Frontiers in perturbative quantum field theory

York Schröder (Univ Bielefeld)

Bielefeld, 08 Jan 2007

Motivation

why do we (physicists) do what we do?

- make life meaningful!
- why are we here?
- why are all these strange things happening around us?
 - > stars, astrophysics, cosmology, universe
 - chemistry, biology, electromagnetism
 - ▶ atom, nucleus, protons, quarks

realize it's extremely strange

but also very beautiful

have built a system of understanding based on 3 pillars:

- gauge system
- gravity system
- Higgs system

White dwarf, H1505+65. Temperature: 200000 °C

Neutron star 3C58 (rem. of chin. supernova 1181) 10000 lightyears. 1000000 °C. Weight: 1 teaspoon = 1 billion tons

Quantum field theory (QFT)

difficult to combine Quantum Mechanics + Special Relativity the only known way: QFT

- basic objects: space-filling fields
- we perceive quantized excitations (as particles: leptons, quarks)
- carriers of force: gauge particles
 - ▶ weak / strong nuclear force: W,Z bosons / gluons
 - physical embodiments of (gauge) symmetry
 - > as such, zero mass!
 - ightharpoonup BUT $m_{W,Z} \neq 0$ (expt.)
- symmetry (supposedly) spoiled in very special way
 - by a form of "cosmic superconductivity"
 - ightharpoonup new fields ($\sim e^-$ in ordinary supercond.)
 - ▷ excitations ⇒ Higgs particle (not yet observed!)

"Standard Model" $\hat{}$ 3 basic conceptual structures

- gauge / gravity / Higgs (deep concepts vs. ad-hoc)
- each concerns interactions of (g/g/H)-particles

gauge system

- based on extensive symmetries among ''color' dof's (color: generalization of em charge)
 - QCD/weak/em: 3/2/1 color charges
 - ightharpoonup SU(3) imes SU(2) imes U(1)
- gauge symm. + QM + SR
 - \Rightarrow powerful!
 - \Rightarrow ex. gauge bosons

- basically only 3 parameters
 - > one coupling for each gauge sector
 - no other "fudge" factors!
 - ▷ ⇒ precise predictions
 - ▷ agreement with numerous experiments (→ below)

[D.Dobos, ATLAS collab.]

gravity system

- is essentially Einstein's general relativity
 - ▶ Einstein-Hilbert action + minimal coupling to matter
- fails at energies much larger than observable ones
 - makes no predictions for ultra-high E particles
 - quantized GR not "renormalizable"
- symmetry principle: Einstein's general covariance
 ex. graviton
- 2 parameters
 - $ightharpoonup G_N$: Newton's grav. const; $\sqrt{\frac{G_Nh}{c^3}}$ =length!
 - \triangleright Λ : cosmol. term, E density of empty space
- many tests, e.g.:
 - ▶ big bang cosmology
 - black hole physics
 - Mercury precession
 - pulsar frequency variation

Higgs system

- no deep principle!
- many parameters
 - ▶ infer from mixing of quarks + leptons
- concept only provisional?
 - ▶ e.g. CKM matrix (mixing of qu species) almost diagonal

- searches at colliders
 - \triangleright e.g. LEP: $m_h > 114 \text{GeV}$
 - next: LHC gluon fusion

discovery? surprise?

"zoom" into part of gauge system: QCD (the SU(3) above) what is it?

QCD is a generalization of QED

- what is QED?
 - basic concept:
 response of photons to el. charge
 - \triangleright space-time picture (see \rightarrow)
 - ▶ em force: via virtual photons
 - "Feynman diagrams": like puzzle

 - picture encodes: Maxwell eqs for radio waves, light Schrödinger eqs for atoms, chemistry Dirac eqn (same with spin) and more

"zoom" into part of gauge system: QCD (the SU(3) above) what is it?

