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or equivalently

�̃(!) =
1

MkBT

Z 1

0

hF
L
(t)F

L
(t+ ⌧)i ei!⌧ d⌧. (IV.67b)

Equation (IV.67a) shows that the memory kernel for the friction term has the same characteristic
time scale ⌧c as the fluctuations of the Langevin force—hence the necessity of considering a finite
⌧c of the Langevin noise when allowing for retardation effects in the friction term.

IV.3.3 Caldeira–Leggett model
In this subsection, we introduce a simple microscopical model for the fluid in which the Brownian

particle is immersed, which leads to a friction force proportional to the velocity.

:::::::
IV.3.3 a

:::::::::::::::::::::::::::::::
Caldeira–Leggett Hamiltonian

Consider a “Brownian” particle of mass M , with position and momentum x(t) and p(t) respec-
tively, interacting with a “bath” of N mutually independent harmonic oscillators with respective
masses mj , positions xj(t) and momenta pj(t). The coupling between the particle and each of the
oscillators is assumed to be bilinear in their positions, with a coupling strength Cj . Additionally,
we also allow for the Brownian particle to be in a position-dependent potential V0(x).

Under these assumptions, the Hamilton function of the system consisting of the Brownian par-
ticle and the oscillators reads

H =
p2

2M
+ V0(x) +

NX

j=1
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2mj

+
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j=1

Cj xj x. (IV.68a)

It is convenient to rewrite the potential V0 as

V0(x) = V (x) +

 
NX

j=1

C2

j

2mj!2

j

!
x2,

where the second term in the right member clearly vanishes when the Brownian particle does not
couple to the oscillators. The Hamilton function (IV.68a) can then be recast as

H =
p2

2M
+ V (x) +
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. (IV.68b)

This Hamilton function—or its quantum-mechanical counterpart, which we shall meet again in
§ IV.4.1 c—is known as the Caldeira(bk)–Leggett (bl) Hamiltonian [50].

For a physical interpretation, it is interesting to rescale the characteristics of the bath oscillators,
performing the change of variables

mj ! m0
j =

mj

�2

j

, xj ! x0j = �jxj , pj ! p0j =
pj
�j

, j = 1, . . . , N

with �j ⌘
mj!2

j

Cj
dimensionless constants. The Hamiltonian (IV.68b) then becomes

H =
p2

2M
+ V (x) +

NX
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�
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#
, (IV.69)

i.e. the interaction term between the Brownian particle and each oscillator only depends on their
relative distance. The Caldeira–Leggett Hamiltonian can thus be interpreted as that of a particle
of mass m, moving in the potential V with (light) particles of masses m0

j attached to it by springs
of respective spring constants m0

j!
2

j [51].
(bk)A. Caldeira, born 1950 (bl)A. J. Leggett, born 1938

Nicolas Borghini
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Coming back to the form (IV.68b) of the Hamilton function, the corresponding equations of
motion, derived from the Hamilton equations (II.1), read

dx(t)

dt
=

1

M
p(t),

dp(t)

dt
=

NX

j=1

Cj


xj(t)�

Cj

mj!2

j

x(t)

�
�

dV
�
x(t)

�

dx
, (IV.70a)

dxj(t)

dt
=

1

M
pj(t),

dpj(t)

dt
= �m!2

jxj(t) + Cjx(t), (IV.70b)

which can naturally be recast as second-order differential equations for the positions x(t), xj(t).

:::::::
IV.3.3 b

::::::::::::::
Free particle

Let us now assume that the Brownian particle is “free”, in the sense that the potential V in the
Hamiltonian (IV.68b) vanishes, V (x) = 0. In that case, the last term on the right-hand side of
second equation of motion for the Brownian particle, Eq. (IV.70a), vanishes.

Integrating formally the equations of motion (IV.70b) for each oscillator between an initial time
t0 and time t, one obtains

xj(t) = xj(t0) cos!j(t� t0) +
pj(t0)

mj!j
sin!j(t� t0) + Cj

Z t

t0

x(t0)
sin!j(t� t0)

mj!j
dt0.

Performing an integration by parts and rearranging the terms, one finds

xj(t)�
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mj!2

j

x(t) =
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Z t
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M
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mj!2

j

dt0.

