles, the remaining integral over d3~rj d3~pj is actually
independent of the value of the index j: the sum over j gives N � 1 times the same contribution,
which may be rewritten with the dummy integration variables ~r2,~p2, while the factor N � 1 cancels
that coming from the denominator of d6(N�1)V . All in all, one thus obtains

✓
@

@t
+~v1 · ~r~r1+

~F1 ·
~r~p

1

◆
f1(t,~r1,~p1) = �

Z
~K12 ·

~r~p
1
f2(t,~r1,~p1,~r2,~p2) d

3~r2 d
3~p2. (V.14a)

That is, the equation governing the evolution of the single-particle density f1 involves the two-
particle density f2.

By integrating out N�2 particles in the Liouville equation (V.12), one finds in a similar manner
the evolution equation for the dynamics of the reduced two-particle density(76)


@

@t
+~v1 ·~r~r1+~v2 ·~r~r2+

~F1 ·
~r~p

1
+ ~F2 ·

~r~p
2
+ ~K12 ·

�
~r~p

1
�~r~p

2

��
f2(t,~r1,~p1,~r2,~p2) =

�

Z �
~K13 ·

~r~p
1
+ ~K23 ·

~r~p
2

�
f3(t,~r1,~p1,~r2,~p2,~r3,~p3) d

3~r3 d
3~p3.

(V.14b)

In turn, the evolution equation for f2 involves the three-particle phase-space density f3.

The only trick in deriving this form of the evolution equation consists in using relation (V.10c)
to rewrite ~K21 ·

~r~p2
as � ~K12 ·

~r~p2
.

This generalizes to the equation of motion for the reduced k-particle density fk—obtained by
integrating out N � k particles in the Liouville equation (V.12)—, which is not closed, but depends
on the (k+1)-particle density fk+1 for 1  k < N :

"
@

@t
+

kX

j=1

⇣
~vk ·~r~rj +

~Fj ·
~r~p

j

⌘
+

X

1i<jk

~Kij ·
�
~r~p

i
�~r~p

j

�
#
fk(t,~r1,~p1, . . . ,~rk,~pk) =

�

Z kX

j=1

~Kj,k+1 ·
~r~p

j
fk+1(t,~r1,~p1, . . . ,~rk,~pk,~rk+1,~pk+1) d

3~rk+1 d
3~pk+1.

(V.14c)

The meaning of this equation is rather clear: The left-hand side describes the “free”, or stream-
ing evolution of fk, involving only the k particles under consideration—including their reciprocal
interactions. On the other hand, the right-hand side is a collision term describing the interaction
between any of these k particles and a partner among the group of the other, not measured particles.

Eventually, the N -particle phase-space density fN is simply ⇢N multiplied by a normalization
factor, so that the evolution equation for fN is closed, since it is the Liouville equation (V.12) itself

"
@

@t
+

NX

j=1

⇣
~vj · ~r~rj +

~Fj ·
~r~p

j

⌘
+

X

1i<jN

~Kij ·
�
~r~p

i
� ~r~p

j

�
#
fN (t,~r1,~p1, . . . ,~rN ,~pN ) = 0. (V.14d)

(76)Note that there is an erroneous factor of 1

2
in Eq. (3.60) of Ref. [54].
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Together, the coupled equations (V.14a)–(V.14d) constitute the so-called BBGKY hierarchy ,
where the initials stand for Bogolioubov(bs)–Born(bt)–Green(bu)–Kirkwood(bv)–Yvon(bw) (in alpha-
betical and reverse chronological order).

The system of equations (V.14) is exact, in the sense that it is strictly equivalent to the Liouville
equation for the probability density in �-space. Yet since the hierarchy involves all reduced densities,
and accordingly N equations, one loses the simplification aimed at when considering single-or two-
particle densities only. To recover some simplicity—and thereby be able to actually compute the
evolution of the system—, one has to choose a closure procedure, based on physical arguments,
which amounts to truncating the hierarchy at some level. This is most often done after Eq. (V.14a),
sometimes after Eq. (V.14b).

The most drastic closure prescription, which is discussed in § V.2.2 b below, consists in fully
neglecting interactions. A similar, yet physically richer, scheme is to keep Eq. (V.14a) intact, yet to
assume that the right-hand side of Eq. (V.14b) vanishes. Alternative procedures will be considered
in § V.2.3 b and in the next Chapter.

