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Remark: More generally, the identity
Z

�

g⇤({qa}, {pa})Lh({qa}, {pa}) d
6NV =

Z

�

(Lg)⇤({qa}, {pa})h({q
a
}, {pa}) d

6NV ,

holds for every pair of phase-space functions g({qa}, {pa}) and h({qa}, {pa}) that vanish sufficiently
rapidly at infinity, where f⇤ denotes the complex conjugate function to f . Recognizing in the phase-
space integral of g⇤h an inner product hg, hi, the above identity can be recast as hg,Lhi = hLg, hi,
which expresses the fact that the Liouville operator is Hermitian for the inner product. In turn, the
operators e±itL , which govern the evolution of the density ⇢N or of observables ON (t), are unitary
for this product, i.e. hg, e�itLhi = heitLg, hi or equivalently:

Z

�

g({qa}, {pa}) e
�itLh({qa}, {pa}) d

6NV =

Z

�

h
eitLg({qa}, {pa})

i
h({qa}, {pa}) d

6NV . (II.20)

II.2.5 Fluctuating number of particles
Until now, we have assumed that the particle number N is exactly known. It is however often

not the case, so that N also becomes a random variable, with a discrete probability distribution.
The formalism can easily be generalized to accommodate for this possibility. The new phase

space � is the union—to be precise, the direct sum—of the individual N -particle phase spaces �6N
(see first Remark in § II.2.1 a) for every acceptable value of N , i.e. for N 2 N.(30) The probability
density ⇢ on this phase space consists of (the tensor product of) densities ⇢̃N proportional to the
respective N -particle densities ⇢N , yet normalized so that

⇡N =

Z
⇢̃N (t, {qa}, {pa}) d

6NV

represents the probability to have N particles in the system at time t.

An observable O is also defined as a tensor product of functions ON on each N -particle phase
space, with the expectation value

hO(t)it =
1X

N=0

Z
ON ({qa}, {pa}) ⇢̃N (t, {qa}, {pa}) d

6NV .

II.3 Probabilistic description of quantum mechanical systems
In this section, we first recall in § II.3.1 the basics of the density-operator formalism for the descrip-
tion of quantum systems with a large number of degrees of freedom—which for brevity will often
be referred to as “macroscopic systems”. We then discuss the time evolution of the density operator
(§ II.3.2) as well as that of the expectation values of observables of the system (§ II.3.3). Eventually,
we consider the case in which the Hamilton operator governing the evolution of the system can be
split into two terms, namely a time-independent one and a time-dependent “perturbation” that is
switched on at some initial instant (§ II.3.4).

II.3.1 Randomness in quantum mechanical systems
Unlike classical physics, whose predictions for the outcome of measurements are deterministic

when the (micro)state of a system is known, quantum mechanics already involves probabilities for
predictions on “exactly” prepared systems, described as pure states. Accordingly, there are two
(30)The case N = 0 has to be considered as well, corresponding here to a 0-dimensional phase space reduced to a

single point.

Nicolas Borghini
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levels of randomness when describing a quantum-mechanical system with many degrees of freedom:
that arising at the pure-state level, and that due to the incomplete knowledge of the microstate.

::::::
II.3.1 a

:::::::::::::::::::::::::::::
Randomness in pure states

In the “classical” formalism of quantum mechanics, the state of a system—if it is exactly known,
in which case it is referred to as a pure state—is described by a normalized vector | i of a Hilbert(aa)

space H . In turn, observables are modeled by Hermitian operators Ô(t) on H .
Conceptually, a pure state of a quantum-mechanical system is entirely determined by the re-

sults of measurements of quantities associated with the operators of a complete set of commuting
observables, where the latter are Hermitian linear operators on the system Hilbert space H .

As is well known, the result of a measurement performed on a pure state | i might already be
a random variable, in case | i is not an eigenstate of the observable Ô associated to the measured
quantity. In that case, repeated measurements will give the expectation value of the observable
according to

hÔi ⌘
h | Ô | i

h | i
. (II.21)

One can similarly express the variance �2

O of the outcome of the measurements, which is given by
h(Ô � hÔi)2i .

::::::
II.3.1 b

:::::::::::::::::::::::::::::::
Randomness in mixed states

In realistic cases, the microstate | i of a macroscopic system is not exactly determined. Instead,
one only knows that the system can be with probability p1 in microstate | 1i, with probability
p2 in another microstate | 2i, and so on, where the states | 1i, . . . , | mi, . . . are not necessarily
orthogonal, while the probabilities p1, . . . , pm, . . . satisfy

pm � 0 8m and
X

m

pm = 1.