This can then be inserted in the right member of the second equation of motion in Eq. (IV.70a).
Combining with the first equation of motion giving p(t) in function of dx(t)/dt, one obtains
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(IV.71)
Introducing the quantities

�(t) ⌘
1

M

NX

j=1
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j

mj!2

j

cos!jt (IV.72a)

and

F
L
(t) ⌘

NX

j=1

Cj


xj(t0) cos!j(t� t0) +

pj(t0)

mj!j
sin!j(t� t0)

�
, (IV.72b)

which both only involve characteristics of the bath, Eq. (IV.71) becomes

M
d2x(t)

dt2
+M

Z t

t0

�(t� t0)
dx(t0)

dt
dt0 = �M�(t� t0)x(t0) + F

L
(t). (IV.72c)

This evolution equation for the position—or equivalently the velocity, since x(t0) in the right-
hand side is only a number—of the Brownian particle is exact, and follows from the Hamiltonian
equations of motion without any approximation. It is obviously very reminiscent of the generalized
Langevin equation (IV.61a), up to a few points, namely the lower bound of the integral, the term
�M�(t � t0)x(t0), and the question whether F

L
(t) as defined by relation (IV.72b) is a Langevin

force.
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The first two differences between Eq. (IV.61a) and Eq. (IV.72c), rewritten in terms of the
velocity, are easily dealt with, by sending the arbitrary initial time t0 to �1: anticipating on
what we shall find below, the memory kernel �(t) vanishes at infinity for the usual choices for the
distribution of the bath oscillator frequencies, which suppresses the contribution �M�(t� t0)x(t0).

In turn, the characteristics of the force F
L
(t), Eq. (IV.72b), depend on the initial positions and

momenta {xj(t0), pj(t0)} of the bath oscillators at time t0. Strictly speaking, if the latter are exactly
known, then F

L
(t) is a deterministic force, rather than a fluctuating one. When the number N of

oscillators becomes large, the deterministic character of the force becomes elusive, since in practice
one cannot know the variables {xj(t0), pj(t0)} with infinite accuracy (see the discussion in Sec. II.1).
In practice, it is then more fruitful to consider the phase-space density ⇢N

�
t0, {qj}, {pj}

�
, Eq. (II.3).

Assuming that at t0 the bath oscillators are in thermal equilibrium at temperature T , ⇢N at that
instant is given by the canonical distribution

⇢N
�
t0, {qj}, {pj}

�
=
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ZN (T )
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Computing average values with this Gaussian distribution,(69) one finds that the force F
L
(t) as given

by Eq. (IV.72b) is a stationary Gaussian random process, with vanishing average value hF
L
(t)i = 0

and the autocorrelation function

hF
L
(t)F

L
(t+ ⌧)i = MkBT�(⌧).

That is, F
L
(t) has the properties of a Langevin force as discussed in § IV.1.1 b.

Remark: For V (x) = 0, the Hamilton function (IV.69) is invariant under global translations of all
(Brownian and light) particles, since it only depends on relative distances. As a consequence, the
corresponding total momentum p+

P
j p

0
j is conserved.

:::::::
IV.3.3 c

::::::::::::::::::::::::::::::::::::
Limiting case of a continuous bath

As long as the number N of bath oscillators is finite, the Caldeira–Leggett Hamiltonian (IV.68b)
with V (x) = 0 [or with a harmonic potential V (x) / x2] strictly speaking leads to a periodic
dynamical evolution. As thus, it cannot provide an underlying microscopic model for Brownian
motion.(70) The latter can however emerge if one considers the limit of an infinite number of bath
degrees of freedom,(71) in particular if the oscillator frequencies span a continuous interval.

To provide an appropriate description for both finite- and infinite-N cases, it is convenient to
introduce the spectral density of the coupling to the bath

J(!) ⌘
⇡

2

X

j

C2

j

mj!j
�(! � !j). (IV.73)

With its help, the memory kernel (IV.72a) can be recast as

�(t) =
2

⇡

Z
J(!)

M!
cos!t d!. (IV.74)

(69)As noted in the remark at the end of § IV.1.1 b, this is indeed the meaning of expectation values in this chapter,
since we are averaging over all microscopic configurations {xj(t0), pj(t0)} compatible with a given macroscopic
temperature.

(70)... valid on any time scale. Physically, if N � 1, the Poincaré(bm)recurrence time of the system will in general be
very large. On a time scale much smaller than this recurrence time, the periodicity of the problem can be ignored,
and the dynamics is well described by the generalized Langevin model.

(71)The frequencies of the bath oscillators should not stand in simple relation to each other—as for instance if they
were all multiples of a single frequency.

