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Abstract

In quantum chromodynamics (QCD), the binding energy of an
infinitely heavy quark—antiquark pair in a color singlet state
can be calculated as a function of the distance. We investigate
this static potential of QCD perturbatively in three and four
dimensions. For the four—dimensional (4D) case, we calculate
the full two-loop coefficient, correcting an earlier result. Beyond
this order, the perturbative expansion breaks down. In three
dimensions, already the one-loop calculation gives a new result.
At two loops, we analyze the infrared behaviour in detail. We
present a new type of diagrams, that can potentially cure the 3D

divergences, and that are shown to vanish in four dimensions.

Zusammenfassung

Die Wechselwirkungsenergie eines unendlich schweren Quark-—
Antiquark Paares in einem Farbsingulett—Zustand kann in der
Quantenchromodynamik (QCD) als Funktion des Abstandes
berechnet werden. Wir untersuchen dieses statische Potential der
QCD im Rahmen der Stérungstheorie in drei und vier Dimensio-
nen. Im vierdimensionalen (4D) Fall berechnen wir den komplet-
ten Zwei-Schleifen Beitrag, wobei ein friilheres Resultat korrigiert
wird. In h6heren Ordnungen bricht die Stérungsreihe zusammen.
In drei Dimensionen erhélt man bereits mit einer Ein—Schleifen
Berechnung ein neues Resultat. Das Infrarotverhalten des Zwei-
Schleifen Beitrages wird detailliert diskutiert. Wir prisentieren
einen neuen Diagrammtyp, welcher in der Lage sein konnte, die
3D-Infrarotdivergenzen zu beheben, der aber in vier Dimensionen

verschwindet.
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Introduction

The static potential of quantum chromodynamics (QCD) is subject to theoretical investigations
since more than twenty years. Being the non—abelian analogue of the well-known Coulomb
potential of quantum electrodynamics (QED), this interaction energy of an infinitely heavy
quark—antiquark pair is a fundamental concept which is expected to play a key role in the
understanding of quark confinement. Moreover, the static potential is a major ingredient in the
description of non—relativistically bound systems like quarkonia, and it is of importance in many

other areas, such as quark mass definitions and quark production at threshold.

It is expected that the static potential consists of two terms: a Coulomb-like term at short
distances, which is calculable with perturbative methods, and a long—distance term responsible
for confinement. Even though a perturbative analysis is not suited to give the full potential, such
a calculation proves very useful. The short—distance part of the potential can be utilized as a
refined starting point for the construction of potential models (which have been rather successful
in the past for the description of quarkonia), or it could describe very heavy systems (like #t)
to good accuracy. Furthermore, it can be compared to the results of numerical calculations in
lattice gauge theory. It is natural to define the QCD coupling constant with help of the potential
as V(r) = —%M, the so-called V—scheme [1], using a physical quantity in contrast to the
usual coupling definition in the MS scheme [2]. In lattice calculations ay is regarded as as the
"better’ expansion parameter [3]. For these reasons, and to get a more precise determination of

o from the lattice, the relation between the two couplings has to be known.

A first determination of the static potential in (massless) QCD has been performed by
L.. Susskind in the context of a lecture about lattice gauge theory [4]. In order to demonstrate
asymptotic freedom in Yang—Mills theory, he calculated the one-loop pole terms using a Wilson—
loop formula for the potential, and re-derived the first coefficient of the renormalization group
Beta function. This work was extended by other groups quite soon, who then added fermionic
contributions [5] and two-loop pole terms [6] to the potential, as well as examined the structure
of higher—order corrections qualitatively [7]. Recently, the perturbative static potential has re-
ceived new interest, in particular due to its application in top—quark production at threshold
[8], a process that comes within experimental reach in the near future. A complete two-loop

calculation for the static potential was performed in ref. [9]. Such an important result clearly
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needs confirmation. This is one of the motivations of our work on the two-loop potential. More

recently, the effect of fermion masses was considered on the two-loop level in ref. [10].

There has always been discussion about whether the perturbative Wilson—loop formula is a
well-defined definition of the static potential, which can be questioned due to possible infrared
divergences in higher orders [7]. A redefinition was proposed recently [11], which becomes ef-
fective at the three-loop level. To study the infrared structure of the potential, one can also
investigate the theory in lower dimensions (than four) [12]. Hence, while calculating the two-
loop potential, we will specify the space-time dimension at a late stage only, enabling us to

discuss the case of three dimensions also.