One then speaks of a statistical ensemble or statistical mixture of states, or in short—and somewhat
misleadingly—of a mixed state. To simplify notations,(31) we assume that the states {| mi} are
normalized to unity, i.e. h m | mi = 1 for all m.

Remark: A mixed state should not be confused with a linear combination of states. In the latter
case, the system is still in a pure state, corresponding to a single vector of the Hilbert space.

The expectation value of an observable for a system in a mixed state is the weighted sum of the
expectation values in the pure states:

hÔi =
X

m

pmh m| Ô | mi. (II.22a)

To express such expectation values in a convenient way, one introduces the density operator
(also called statistical operator or density matrix )(32)

⇢̂ =
X

m

pm | mih m| . (II.22b)

One then has the identity
hÔi = Tr

�
⇢̂ Ô

�
, (II.22c)

where Tr denotes the trace of an operator.
(31)Otherwise, one needs to divide by h m | mi in Eqs. (II.22a) and (II.22b).
(32)See e.g. Refs. [27] chapter EIII or [3] § 5.

(aa)D. Hilbert, 1862–1943
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Using the matrix elements ⇢ij and Oij of ⇢̂ and Ô in an arbitrary basis {|�ji} of H , as well as
two decompositions of the identity, one finds at once

hÔi =
X

i,j

X

m

pmh m |�iih�i| Ô |�jih�j | mi =
X

i,j

⇢ijOji = Tr
�
⇢̂ Ô

�
. 2

Remarks:
⇤ The probabilities p1, . . . , pm, . . . are clearly the eigenvalues of the density operator ⇢̂.

⇤ The density-operator formalism easily accommodates the description of both mixed states and
pure states. Thus, a normalized microstate | i 2 H can be equivalently represented by the density
operator ⇢̂ = | ih | acting on the Hilbert space H .

:::::::::::::::::::::::::::::::::::
Properties of the density operator

1. ⇢̂ is Hermitian: ⇢̂† = ⇢̂.
As a consequence, the expectation value of every observable is real.

The proof follows from the hermiticity of Ô and the invariance of the trace under cyclic
permutations: hÔi

⇤ =
⇥
Tr
�
⇢̂ Ô

�⇤⇤
= Tr

�
Ô†⇢̂†

�
= Tr

�
Ô ⇢̂

�
= Tr

�
⇢̂ Ô

�
= hÔi. 2

2. ⇢̂ is positive: 8 |�i 2 H , h�| ⇢̂ |�i � 0.
Thus, the expectation value of every positive operator is a positive number.

3. ⇢̂ is normalized to unity: Tr ⇢̂ = 1.
This means that the expectation value of the identity operator on H equals 1.

The whole information on the system is encoded in its density operator ⇢̂. If one considers its
matrix elements ⇢ij in an arbitrary basis {|�ji}, then each diagonal element, called population, ⇢ii
is the probability to find the system in state |�ii.
The off-diagonal elements ⇢ij with i 6= j are called coherences, and represent an information on the
quantum-mechanical correlations between the possible states |�ii and |�ji of the system, which is
absent in a classical description.

Remark: From the positivity of the density operator follows that of each of its minors in a given
basis, in particular the inequality ⇢ii⇢jj � ⇢ij⇢ji � 0. Since ⇢ji = ⇢⇤ij , one sees that the coherence
between two states can only be non-zero when the populations of these states do not vanish.

::::::
II.3.1 c

:::::::::::::::::::::::::::::::::
Fluctuating number of particles

To account for possible fluctuations in the number of particles in a quantum-mechanical system,
one introduces the Fock (ab) space, that is the Hilbert space H defined as direct sum of the Hilbert
spaces HN corresponding to the N -particle problems, including the one-dimensional space H0

spanned by the vacuum state |0i describing the absence of particles.
The density operator ⇢̂ then simply acts on this Fock space and allows one to compute the

expectation value of an observable—represented as an Hermitian operator on H —through the
usual formula (II.22c).

II.3.2 Time evolution of the density operator

Consider a macroscopic system with Hamilton operator Ĥ(t). Starting from the Schrödinger(ac)

equation
i~@| (t)i

@t
= Ĥ(t)| (t)i, (II.23)

(ab)V. A. Fock (or Fok), 1898–1974 (ac)E. Schrödinger, 1887–1961
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which holds for every pure state | mi in which a statistical mixture can be, one finds that the time
evolution of the density operator ⇢̂(t) is governed by the Liouville–von Neumann(ad) equation

@⇢̂(t)

@t
=

1

i~
⇥
Ĥ(t), ⇢̂(t)

⇤
, (II.24)

where the square brackets denote the commutator of two operators.