(bm)H. Poincaré, 1854–1912
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If N is finite, then J(!) is a discrete sum of �-distributions. Let " denote the typical spacing
between two successive frequencies !j of the bath oscillators. For evolutions on time scales much
smaller than 1/", the discreteness of the set of frequencies may be ignored.(70) Consider the contin-
uous function Jc(!), such that on every interval I! ⌘ [!,! + d!] of width d! � ", with d! small
enough that Jc(!) does not vary significantly over I!, one has

Jc(!) d! =
X

!j2I!

⇡

2

C2

j

mj!j
. (IV.75)

One can then replace J(!) by Jc(!), for instance in Eq. (IV.74), which amounts to considering a
continuous spectrum of bath frequencies.

The simplest possible choice for Jc(!) consists in assuming that it is proportional to the frequency
for positive values of !. To be more realistic, one also introduces an upper cutoff frequency !c,
above which Jc vanishes:

Jc(!) =
nM�! for 0  !  !c,

0 otherwise.
(IV.76)

This choice leads at once with Eq. (IV.74) to �(t) = 2��!c
(t), where

�!c
(t) =

1

⇡

sin!ct

t
(IV.77)

is a function that tends to �(t) as !c ! +1 and only takes significant values on a range of typical
width !�1

c around t = 0. !�1
c is thus the characteristic time scale of the memory kernel �(t).

Remarks:
⇤ In the limit !c ! +1, i.e. of an instantaneous memory kernel �(t) = 2��(t), the evolution

equation (IV.72c) reduces to the Langevin equation [cf. (IV.1)] Mẍ(t) +M�ẋ(t) = F
L
(t). As this

is also the equation governing the electric charge in a RL circuit, the choice Jc(!) / ! at low
frequencies is referred to as “ohmic bath”. In turn, a harmonic bath characterized by Jc(!) / !⌘

with ⌘ < 1 (resp. ⌘ > 1) is referred to as sub-ohmic (resp. super-ohmic).(72)

⇤ Instead of a step function ⇥(!c�!) as in Eq. (IV.76), one may also use a smoother cutoff function
to handle the ultraviolet modes in the bath, without affecting the physical results significantly.

IV.4 Quantum Brownian motion
In this section, we investigate a system consisting of a “heavy” particle interacting with a bath
of many lighter particles at thermodynamic equilibrium—which provides a quantum-mechanical
analogue to the problem of Brownian motion. We first introduce in § IV.4.1 a rather general
Hamilton operator for such a system, and investigate in § IV.4.1 a some of the properties of the
spectral functions relating the velocity and position of the heavy particle that follow from the
symmetries of the Hamiltonian. We then exemplify how the general sum rules derived in § III.3.6
constrain the spectral function—and in particular show that Langevin dynamics based on Eq. (IV.1)
cannot constitute the classical limit of such a model (§ IV.4.1 b). Eventually we focus on the
case of the Caldeira–Leggett Hamiltonian already introduced in § IV.3.3, considered now at the
quantum-mechanical level, and show that it describes a “quantum dissipative system” governed by
a generalized Langevin equation (§ IV.4.1 c).

IV.4.1 Description of the system
Consider a heavy particle of mass M interacting with a “bath” of (many) identical light particles

of mass m. For the sake of simplicity, we assume that the various particles only interact by pairs—be
(72)See Ref. [52] for a study in the non-ohmic case.
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it for the heavy–light or light–light interactions—with potentials that depend only on the distance
between the particles.

The Hamiltonian of the system thus reads

Ĥ0 =
~̂p 2

2M
+
X

j

~̂p 2

j

2m
+
X

j 6=k

w
���~̂rj � ~̂rk

���+
X

j

W
���~̂r � ~̂rj

���, (IV.78)

with ~̂p, ~̂r the momentum and position of the heavy particle and ~̂pj , ~̂rj those of the j-th particle of the
bath, while w, W denote the interaction potentials for light–light and heavy–light pairs, respectively.
In § IV.4.1 c, we shall consider the special case in which w and W are harmonic potentials.

Let x̂, ŷ, ẑ denote the components of ~̂r in a given, fixed Cartesian coordinate system, and p̂x,
p̂y, p̂z the corresponding coordinates of momentum. Using definition (III.49), one can define the
operators ˆ̇x, ˆ̇y. . . , which using the Hamiltonian (IV.78) and the usual commutation relations are
given by

ˆ̇x ⌘
1

i~
⇥
x̂, Ĥ0

⇤
=

p̂x
M

= v̂x, (IV.79)

and similarly in the other two space directions, where v̂x, v̂y, v̂z are the components of the velocity
of the heavy particle.