- QCD is a generalization of QED
- what is QED? 🙏
- QCD is the same, but bigger
 - ▶ 3 kinds of charge (color), e.g. red, blue, green
 - quarks: 1 unit of one of the color charges (+ fractional el. charge) 6 ''flavors''. u,d,c,s,t,b
 - ▶ 8 gluons, respond to color charge
- many puzzle possibilities!
 but large symmetry. red ↔ blue everywhere (even locally)
 → only one way to assign couplings
- main differences to QED:
 gluons couple stronger / can change charge / interact

central feature: asymptotic freedom

- ullet smash atoms $ightarrow e^-$ get emitted basics of our electronics
- smash protons (p) → get more p
 + exotic particles; never a quark
- strong force rises with distance
- quarks closer together (high E)
 ⇒ force weaker
- beautiful theory result
- unexpected! (em force opposite)
- Nobel price 2004 G/P/W
- experiment?! (← see left)

Reality check?!

- outrageous claim: none of qu, gl ever seen!
 - have to explain confinement
- phenomenology
 - ightharpoonup u,d masses tiny \Rightarrow eqs of QCD possess "chiral symmetry" (allowing separate trafos among q_R and q_L)
 - no such symmetry is observed: strongly int. part. do not come in opposite-parity pairs
- chiral symmetry must be "spontaneously" broken (like rotational sy. in ferromagnets)

how to check QCD vs Reality?

- (a) just solve its eqs (→ see next slide)
 - by computer (lattice); tough; "oracle"; understand?!
- (b) consider models "close to QCD"
 - ▶ fewer dims; different sy groups; diff particle content
- (c) consider circumstances in which eqs simplify
 - > remainder of this talk

QCD reality check (a:computer)

look at hadron spectrum (hadrons: bound states of quarks; e.g. $K=s\bar{d}$, p=uud, $\Lambda=uds$)

- solve QCD eqs by computer
 [e.g. S. Aoki et.al., CP-PACS 1999]
- what does not come out:
 - ▶ gluons
 - ▶ fractional charges
 - enlarged multiplets
- what one gets:
 - just the observed particles + masses
 - ▶ no more, no less!

- punchline: obtain amazingly realistic spectrum, with 10% error
 - ▶ QCD lite; need to add remaining quark effects + quark masses
 - much development here; teraflop speeds, worldwide effort

QCD reality check (c:collider)

- e.g. LEP, $e^+e^- o X$ (stuff hitting detector): find 2 broad classes of events (QM!)
- (1) $X = e^+ e^-$ or $\tau^+ \tau^-$ or ... $l^+ l^-$
 - ▶ leptons: no color charge → mainly QED interactions
 - > simple final state: coupling small ($\alpha=e^2/(4\pi)\approx 1/137$) most of the time (99%) nothing happens
 - ho $e^+e^-\gamma$ \sim 1% ightarrow check details of QED
 - $\triangleright e^+e^-\gamma\gamma \sim 0.01\% \rightarrow ...$
- (2) X>10 particles: π , ρ , p, \bar{p} , ...
 - "'greek+latin soup" constructed from qu+gl
 - ▶ pattern: flow of E+momentum in "jets"
 - \triangleright 2 jets \sim 90%; 3 jets \sim 9%; 4 jets \sim 0.9%
 - direct confirmation of asy. freedom!
 - ▶ hard radiation is rare → # of jets
 - ▶ soft radiation is common → broadens jet

ullet nowadays: ''testing QCD'' ightarrow ''calculating backgrounds'' in search for new phenomena

QCD reality check (c:extremes)

childlike questions: what happens when I heat or squeeze matter?

nature: early univ, μ tiny ($\sim \frac{\#baryons}{entropy}$), $T_c \sim 170 MeV \sim 10 \mu s$ neutron/quark stars

lab expt.: SPS / RHIC $\mu_B \sim \frac{\#baryons}{pions} \sim 45 MeV$ / LHC / GSI

Neutron star in Crab nebula. Distance: 6000 lightyears

gold dust. analyze ashes of short-lived nuclear fireball! [N. Borghini, 30 Oct 2006]

basic thermodynamic observable: pressure p(T)

p(T) important for cosmology:

cooling rate of the universe

$$\partial_t T = -rac{\sqrt{24\pi}}{m_{
m Pl}} rac{\sqrt{e(T)}}{\partial_T \ln s(T)}$$