Considering the Hermitian conjugate equation to the Schrödinger equation, one finds

@⇢̂(t)

@t
=
X

m

pm

✓
@| mi

@t
h m| + | mi

@h m|

@t

◆
=
X

m

pm

✓
1

i~ Ĥ| mih m| +
1

�i~ | mih m| Ĥ

◆
,

which is readily recast as Eq. (II.24). 2

The solution of this differential equation for a given initial condition ⇢̂(t0) at some time t = t0
can be expressed in terms of the time-evolution operator Û(t, t0).(33) Recall that the latter evolves
pure states of the system—described as vectors of H (t)—between the initial time t0 and time t

| (t)i = Û(t, t0)| (t0)i. (II.25a)

As such, the time-evolution operator is solution to the first-order differential equation

i~@
@t

Û(t, t0) = Ĥ(t) Û(t, t0), (II.25b)

with the initial condition
Û(t= t0, t0) = 1̂, (II.25c)

with 1̂ the identity operator on H . One easily checks(34) that the solution to Eq. (II.24) is

⇢̂(t) = Û(t, t0) ⇢̂(t0) Û(t0, t), (II.26)

where Û(t0, t) = Û(t, t0)�1 = Û(t, t0)†.

This follows from differentiating the proposed solution and using the Hermitian conjugate equa-
tion to Eq. (II.25b). 2

Introducing the Liouville operator ˆ̂L(t) (or at times superoperator , since the objects it acts upon
are the operators on the Hilbert space H ) defined by

i
ˆ̂L(t) ⌘

1

i~
⇥
· , Ĥ(t)

⇤
, (II.27)

the Liouville–von Neumann equation takes the form

@⇢̂(t)

@t
= �i

ˆ̂L(t)⇢̂(t), (II.28)

formally analogous to the classical Liouville equation (II.12).

::::::
II.3.2 a

::::::::::::::::::
Isolated systems

If the system under consideration is isolated, its Hamilton operator Ĥ is actually time inde-
pendent, so that the equation (II.25b) governing the time-evolution operator is readily integrated,
yielding

Û(t, t0) = e�i(t�t0)Ĥ/~. (II.29)
(33)See e.g. Ref. [27] chapter FIII.
(34)Note that this form can also be deduced from definition (II.22b) and equation (II.25a).
(ad)J. von Neumann, 1903–1957
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Accordingly, relation (II.26) becomes

⇢̂(t) = e�i(t�t0)Ĥ/~ ⇢̂(t0) e
i(t�t0)Ĥ/~, (II.30)

with ⇢̂(t0) the initial density operator at t = t0.

Denoting by {|�ji} the orthonormal basis formed by the eigenstates of the Hamilton operator,
with respective eigenvalues ✏j , and by ⇢ij the matrix elements of the density operator in this basis,
Eq. (II.30) reads

⇢ii(t) = ⇢ii(t0), ⇢ij(t) = ⇢ij(t0) e
�i(✏i�✏j)(t�t0)/~ for i 6= j. (II.31)

That is, the populations in the energy eigenbasis do not evolve with time, while the corresponding
coherences oscillate with the respective Bohr frequencies.

In turn, the Liouville superoperator is also time-independent, and the Liouville–von Neumann
equation (II.28) can formally be integrated as

⇢̂(t) = e�i(t�t0)
ˆ̂L ⇢̂(t0), (II.32)

which parallels Eq. (II.13) for classical systems, and is totally equivalent to Eq. (II.30).

::::::
II.3.2 b

:::::::::::::::::::::::::::::::
Time-dependent Hamiltonian

When the Hamilton operator Ĥ depends on time, the corresponding time-evolution operator
Û(t, t0) is given by the Dyson(ae) series

Û(t, t0) = 1̂�
i

~

Z t

t0
Ĥ(t1) dt1 +

✓
�i

~

◆
2Z t

t0

 Z t1

t0
Ĥ(t1)Ĥ(t2) dt2

�
dt1 + · · · . (II.33a)

If t is a later time than t0, then the time arguments on the right hand side obey t0  · · ·  t2  t1  t,
i.e. the latest time argument is that of the leftmost integral, the second latest time is that of the
second integral from the left, and so on. Accordingly, one may write

Û(t, t0) = T exp


�

i

~

Z t

t0
Ĥ(u) du

�
for t � t0, (II.33b)

with T the Dyson time-ordering operator, which orders each product of (Hamilton) operators in
the expansion of the exponential with growing time arguments from the right to the left.