Remarks:
⇤ If the number of particles in the system is not fixed, i.e. in a grand-canonical description, there

is no upper bound to the hierarchy.

⇤ The generalization to a system consisting of several particle types, labeled a, b. . . , interacting
with each other over respective potentials W ab, is quite straightforward. One first needs to introduce
the reduced densities f b

k, f
b
k. . . , for having k particles of a given type in an infinitesimal k-particle

phase-space volume, as well as “mixed” densities fab...
kakb...

for having ka particles of type a, kb particles
of type b. . . within corresponding phase-space volume elements. These various densities—including
the mixed ones—then obey coupled equations similar to those of the hierarchy (V.14), with in
addition sums over the various particle types. For instance, the evolution equation for fa

1
involves

on its right-hand side not only fa
2
, but also all fab

1,1 involving the particles of type b 6= a which couple
to those of type a.

::::::
V.2.2 b

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
System of non-interacting neutral particles: single-particle Liouville equation

Consider first the case where the particles in the system are not interacting, i.e. when W vanishes
identically. The Hamilton function HN can then be expressed as the sum over the N particles of a
single-particle Hamiltonian h ⌘ ~p 2/2m+ V (t,~r).

Under these conditions, the various equations of the BBGKY hierarchy (V.14) decouple from
each other. For instance, the evolution equation (V.14a) for the dynamics of the single-particle
density f1 becomes the single-particle Liouville equation (or collisionless Boltzmann equation)

@f1(t,~r,~p)

@t
+~v · ~r~rf1(t,~r,~p) + ~F (t,~r) · ~r~pf1(t,~r,~p) = 0, (V.15)

with ~F = �~r~rV the external force acting on particles. The contribution
�
~v · ~r~r + ~F · ~r~p

�
f1—which

is actually the Poisson bracket in µ-space of f1(t,~r,~p) and the single-particle Hamilton function
h(~r,~p)—is often referred to as drift term.

The latter implicitly defines two time scales of the system, namely

⌧s ⇠
�
~v · ~r~r

��1
, ⌧e ⇠

�
~F · ~r~p

��1
. (V.16)

⌧s is the time for a particle to cross the typical distance over which the single-particle density f1 is
varying. As such, it is also the characteristic time scale for smoothing out spatial inhomogeneities
of the single-particle distribution.
(bs)N. N. Bogolioubov, 1909–1992 (bt)M. Born, 1882–1970 (bu)H. S. Green, 1920–1999 (bv)J. G. Kirkwood,
1907–1959 (bw)J. Yvon, 1903–1979
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In turn, ⌧e is the typical time associated with the gradient imposed by the external potential V .
It is thus also the characteristic time scale over which the system inhomogeneities will relax under
the influence of ~F to the equilibrium solution matching the external potential. ⌧e is generally larger
than ⌧s.

Remark: One sees at once that the other equations of the hierarchy involve the same two time
scales, and no further one. That is, any fk evolves with the same time scale as f1, which will no
longer be the case in the presence of interactions.

::::::
V.2.2 c

::::::::::::::::::::::::::::::::::::::::
Influence of inter-particle interactions

Let us now take into account the effect of interactions between particles, considering the first
equation (V.14a) of the BBGKY hierarchy with a non-vanishing right-hand side. On the other
hand, we assume that the right member of the second equation (V.14b) vanishes, i.e. we neglect the
influence of the three-particle density on the evolution of f2.

Inspecting the resulting evolution equations, one finds that there is a new time scale besides ⌧s
and ⌧e, set by the intensity of the pairwise interaction, namely

⌧c ⇠
�
~K · ~r~p

��1
. (V.17)

From the evolution equation for the two-particle density f2, the collision duration ⌧c appears as the
characteristic time scale over which collisions between two particles smooth out the differences in
their respective momentum distributions. ⌧c is actually the smallest time scale, much smaller than
⌧s and ⌧e.

As a result, the evolution of f2 is actually quicker than that of f1 in the non-interacting case, for
this quick time scale is absent from the single-particle Liouville equation (V.15). In turn, it means
that when particles are allowed to interact with each other, the pace for the evolution of f1 is not
set by its slow drift term, but by the fast collision term in the right-hand side.

Remark: One could then wonder whether the time scale for the evolution of f2 is not governed by
the collision term involving f3, which we are neglecting here. It can be checked that this is not the
case in the dilute regime in which only pairwise interactions are important.