Another line of motivation for performing a three—dimensional calculation comes from finite
temperature field theories [13]. Due to dimensional reduction at high temperatures, the original
(4D) theory can be described by an effective theory in three (Euclidean) dimensions [14, 15].
The spectrum of the dimensionally reduced theory describes the problematic infrared sector of
the full theory [16]. Since the reduced theory has a universal character in the sense that it can
describe different 4D theories by choosing the parameters accordingly, the 3D static potential is
interesting conceptually in its own right. Moreover, as the electroweak standard model can be
mapped to a 3D SU(2)xU(1) gauge—Higgs theory [17], the symmetric phase of the SU(2) Higgs
model has received a lot of interest in studies of the electroweak phase transition. In particular,
the efforts to understand the spectrum of this theory as obtained in lattice simulations [18]
led to the picture of an effective theory of (weakly) bound states [19], for which the knowledge
of the 3D static potential is an important ingredient in a non-relativistic treatment. A most
welcome observation in this respect is the following. Since in 3D the gauge coupling g* acquires
the dimension of a mass, one expects the perturbative expansion of the potential to be of the
form V32i(r) = c19*In(g?r) + c2g®r + ..., where the ¢; are dimensionless coefficients. At the
one-loop level, a linear term is produced automatically. This is in contrast to the behaviour in
4D, where Vo2 (r) = cog?/r - (1+ c1g%In(rp) +...) leads to the well-known effective (running)
coupling.

Concerning the purely technical side of the work documented here, only part of the Feynman
diagrams to be considered, namely the pure self-energy contributions to the static potential,
are amenable to standard calculation methods [20, 21, 22, 23]. For the others, essentially being
two—point functions also, but involving non—covariant propagators, the standard methods need
to be generalized. We will present a general strategy to deal with these expressions, which is
based on a purely algebraic reduction to a minimal set of integrals, and apply it to the two-loop

case.

The outline of this work is as follows. In chapter 1 the Wilson—loop definition of the static
potential is introduced. Following a discussion of the abelian model (QED), which serves to

introduce the notation as well as to illustrate some conceptual problems in a simple example,
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the perturbative expansion of the Wilson—loop is worked out for QCD. All Feynman diagrams
that are relevant for the potential up to two loops are displayed. Chapter 2 deals with the
algebraic calculation of massless two-loop two—point functions that involve static propagators.
A method for the tensor reduction is worked out, and a general algorithm for the reduction of
the resulting propagator—type integrals to a minimal set of basic scalar integrals is presented.

Furthermore, the derivation of the applied recurrence relations is explained.

In chapter 3 the static potential is calculated to two loops. Analytic results are presented
for arbitrary dimensions D. Renormalization and infrared cancelation are discussed both in the
four—dimensional and in the three—dimensional theory. Chapter 4 is concerned with an analysis
of the potential in coordinate space, in order to clarify issues related to the infrared sector. A new
type of diagrams is shown to potentially contribute to the two-loop term in three dimensions.
In chapter 5 the problems known to arise in higher orders of the perturbative expansion are

briefly reviewed. In addition, one-loop results for the massive SU(N) Higgs model are given.

In the four appendices, additional reduction formulae, the complete set of massless inte-
grals as well as some massive ones, the two-loop infrared poles of individual diagrams, and the

Feynman rules are listed.



Chapter 1

The Static Potential

In this chapter, the static potential will be defined. In order to explain some general features in a
simple abelian example, the potential will be discussed first in QED. Being exactly solvable, the
pure abelian potential allows for an easy understanding of the perturbative treatment, which
becomes inevitable in more complicated cases. For the non—abelian case of QCD, the color
structure will be exploited in a compact notation, and the complete set of diagrams contributing

to the potential up to two loops will be presented.

1.1 Abelian Case

In QED, the static potential V (r) is defined as the interaction energy of an infinitely heavy
electron—positron pair separated by a distance r. Generalizations to other theories, like QCD,
are obvious. The idealization to fixed sources is necessary in order to obtain the potential as a
non-relativistic, semi-classical quantity. Furthermore, this idealization allows a simple, gauge—
invariant and non—perturbative definition, which is useful for analytical as well as numerical

(lattice) studies.