We investigate the effect of applying an external force, for instance along the x-direction, amount-
ing to a perturbation of the Hamiltonian Ŵ = �f(t)x̂. The “output” consists of any component
v̂i of the heavy-particle velocity. Throughout this section, we shall omit the index I denoting the
interaction-picture representation of observables, yet any time-dependent operator is to be under-
stood as being in that representation.

:::::::
IV.4.1 a

:::::::::::::::::::::::::::::::::::::::::::::::::
Constraints from the symmetries of the system

The Hamilton operator (IV.78) is invariant under several transformations. From the invariance
under spatial and temporal translations follow as usual the conservation of the total momentum and
of energy. Yet in the spirit of § III.3.5 we also want to discuss the consequences of the invariance
under several discrete symmetries for the time correlation functions of the system.

Consequence of spatial symmetries
We first want to show that correlation functions of the type ⇠vyx(t)—describing the effect on v̂y

of a force acting along the x-direction—all identically vanish.
For that purpose, consider the reflection with respect to the xz-plane, which is described by a

unitary operator Ŝ y. This symmetry operation leaves the Hamiltonian Ĥ0, and thus the equilibrium
density operator ⇢̂eq., invariant:

Ŝ yĤ0Ŝ †
y = Ĥ0 , Ŝ y⇢̂eq.Ŝ †

y = ⇢̂eq.. (IV.80a)

The reflection also leaves x̂ invariant, yet it transforms v̂y into �v̂y:

Ŝ y x̂Ŝ †
y = x̂ , Ŝ y v̂yŜ †

y = �v̂y. (IV.80b)

Eventually, since the operator Ŝ y is unitary, it transforms the eigenstates { |�ni} of Ĥ0 into a set
of states { |Ŝ y�ni ⌘ Ŝ y |�ni} which form an orthonormal basis.
We can now compute the equilibrium expectation value hv̂y(t)x̂ieq.:
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⇤
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↵
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⌦
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y Ŝ yv̂y(t)Ŝ †
y Ŝ yx̂Ŝ †
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���n
↵
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X
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⌦
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���⇢̂eq.
��
�v̂y(t)

��
x̂)
��Ŝ y�n

↵
= �

X

n

⌦
Ŝ y�n

��⇢̂eq.̂vy(t)x̂
��Ŝ y�n

↵
.

Since the { |Ŝ y�ni} constitute an orthonormal basis, the last term is exactly the opposite of the
trace of ⇢̂eq.̂vy(t)x̂, i.e. equals �hv̂y(t)x̂ieq.. That is,
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hv̂y(t)x̂ieq. = �hv̂y(t)x̂ieq. = 0,

from which one at once deduces
⇠vyx(t) = �⇠vyx(t) = 0. (IV.81)

One shows in a similar way that only ⇠vxx, ⇠vyy and ⇠vzz are non-zero.
Using the invariance of the Hamiltonian (IV.78) under arbitrary rotations, one can show that

these three correlation functions are equal. This allows one to replace the problem of Brownian
motion in three dimensions by three identical one-dimensional problems, as was done from the start
in Chapter IV.

Invariance under time reversal
The Hamiltonian (IV.78) is clearly invariant under time reversal. Using Eq. (III.74), the reci-

procity relation (III.77) then reads
⇠̃vxx(!) = �⇠̃xvx(!). (IV.82)

Together with Eq. (III.54c), this shows that ⇠̃vxx(!) is purely imaginary and even in !.

Considering now relation (III.79), one similarly finds

�̃vxx(!) = ��̃xvx(!).

Inserting this identity in Eq. (III.57), one finds

⇠̃vxx(!) =
1

2i

⇥
�̃vxx(!)� �̃xvx(!)

⇤⇤ = 1

2i

⇥
�̃vxx(!) + �̃vxx(!)

⇤⇤ = �i Re �̃vxx(!). (IV.83)

Eventually, one can relate the spectral function ⇠̃vxx(!) for velocity–position correlations to the
spectral function ⇠̃xx(!) associated with position–position correlations, by Fourier transforming the
identity

⇠vxx(t) =
1

2~

⌧
dx̂(t)

dt
, x̂

��

eq.