In the derivation of the BBGKY hierarchy (V.14), we have from the start assumed that particles
only interact with each other in pairs. It is quite straightforward to see what would happen if we
also allowed for genuine interactions between three, four or more particles at once.

The effect of the latter is simply to add further contributions to the collision and drift terms of
the equations of motion. For instance, when allowing for three-particle interactions, the equation
governing the evolution of fk would not only involve fk+1, but also fk+2, corresponding to the case
where one particle among the k under consideration is interacting with two “outsiders”. Despite this
complication, one can still derive an exact hierarchy of equations.

::::::
V.2.2 d

::::::::::::::::::::::::::::::::::::::::::::::
BBGKY hierarchy in position-velocity space

Instead of characterizing a pointlike particle by a point in its µ-space, i.e. by its position and
canonical momentum, one sometimes rather makes use of a point in position-velocity space, i.e. one
specifies the positions and velocities of the particles.

In that representation, one can similarly introduce k-particle densities over a k-particle position-
velocity space, hereafter denoted as f~v,k, such that f~v,k(t,~r1,~v1, . . . ,~rk,~vk) d3~r1 d3~v1 · · · d3~rk d3~vk is
the number of particles in the infinitesimal volume element d3~r1 d3~v1 · · · d3~rk d3~vk around the point
(~r1,~v1, . . . ,~rk,~vk). The density f~v,k is related to the reduced phase-space density fk by the relation

f~v,k(t,~r1,~v1, . . . ,~rk,~vk) d
3~r1 d

3~v1 · · · d
3~rk d

3~vk = fk(t,~r1,~p1, . . . ,~rk,~pk) d
3~r1 d

3~p1 · · · d
3~rk d

3~pk.

(V.18)
In the case considered in this section of a system of particles in absence of an external vector

potential, the velocity ~v of a particle is simply proportional to its canonical momentum ~p, so that
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f~v,k is trivially proportional to fk and ~r~v to ~r~p. One checks at once that the position-velocity space
densities obey a similar BBGKY hierarchy as the phase-space densities, the only modification being
the substitutions of ~r~p

j
by by ~r~vj and ~̇pj by ~̇vj . For instance, the first equation of the hierarchy

reads
✓
@

@t
+~v1 · ~r~r1+

~F1

m
· ~r~v1

◆
f~v,1(t,~r1,~v1) = �

Z ~K12

m
· ~r~v1f~v,2(t,~r1,~v1,~r2,~v2) d

3~r2 d
3~v2. (V.19)

The real advantage of the formulation in position-velocity space is for the case, addressed in
next section, of a system of charged particles in the presence of an external vector potential.

V.2.3 System of charged particles
We now briefly introduce the subtleties that appear when the particles in the system are coupled

to an external vector potential, as is for instance the case of electrically charged particles in an
external (electro)magnetic field.

In this subsection, we shall exceptionally denote by ~⇡i the canonical momentum conjugate to
position ~ri, and the reduced phase-space densities by f~⇡,k.

::::::
V.2.3 a

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
Phase-space vs. position-velocity space description

The evolution equations of the BBGKY hierarchy (V.14) have been derived starting from the
Liouville equation on phase space, i.e. within the framework of a Hamiltonian formalism. A similar
approach can also be adopted in the presence of an external vector field ~A(t,~r). However, there
appear two complications, which can be traced back to the expression of the canonical momentum,
derived from the Hamilton equations following from the Hamilton function (V.9)

~̇ri =
~⇡i � q ~A(t, ~ri)

m
, (V.20a)

~̇⇡i = �q~r~r �(t,~ri) + q
�
~̇ri · ~r~r

�
~A(t, ~ri) + q~̇ri ⇥

h
~r~r ⇥

~A(t, ~ri)
i
+
X

j 6=i

~Kij , (V.20b)

where in the second equation we have made use of the first one.

• The time derivatives ~vi = ~̇ri and ~̇⇡i are no longer independent of ~ri or ~⇡i, respectively. As
a consequence, the integrals (V.13)—in which ~r~p

i
is to be replaced by ~r~⇡i

—are no longer
trivial. Yet by using the Hamilton equations, one can show at the cost of a few integration
by parts that the contributions of these integrals vanish, so that the evolution of the reduced
phase-space density f~⇡,k is eventually governed by an equation with the same structure as
Eq. (V.14c), although with different factors in front of the gradients.
For example, the collisionless evolution equation for the single-particle density f~⇡,1 is

@f~⇡,1(t,~r,~⇡)

@t
+~v · ~r~rf~⇡,1(t,~r,~⇡) + ~̇⇡ · ~r~⇡f~⇡,1(t,~r,~⇡) = 0, (V.21)

which differs from Eq. (V.15) because of the Hamilton equations (V.20).