On the other hand, if t < t0 in the Dyson series (II.33a), then the time arguments are actually
ordered the other way round: t  t1  t2  · · ·  t0, i.e. the latest one is rightmost. Thus, one now
writes

Û(t, t0) = T
a exp


i

~

Z t0

t
Ĥ(u) du

�
for t  t0, (II.33c)

with T
a the anti-chronological time-ordering operator, which orders each product of operators in

the expansion of the exponential with growing time arguments from the left to the right.
Armed with these results, we may now express the density operator (II.26). Assuming—since

this is the case we shall in practice consider—that the instant t0 at which the boundary condition
is fixed is really the initial time, one has

⇢̂(t) = T exp


�

i

~

Z t

t0

Ĥ(u) du

�
⇢̂(t0) T

a exp


i

~

Z t

t0

Ĥ(u) du

�
for t � t0. (II.34)

Remark: If the values of the Hamilton operator at two arbitrary different times t0, t00 always com-
mute,

⇥
Ĥ(t0), Ĥ(t00)

⇤
= 0, then the time-ordering operators (chronological or anti-chronological) are

not necessary.

(ae)F. Dyson, 1923–2020
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II.3.3 Time evolution of observables and of their expectation values

Consider now an observable Ô for a time-dependent quantum-mechanical system with Hilbert
space H . As is well known, there are two approaches to compute its expectation value (II.21) in a
pure state, namely either considering that the latter is described by a time-evolving vector | (t)i
of H obeying the Schrödinger equation, or by letting the state-vector remain constant, while the
time evolution is entirely attached to the observable.(35) Here we extend this dual point of view to
the computation of expectations values of observables in statistical mixtures of states, described by
a density operator ⇢̂.

::::::
II.3.3 a

:::::::::::::::::::::
Schrödinger picture

Let Ô(t) denote an observable of the system, where for the sake of generality we allowed for
an explicit time dependence of the operator. In the Schrödinger picture, the density operator ⇢̂(t)
evolves with time according to the Liouville–von Neumann equation, while Ô(t) is what it is—in
particular, Ô remains constant in time if it has no explicit dependence on t.

Using the general formula (II.22c) under consideration of Eq. (II.26), the expectation value of
the observable at time t then reads

hÔ(t)i = Tr
⇥
⇢̂(t) Ô(t)

⇤
= Tr

h
Û(t, t0) ⇢̂(t0) Û(t0, t) Ô(t)

i
. (II.35)

In the following, (pure) states or operators without subscript will automatically refer to their rep-
resentation in the Schrödinger picture.

::::::
II.3.3 b

:::::::::::::::::::::
Heisenberg picture

In the Heisenberg(af) picture, the state of the system is kept fixed at its value at a given reference
time t0: for a pure state, | iH ⌘ | (t0)i; for a statistical mixture of states, ⇢̂H ⌘ ⇢̂(t0).

In turn, observables are represented by operators ÔH(t) related to those in the Schrödinger
representation by

ÔH(t) ⌘ Û(t0, t) Ô(t) Û(t, t0), (II.36)

which ensures the identity Hh | ÔH(t) | iH = h (t)| Ô(t) | (t)i for the expectation value of the
observable in a pure state in either picture. The operator ÔH(t) obeys the Heisenberg equation

dÔH(t)

dt
=

1

i~
⇥
ÔH(t), ĤH(t)

⇤
+

✓
@Ô(t)

@t

◆

H

, (II.37)

where the second term on the right-hand side vanishes when Ô has no explicit time dependence.
Under this assumption and using the Liouville operator (II.27) computed with ĤH, this equation
becomes

dÔH(t)

dt
= i

ˆ̂LH(t)ÔH(t), (II.38)

to be compared with Eq. (II.16) for a classical system.

If the Hamiltonian Ĥ is time independent, then ĤH = Ĥ and the Liouville operator i
ˆ̂LH is

time-independent. Equation (II.38) is straightforwardly integrated as

ÔH(t) = ei(t�t0)
ˆ̂LH ÔH(t0) = ei(t�t0)Ĥ/~ ÔH(t0) e

�i(t�t0)Ĥ/~, (II.39)

which under consideration of Eq. (II.29) is exactly equivalent to relation (II.36) since ÔH(t0) = Ô(t0).