=
1

2~
d

dt

⌦⇥
x̂(t), x̂

⇤↵
eq.

=
d⇠xx(t)

dt
,

which gives
⇠̃vxx(!) = �i!⇠̃xx(!), (IV.84)

which shows that ⇠̃xx(!) is real and odd.

:::::::
IV.4.1 b

:::::::::::::::::::::::::::::::::::::::::::::::::
Fluctuation–dissipation theorem and sum rules

Thanks to relation (IV.79), the first fluctuation–dissipation theorem (III.65) with Â = x̂ and
B̂ = v̂x reads

�̃vxx(!) =
1

kBT

Z 1

0

Kvxvx(t) e
i!t dt. (IV.85)

This identity represents the quantum-mechanical generalization of relation (IV.40), which had
been derived in a classical context, in which the Langevin equation is postulated phenomenologically,
and in the equilibrium regime t � ⌧c—which implicitly requires the separation of scales ⌧c ⌧ ⌧r.

Sum rules
To obtain a first sum rule, consider Eqs. (III.81)–(III.82) with Â = x̂, B̂ = v̂x and k = l = 0.

This gives
1

~
⌦⇥
v̂x, x̂

⇤↵
eq.

=
1

⇡

Z 1

�1
⇠̃vxx(!) d! = �i�Kvxvx(0). (IV.86a)

Using v̂x = p̂x/M and the usual commutator
⇥
x̂, p̂x

⇤
= i~, the left member of this equation is easily

computed. The first identity then reads
Z 1

�1
⇠̃vxx(!) d! = �

i⇡

M
, (IV.86b)

which shows that that the integral of the spectral function is fixed. In turn, the identity between
the first and third terms in the sum rule (IV.86a) gives
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1

2
MKvxvx(0) =

1

2
kBT, (IV.86c)

which in the classical limit Kvxvx(0) !
~!0

hv2xi is the equipartition theorem.

Taking now k = 0, l = 1, the sum rules (III.81)–(III.82) read

1

~2
Dh

v̂x,
⇥
x̂, Ĥ0

⇤iE

eq.
= �

1

⇡

Z 1

�1
! ⇠̃vxx(!) d! = �Kv̇xvx(0), (IV.87)

where in the rightmost term the canonical correlation function correlates the acceleration ˆ̇vx to the
velocity v̂x.

The Hamiltonian (IV.78) yields the commutation relation
⇥
x̂, Ĥ0

⇤
= i~p̂x/M = i~v̂x, so that the

left member of Eq. (IV.87) equals zero. This means that the first moment of the spectral function
vanishes—which was clear since ⇠̃vxx(!) is an even function. It also implies that the acceleration and
the velocity at the same instant are not correlated, which is also a normal property for a stationary
physical quantity and its time derivative.

Consider eventually the sum rule obtained when k = l = 1 and again Â = x̂, B̂ = v̂x. In that
case, Eqs. (III.81) and (III.82) yield

1

~3
Dh⇥
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⇤
,
⇥
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⇤iE
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!2 ⇠̃vxx(!) d! = i�Kv̇xv̇x(0). (IV.88a)

That is, the sum rule involves the second moment of the spectral function ⇠̃vxx(!) and the canonical
autocorrelation function of the acceleration ˆ̇vx computed at equal times.

To compute the commutator on the left-hand side, one can first replace v̂x by p̂x/M and use as
above

⇥
x̂, Ĥ0

⇤
= i~p̂x/M , which gives
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this becomes
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Replacing again the commutator
⇥
p̂x, ·

⇤
by �i~ @

@x̂
, one eventually obtains
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Invoking the invariance of the Hamiltonian (IV.78) under rotations, the second derivative with
respect to x equals one third of the Laplacian, which all in all gives

1

3M2

D
4V

�
~̂r
�E

eq.
=

i

⇡

Z 1

�1
!2 ⇠̃vxx(!) d! = �Kv̇xv̇x(0). (IV.88b)

This sum rule relates the potential in which the heavy particle is evolving, the second moment of
the spectral function ⇠̃vxx(!) and the autocorrelation of the heavy-particle acceleration.
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Comparison with the correlation functions of the Langevin model
The Langevin model investigated in Sec. IV.1 provides a classical, phenomenological description

of the motion of a heavy particle, whose mass will hereafter be denoted as M , interacting with light
particles. In particular, we studied in § IV.1.6 the time evolution of the heavy-particle velocity,
averaged over many realizations of the motion, when the particle is submitted to an external force
Fext.(t).