• The second issue with the evolution equations for the reduced phase-space densities derived
within the Hamiltonian formalism is that they are not manifestly gauge invariant, which is
quite natural since the canonical momenta ~⇡i themselves are gauge-dependent, see Eq. (V.20).

To remedy the latter problem, it is convenient to consider the densities in position-velocity space,
instead of phase space. The resulting equations—which take the same form as in the absence of
vector potential—only involve gauge invariant quantities. For instance, the collisionless evolution
equation for the single-particle density f~v,1 is

@f~v,1(t,~r,~v)

@t
+~v · ~r~rf~v,1(t,~r,~v) +

~FL

m
· ~r~vf~v,1(t,~r,~v) = 0, (V.22)
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with ~FL = q( ~Eext+~v⇥ ~Bext) the Lorentz(bx) force due to external electromagnetic fields ( ~Eext, ~Bext).
This equation is exactly the same as Eq. (V.19) in the absence of collision term. One can check
that Eqs. (V.21) under consideration of Eq. (V.20) and Eq. (V.22) are actually equivalent.

Alternatively, one most often works in the space spanned by the positions ~ri and the linear
momenta ~pi = m~vi. The densities fk on that space obey exactly the same equations (V.14) as in
the case of neutral particles. This is obvious in case there is no vector potential—conjugate and
linear momenta ~⇡i and ~pi then coincide—and justifies our retaining the same notation as in § V.2.2
for the densities.

::::::
V.2.3 b

::::::::::::::::::
Vlasov equation

An important example of macroscopic system of electrically charged particles is that of a
plasma—where one actually has to consider two different types of particles, with positive and
negative charges respectively, to ensure the mechanical stability.

In that context, Vlasov(by) has introduced a closure prescription for the corresponding BBGKY
hierarchy, which consists in assuming that the two-particle density factorizes into the product of
single particle densities(77)

f2(t,~r1,~p1,~r2,~p2) ' f1(t,~r1,~p1) f1(t,~r2,~p2). (V.23)

Under this assumption, Eq. (V.19) becomes closed and can be rewritten as

@

@t
+~v1 · ~r~r1+

✓
~F1 +

Z
~K12f1(t,~r2,~p2) d

3~r2 d
3~p2

◆
· ~r~p

1

�
f1(t,~r1,~p1) = 0, (V.24)

with ~F1 = q
�
~Eext + ~v ⇥ ~Bext

�
the Lorentz force due to the external electromagnetic field. This

constitutes the Vlasov equation.
The integral inside the brackets can be viewed as an average force exerted by the partner particle

2 on particle 1. In the specific case of an electromagnetic plasma—assuming for simplicity that the
particles in the system have velocities much smaller than the speed of light, so that their mutual
interaction is mostly of Coulombic(bz) nature—this average force is that due to the mean electrostatic
field created by the other particles:


@

@t
+~v1 · ~r~r1+ q

�
~E 0 + ~Eext +~v ⇥ ~Bext

�
· ~r~p

1

�
f1(t,~r1,~p1) = 0

with
~E 0

⌘
1

q

Z
~K12f1(t,~r2,~p2) d

3~r2 d
3~p2.

The Vlasov assumption is thus an instance of mean-field approximation.

Remark: The Vlasov equation (V.24) is nonlinear, and thus non-trivial. In practice it must be
solved in a self-consistent way, since the mean field in which f1 evolves depends on f1 itself.

Bibliography for Chapter V
• Huang, Statistical Mechanics [54], chapter 3.5.

• Landau & Lifshitz, Course of theoretical physics. Vol. 10: Physical kinetics [5], chapter I § 16.

• Pottier, Nonequilibrium statistical physics [6], chapter 4.

(77)We do not write this hypothesis as an identity with an = sign to accommodate the possible mismatch between
the normalizations of f1 and f2.

(bx)H. A. Lorentz, 1853–1926 (by)A. A. Vlasov, 1908–1975 (bz)C. A. Coulomb, 1736–1806
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