- ullet with entropy $s=\partial_T\, p$ and energy density e=Ts-p
- ullet \Rightarrow cosmol. relics (dark matter, background radiation etc.) originate when an interaction rate au(T) gets larger than the age of the universe t(T).
 - ho Ex.: ''sterile'' u_R with $m_{
 u}\sim$ keV can be warm dark matter, and decouple around $T\sim150$ MeV [Abazajian, Fuller 02; Asaka, Shaposhnikov 05]

p(T) in heavy ion collisions:

expansion rate (after thermalization) given by

$$\partial_{\mu} T^{\mu\nu} = 0 \quad , \quad T^{\mu\nu} = [p(T) + e(T)] u^{\mu} u^{\nu} - p(T) g^{\mu\nu}$$

- with flow velocity $u^{\mu}(t,x)$
 - ▶ hydrodynamic expansion: hadronization at $T \sim 100 150$ MeV \Rightarrow observed hadron spectrum depends (indirectly) on p(T)

p(T) via (large) computer ($\mu_B = 0$)

[lattice data from Karsch et.al.]

at $T \to \infty$, expect ideal gas: $p_{SB} = \left(16 + \frac{21}{2}N_f\right)\frac{\pi^2T^4}{90}$ confirms simplicity: 3 dofs $(\pi) \to 52$ $(3 \times 3 \times 2 \times 2 \text{ qu} + 8 \times 2 \text{ gl})$

p(T) via analytical computation

$$p_{\text{QCD}}(\mathbf{T}) \equiv \lim_{V \to \infty} \frac{\mathbf{T}}{V} \ln \int \mathcal{D}[A_{\mu}^{a}, \psi, \bar{\psi}] \exp\left(-\frac{1}{\hbar} \int_{0}^{\hbar/\mathbf{T}} d\tau \int d^{3-2\epsilon} x \, \mathcal{L}_{\text{QCD}}\right)$$

$$\mathcal{L}_{\text{QCD}} = \frac{1}{4} F_{\mu\nu}^{a} F_{\mu\nu}^{a} + \bar{\psi} \gamma_{\mu} D_{\mu} \psi + \mathcal{L}_{\text{GF}} + \mathcal{L}_{\text{FP}}$$

asymptotically, expect ideal gas: $p_{\rm QCD}({f T} o \infty) \equiv p_0 = \left(16 + {21\over 2} N_f \right) {\pi^2 {f T}^4 \over 90}$

Methods I: reduction, IBP

can do 4-loop scalar theory on paper:

for QCD, need a computer:

25M integrals (2^96^6)

powerful method: integration by parts (IBP)

[Chetyrkin/Tkachov 81]

 \Rightarrow systematically use $0 = \int d^dk \, \partial_{k\mu} f_{\mu}(k)$

$$0 = \int d^d k \, \partial_{k\mu} f_{\mu}(k)$$

many incarnations: Laporta, Baikov, Gröbner

key idea: lexicographic ordering among all loop integrals

[Laporta 00]

arrive at rep in terms of irreducible (\equiv master) integrals

$$\sum_{\mathbf{i}} \frac{\mathsf{poly}_{\mathbf{i}}(d, \xi)}{\mathsf{poly}_{\mathbf{i}}(d)} \mathsf{Master}_{\mathbf{i}}(d)$$

Methods IIa: integration

Evaluating Masters

- numerical integration; cave: precision (MC?)
- explicit integration; can be an "art"
- difference equations
 - ▶ solve directly
 - solve numerically
 - ▶ Laplace transform
- differential equations

Mathematical structure

- ullet interested in the coefficients of an ϵ expansion
- in many cases, these are from a generic class of functions/numbers
- e.g. harmonic polylogarithms HPL(x)

[Remiddi/Vermaseren 00]

ullet e.g. harmonic sums S(N)

[Vermaseren 98]

Methods IIb: harmonic sums

find interesting new numbers

"the language that Feynman diagrams speak"?