Now, the latter actually couples to the position x of the Brownian particle: the change in energy
caused by the external force for a displacement �x is simply the mechanical work Fext.�x.(73) Thus,
the complex admittance characterizing the (linear!) response of the average velocity hvxi to Fext. is,
in the language of the present chapter, the generalized susceptibility �vxx. Equation (IV.39b) can
therefore be rewritten as

�̃vxx(!) =
1

M

1

� � i!
. (IV.89)

According to relation (IV.83), this amounts to a spectral function

⇠̃vxx(!) = �
i

M

�

!2 + �2
. (IV.90)

One then easily checks that this phenomenological spectral function is purely imaginary and even
[reciprocal relation (IV.82)] and that it fulfills the lowest-order sum rule (IV.86b). On the other
hand, the second moment, as well as all higher moments, of ⇠̃vxx(!) diverges, so that the sum
rule (IV.88b) cannot be satisfied.

This shows that the phenomenological Langevin equation (IV.1) does not describe the correct
behavior at large frequencies, i.e. at short times. As already suggested in Sec. IV.3, this is due to
the instantaneity of the friction force, which is simply proportional to the velocity at the same time.

:::::::
IV.4.1 c

:::::::::::::::::::::::::
Caldeira–Leggett model

In the previous paragraph, we have seen that the phenomenological Langevin model for the
motion of a Brownian particle submitted to an external force yields correlation functions which do
not fulfill the sum rules of linear-response theory. This means that the model can actually not be
the macroscopic manifestation of an underlying microscopic dynamical model.(74)

From § IV.3.3, we already know that a classical heavy particle interacting with a bath of clas-
sical independent harmonic oscillators—which constitutes a special case of the model introduced
in § IV.4.1—actually obeys a generalized Langevin equation when the bath degrees of freedom are
integrated out. Here we want to consider this model again, now in the quantum-mechanical case.

Since the dynamics along different directions decouple, we restrict the study to a one-dimensional
system, whose Hamilton operator is given by [cf. Eq. (IV.68b)]

Ĥ0 =
p̂2

2M
+

NX

j=1

"
p̂2j
2mj

+
1

2
mj!

2

j

✓
x̂j �

Cj

mj!2

j

x̂

◆
2
#
. (IV.91)

x̂, p̂, M are the position, momentum and mass of the heavy particle, while x̂j , p̂j and mj denote
those of the harmonic oscillators, with resonant frequencies !j , with which the particle interacts.

Equations of motion
The Heisenberg equation (II.37) for the position and momentum of the heavy particle read

(73)This seemingly contrived formulation is used to avoid invoking some Hamilton function for the Langevin model,
and its perturbation by the external force.

(74)More precisely, the Langevin equation cannot emerge as macroscopic limit valid on arbitrary time scales—or
equivalently for all frequencies—of an underlying microscopic theory, although it might constitute an excellent
approximation in a limited time / frequency range.
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dx̂(t)

dt
=

1

i~
⇥
x̂(t), Ĥ0

⇤
=

1

M
p̂(t), (IV.92a)

dp̂(t)

dt
=

1

i~
⇥
p̂(t), Ĥ0

⇤
=

NX

j=1

Cj x̂j(t)�

 
NX

j=1

C2

j

mj!2

j

!
x̂(t). (IV.92b)

These equations are sometimes referred to as Heisenberg–Langevin equations .
The first term on the right hand side of the evolution equation for the momentum only depends

on the bath degrees of freedom. Introducing the ladder operators âj(t), â†j(t) of the bath oscillators,
it can be rewritten as

R̂(t) ⌘
NX

j=1

Cj x̂j(t) =
NX

j=1

Cj

s
~

2mj!j

h
âj(t) + â†j(t)

i
. (IV.93)

The Heisenberg equation

dâj(t)

dt
=

1

i~
⇥
âj(t), Ĥ0

⇤
= �i!j âj(t) + i

Cjp
2~mj!j

x̂(t)

obeyed by the annihilation operator for the j-th oscillator admits the solution

âj(t) = âj(t0) e
�i!j(t�t0) + i

Cjp
2~mj!j

Z t

t0

x̂(t0) e�i!j(t�t0) dt0,

with t0 an arbitrary initial time. Inserting this expression and its adjoint in Eq. (IV.93), the
evolution equation (IV.92b) becomes

dp̂(t)

dt
=

NX

j=1

C2

j

2mj!j


i

Z t

t0

x̂(t0) e�i!j(t�t0) dt0 + h.c.