(35)See e.g. Refs. [27] chapter GIII or [28] § 13.
(af)W. Heisenberg, 1901–1976
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Remarks:

⇤ The evolution equations for the density operator (in Schrödinger representation) and for ob-
servables (in Heisenberg representation), Eqs. (II.28) and (II.38), differ by a minus sign, which
shows that the former, despite its possessing some of the “good” properties (hermiticity), is not an
observable.(36)

⇤ The Liouville operator is sometimes defined with a different convention from Eq. (II.27), namely
as

ˆ̂L 0
⌘ �

⇥
· , Ĥ

⇤
, (II.40)

without the factor 1/~. The advantage of this alternative definition is that the evolution equation
of observables then becomes

i~dÔ(t)

dt
= �

ˆ̂L 0Ô(t), (II.41)

instead of Eq. (II.37). It is thus now quite similar—up to the minus sign—to the Schrödinger equa-
tion (II.23): the Liouville superoperator plays the role of the (negative of the) Hamilton operator,
while the role of the kets of the Hilbert space H is taken by the operators on H .
The drawback of this definition is that one loses the usual recipe for going from the quantum-
mechanical to the classical case by replacing Poisson brackets

�
· , ·

 
with

⇥
· , ·

⇤
/i~.

::::::
II.3.3 c

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Time evolution of expectation values in statistical ensembles

Multiplying both sides of Eq. (II.36) with the density operator ⇢̂H = ⇢̂(t0) and taking the trace
yields the expectation value

⌦
ÔH(t)

↵
= Tr

⇥
⇢̂H ÔH(t)

⇤
= Tr

h
⇢̂(t0) Û(t0, t) Ô(t) Û(t, t0)

i
. (II.42)

Using the invariance of the trace under cyclic permutations, this is clearly the same as Eq. (II.35)
in the Schrödinger picture, i.e.

⌦
ÔH(t)

↵
=
⌦
Ô(t)

↵
.

Using either picture—which we do by not specifying whether the time dependence is attached
to ⇢̂ or Ô and by dropping the subscript H—one finds that the time derivative of the expectation
value of an observable with no explicit time dependence obeys the equation

dhÔi

dt
=

d

dt

⇥
Tr
�
⇢̂ Ô

�⇤
=

1

i~ Tr
�⇥
Ĥ, ⇢̂

⇤
Ô
�
=

1

i~ Tr
�
⇢̂
⇥
Ô, Ĥ

⇤�
. (II.43)

The third term is proven by attaching the time dependence to ⇢̂ (Schrödinger picture) and using
the Liouville–von Neumann equation (II.24); The fourth term follows from differentiating ÔH(t)
and inserting the Heisenberg equation (II.37) without the partial-derivative term. The equivalence
between the third and fourth terms is easily checked and follows from the invariance of the trace
under cyclic permutations.

::::::
II.3.3 d

:::::::::::::::
Time contour

Invoking the invariance of the trace under cyclic permutations, Eqs. (II.35) or (II.42) can be
rewritten as ⌦

Ô(t)
↵
=
⌦
ÔH(t)

↵
= Tr

h
Û(t0, t) Ô(t) Û(t, t0) ⇢̂(t0)

i
. (II.44)

Reading the operator product in the argument of the trace from right to left, one begins with
the system at an “initial” time t0, evolves until time t—which might actually be prior to t0, yet in
practice we shall always take t � t0—; then the operator Ô acts on the system at time t. Eventually,
the system evolves “back” from t to t0.
(36)A further hint to this difference is given by the fact that, in the interaction picture, observables evolve with the

“unperturbed” Hamiltonian Ĥ0 while the density operator evolves with the perturbation Ŵ (t), see § II.3.4.
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tt0

Figure II.3.1

The corresponding path “in time” is pictured in Fig. II.3.1 as a time contour or Keldysh(ag)

contour (in the complex plane of the variable t) along the real axis, starting at t0, going forward
until t, then back to t0. Note that for the readability of the figure both forward and backward parts
of the contour have been slightly displaced away from the real axis, although in fact they lie on it.

II.3.4 Time evolution of perturbed systems
An often encountered scenario consists in the following setup:

• Until some “initial” time t0, the quantum-mechanical system under consideration is governed
by a time-independent Hamilton operator Ĥ0—whose eigenvalues and eigenstates are often
assumed to be known—and the (macro)state of the system at t0 is known: ⇢̂(t0).