[J. Vermaseren]

Methods IIIa: difference equations

repeat reduction with symbolic power x on one line derive difference equation for generalized master $U(x)\equiv\int\frac{1}{D_1^xD_2...D_N}$

$$\sum_{j=0}^{R} p_j(\mathbf{x}) U(\mathbf{x}+j) = F(\mathbf{x})$$

compute boundary conditions, e.g. at $x=0,\ x\gg 1$ typically, want U(1)

solve the difference equation

- directly (if 1st order)
- numerically (very general setup)
- Laplace transform

Methods IIIb: numeric solution

very general setup [Laporta 00]

solve via factorial series $U(x) = U_0(x) + \sum_{j=1}^{R} U_j(x)$, where

$$U_j(x) = \mu_j^x \sum_{s=0}^{\infty} a_j(s) \frac{\Gamma(x+1)}{\Gamma(x+1+s-K_j)}$$

plug into difference eq, get μ , $K_j(d)$, and recursion rels for $a_j(s)$ need boundary condition for fixing, say, $a_j(0)$

numerics: truncate sum. example:

$$+ 1.27227054184989419939788 - 5.67991293994853579036683\epsilon$$

$$+ 17.6797238948173732343788\epsilon^{2} - 46.5721846649543261864019\epsilon^{3}$$

$$+ 111.658522176214385363568\epsilon^{4} - 252.46396390100217743236\epsilon^{5}$$

$$+ 549.30166596161426941705\epsilon^{6} - 1164.5120588971521623546\epsilon^{7} + \mathcal{O}(\epsilon^{8})$$

Towards an answer

- ullet collect contributions to p(T) from all physical scales
 - weak coupling, effective field theory setup
 - faithfully adding up all Feynman diagrams
 - ▶ get long-distance input from clean lattice observable
- obtain theory prediction for p(T) [$g^2 = 4\pi\alpha_{strong}$]

$$\begin{split} \frac{p_{\text{QCD}}(T)}{p_{\text{SB}}} &= \frac{p_{\text{E}}(T)}{p_{\text{SB}}} + \frac{p_{\text{M}}(T)}{p_{\text{SB}}} + \frac{p_{\text{G}}(T)}{p_{\text{SB}}} \quad , \quad p_{\text{SB}} = \left(16 + \frac{21}{2}N_f\right) \frac{\pi^2 T^4}{90} \\ &= 1 + g^2 \quad + g^4 \quad + g^6 \quad + \dots \qquad \qquad \Leftarrow \text{4d QCD} \\ &\quad + g^3 + g^4 + g^5 + g^6 + \dots \qquad \qquad \Leftarrow \text{3d adj H} \\ &\quad + \frac{1}{p_{\text{SB}}} \frac{T}{V} \int \mathcal{D}[A_k^a] \exp\left(-S_{\text{M}}\right) \quad \Leftarrow \text{3d YM} \\ &= c_0 + c_2 g^2 + c_3 g^3 + (c_4' \ln g + c_4) g^4 + c_5 g^5 + (c_6' \ln g + c_6) g^6 + \mathcal{O}(g^7) \end{split}$$

 $[c_2$ Shuryak 78, c_3 Kapusta 79, c_4' Toimela 83, c_4 Arnold/Zhai 94, c_5 Zhai/Kastening 95, Braaten/Nieto 96, c_6' KLRS 03]

Conclusions

- we have a working description of nature: gauge/gravity/Higgs systems
- fundamentals of gauge theory (here mostly: QCD) are simple and elegant
- they can directly describe physical behavior of matter under extreme conditions
- QCD contains an extremely rich structure
- thermodynamic quantities of QCD are relevant for cosmology and heavy ion collisons
- these quantities can be determined numerically at $T\sim 200$ MeV, and analytically at $T\gg 200$ MeV
- for precise results, sometimes need very involved mathematical tools interdisciplinary effort (\rightarrow see next slide)
- there is lots of excitement in advancing our understanding (→ LHC)
 ... and lots to do!

York Schröder, U Bielefeld

21

Invitation

International Workshop

14-16 June 2007

ZiF Bielefeld

"Frontiers in perturbative quantum field theory"

Kögerler / Laine / Schröder

Topics:

number theory, algebraic field theory
symbolic and numerical computation
cosmology, heavy ion physics, particle physics