�
+ F̂

L
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j

mj!2

j

!
x̂(t), (IV.94a)

where the operator F̂
L
(t) is defined as

F̂
L
(t) ⌘

NX

j=1

Cj

s
~

2mj!j

h
âj(t0) e

�i!j(t�t0) + â†j(t0) e
i!j(t�t0)

i
. (IV.94b)

This operator corresponds to a Langevin force, which only depends on freely evolving operators of
the bath.(75) In turn, the first term on the right-hand side of Eq. (IV.94a) describes a retarded
friction force exerted on the heavy particle by the bath, and due to the perturbation of the latter
by the former at earlier times.

Limiting case of a continuous bath
Introducing as in § IV.3.3 c the spectral density of the coupling to the bath

J(!) ⌘
⇡

2

X

j

C2

j

mj!j
�(! � !j), (IV.95)

and its continuous approximation Jc(!) [cf. Eq. (IV.75)] the retarded force in Eq. (IV.94a) becomes
NX
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Z t
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x̂(t0) e�i!(t�t0) dt0 + h.c.

�
d!, (IV.96)

while the third term in that same equation can be rewritten as
(75)One easily checks in a basis of energy eigenstates hâj(t0)ieq. = hâ†

j
(t0)ieq. = 0 for all bath oscillators, which results

in hF̂L(t)ieq. = 0.
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With a trivial change of integration variable from t0 to ⌧ = t�t0 and some rewriting, the retarded
force (IV.96) becomes after exchanging the order of integrations

1
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Introducing the “memory kernel” [cf. Eq. (IV.74)]

�(⌧) ⌘
2

⇡

Z
Jc(!)

M!
cos!⌧ d! (IV.98)

and performing an integration by parts, in which the equation of motion (IV.92a) allows us to
replace the time derivative of x̂(t) by p̂(t)/M , the friction force becomes

�M

Z t�t0

0

x̂(t� ⌧) �0(⌧) d⌧ = M
h
�(0)x̂(t)� �(t� t0)x̂(t0)

i
�

Z t�t0

0

p̂(t� ⌧) �(⌧) d⌧.

In many simple cases, corresponding to oscillator baths with a “short memory”, the kernel �(⌧)
only takes significant values in a limit range of size !�1

c around ⌧ = 0. As soon as |t�t0| � !�1
c , the

term �(t� t0) in the above equation then becomes negligible, while the upper limit of the integral
can be sent to +1 without affecting the result significantly. Deducing �(0) from Eq. (IV.98), the
friction force (IV.96) reads
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The first term on the right hand side is exactly the negative of Eq. (IV.97): putting everything
together, the evolution equation (IV.94a) takes the simple form of a generalized Langevin equation

dp̂(t)

dt
= �

Z 1

0

p̂(t� ⌧) �(⌧) d⌧ + F̂
L
(t). (IV.99)

Dividing this equation by M , one obtains a similar evolution equation for the velocity operator v̂(t).

Generalized susceptibility
Let us add to the Hamiltonian (IV.91) a perturbation Ŵ = �Fext.(t)x̂(t) coupling to the position

of the Brownian particle. One easily checks that this perturbation amounts to adding an extra term
Fext.(t)1̂ on the right-hand side of Eq. (IV.99). Dividing the resulting equation by M , taking the
average, and Fourier transforming, one obtains the generalized susceptibility [cf. Eq. (IV.62)]

�̃vx(!) =
1

M

1

�̃(!)� i!
, (IV.100a)

where �̃(!) is given by
�̃(!) =

Z
�(t)⇥(t) ei!t dt. (IV.100b)

The Caldeira–Leggett Hamiltonian (IV.91) is invariant under time reversal. As already seen in
§ (IV.4.1 a), this leads to the proportionality between the spectral function ⇠̃vx(!) and the real part
of the generalized susceptibility �̃vx(!):

⇠̃vx(!) = �
i

M

Re �̃(!)

|�̃(!)� i!|2
.

If �̃(!) decreases quickly enough as |!| goes to 1—which depends on the specific behavior of Jc(!)
at infinity, see Eq. (IV.98)—, the spectral function ⇠̃vx(!) can have moments to all orders, which
can then obey the sum rules (III.81).
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