• At t0 a time-dependent “perturbation” is turned on, corresponding to an extra term Ŵ (t) in
the Hamiltonian, resulting in the total Hamilton operator

Ĥ(t) = Ĥ0 + Ŵ (t) for t � t0. (II.45)

The goal is then to compute the evolution of the system—in particular of ⇢̂(t)—or the expectation
value of some observable(s) at t > t0.

In that case, it is fruitful to work in the interaction or Dirac picture, introducing on one hand
vectors of the Hilbert space H

| (t)iI ⌘ ei(t�t0)Ĥ0/~ | (t)i = Û0(t, t0)
†
| (t)i (II.46a)

and on the other hand operators on H

ÔI(t) ⌘ ei(t�t0)Ĥ0/~ Ô(t) e�i(t�t0)Ĥ0/~ = Û0(t, t0)
† Ô(t) Û0(t, t0). (II.46b)

In these definitions, Û0(t, t0) denotes the time-evolution operator associated with Ĥ0 alone, here
given by Eq. (II.29).

One then quickly finds that pure states | (t)iI evolve according to

i~@| (t)iI
@t

= ŴI(t)| (t)iI, (II.47a)

i.e. under the influence of the “perturbation” Ŵ (t) alone, while accordingly the density operator in
interaction representation ⇢̂I(t) is governed by

@⇢̂I(t)

@t
=

1

i~
⇥
ŴI(t), ⇢̂I(t)

⇤
. (II.47b)

Eventually, definition (II.46b) leads to

dÔI(t)

dt
=

1

i~
⇥
ÔI(t), Ĥ0

⇤
+

✓
@Ô(t)

@t

◆

I

. (II.47c)

Remarks:
⇤ The “initial time” t0 is also often taken to lie in the infinitely remote past, t0 ! �1. This in

particular allows one to consider if need be that the perturbation Ŵ (t) is turned on “adiabatically”,
i.e. slowly enough.(37)

(37)The corresponding adiabaticity , which takes here a different meaning from that of thermodynamics (absence of
heat exchange), is discussed for instance in Refs. [29] chapter XVII § 7–14 or [30] chapter 10.

(ag)L. V. Keldysh, born 1931
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⇤ Irrespective of whether t0 is finite or not, it is often assumed that the system is at time t0 in a
state of thermodynamic equilibrium with respect to the Hamiltonian Ĥ0. For instance, the system is
in equilibrium with a thermostat at temperature T , leading to the canonical equilibrium distribution

⇢̂(t0) =
1

Z(�)
e��Ĥ0 with Z(�) ⌘ Tr e��Ĥ0

and � ⌘ 1/kBT . The exponential term entering this density operator can be written in term of the
time-evolution operator associated with Ĥ0

e��Ĥ0 = Û0(t0, t0� i~�),

corresponding formally to an evolution in imaginary time, from t0� i~� to t0. Accordingly, the
expectation value (II.44) becomes

⌦
Ô(t)

↵
=
⌦
ÔH(t)

↵
=

1

Z(�)
Tr
h
Û(t0, t) Ô(t) Û(t, t0) Û0(t0, t0� i~�)

i
, (II.48)

where one has to pay attention that the system does not evolve with the same Hamiltonian “before”
t0 and afterwards, resulting in different time-evolution operators Û0, Û . Corresponding to the time
sequence, read from right to left, one can associate the Keldysh contour pictured in Fig. II.3.2, with
a first part parallel to the imaginary axis.

tt0

t0� i~�

Figure II.3.2

II.4 Statistiscal entropy
The probabilistic approach advocated in Sec. II.1 arises from a lack of knowledge on the microscopic
state of the system. This raises the question of how much information is missing, if only discrete
probabilities {pk} or a probability density ⇢N are known.

Intuitively, the missing information is “small” when the probability distribution takes significant
values for only a few microstates, while it is larger in case the distribution extends over many
states. To make sense of this intuition, a measure of (missing) information in probability theory,
the statistical entropy, is introduced in § II.4.1. This measure is then applied to the probability
distributions that describe quantum-mechanical (§ II.4.2) or classical (§ II.4.3) systems.

II.4.1 Statistical entropy in information theory

For the sake of brevity, we shall in the following consider only discrete probability distributions,
with the exception of definition (II.50). The generalization of the results to the case of continuous
distributions is straightforward.

Consider M events {!1, . . . ,!M} with respective probabilities p1, . . . , pM . In order to quantify
the “uncertainty” (or “missing information”, “ignorance”) corresponding to the use of this probability

Nicolas Borghini
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