Since the abelian potential was already analyzed in detail in the past (see, e.g., [4, 6, 9]), we
will be very brief here. Giving the main arguments, this section will be used mainly to introduce

some notation and set the stage for the non—abelian case.

1.1.1 Definition and Exact Solution

In the abelian case, let us start from the manifest gauge invariant definition [6]

Vir) = —%i_r}noo% In <Texp (ieﬁdmu/l“>> . (1.1)

Here, I' is taken as a rectangular path with time extension 7" and spatial extension r (see

fig. 1.1), and 7 denotes time ordering. The average is to be taken over the photon field in the

4
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Figure 1.1: Rectangular Wilson—loop for the definition of the static potential.

usual way,

_ [DAexp(=S5) O(4)
<0(A)> - [DAexp(=S)

(1.2)

where the Euclidean action is given by (recall that ghosts decouple here and hence cancel in

the above average)
§=[ 2= [ [shknt 5@40°] = [ 1AM ] (1.3

with inverse propagator M, = ¢*g,, + (% — 1) ¢uqy- For further notation, e.g. notations for
integral measures, see appendix D. Neglecting the contributions coming from the vertical parts

of the Wilson—loop, the definition becomes

Vi) = —Tlgnm% In <Texp <—/IJMA#)> , (1.4)

Ju(®) = iev, [6(x) = d(x —r)] 6 (T?/4 - 23) (1.5)
_ o) i ~ sin(qo™/2)
= /ﬁexp(—zqm) iev, [1 —exp(igr)] w2 (1.6)

Since the Wilson—loop explicitly breaks Lorentz invariance, an extra vector v, = 4,0 is intro-
duced. The functional integral is Gaussian, so it can be solved exactly. Shifting A = A’ — M~1J

and inserting all expressions in momentum-space representation, the potential reads

1
/ = — i — 1 -1
V(r) Th_r)nooT /dzJMM;w Jy
I B . sin(qu/2)>2 {1 qﬂqy}
= Jim 7 [ 1= ex( igr)] (REE) o { g+ (- )2 o
2
= A[l_exp(_iqr)] % = E%“/Coul- (17)

In the last step, the limit was pulled inside the integral, to exploit a representation of the

delta-function,

.1 [sin(qT/2)\* . .
lim — <W> =27d(qo) - (1.8)
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As expected, one gets an (attractive) Coulomb—potential plus an (infinite) constant, which
represents the self-energy of the sources. The r—independent constant can be dropped in the

definition of a potential, of course.

If one wants to include the effect of dynamic fermions (which would contribute via internal
loops only), or even to go over to the non—abelian theory, it is no longer possible to derive an
exact analytic result. Before dealing with these more complicated cases, it proves very useful to

re-derive the above result by a perturbative analysis as a ’training exercise’.

1.1.2 Perturbative Treatment and Exponentiation

The Feynman rules can be obtained from from the path—integral representation of the vacuum
expectation value in eq. (1.4). They are collected in appendix D. In addition to the usual
Feynman rules of QED), one gets a source—photon coupling and a ’source propagator’, the latter
of which reflects the time—ordering prescription and hence is a theta—function in coordinate

space, or has the non-covariant propagator form i/(v - p + i€) in momentum space.

The form of the static propagator coincides with the one that is used in the leading order
of an effective theory of heavy electrons, which is the abelian counterpart of the heavy—quark
effective theory (HQET) [24]. This comes as no surprise, since the same asymptotics of the full
theory is examined in both cases, and shows the connection with another well-known approach
to the potential, namely via the scattering amplitudes, which in turn even give information
on spin—dependent and relativistic corrections to the potential. In the full theory, the Bethe—

Salpeter kernel is constructed this way [25].
(b) ©

Figure 1.2: Lowest order diagrams for the QED potential (a..c), and light-by-light scattering in

@ (d)

a three-loop diagram (d). The double line stands for the static (source) propagator, while wavy

and straight lines denote photons and electrons, respectively.

Starting with the perturbative treatment, the Born term (see fig. 1.2) reads

q0=0

Viree = diag.(a) = /qexp (—igr) (=) (tevy,) (—ievy) Dyy(q)
= —eQ/lep(—iqr) 1 . (1.9)

q2

Comparing with the above exact result, eq. (1.7), this seems to be the complete Coulomb
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potential already. The question is now what happens to higher—order contributions.

At next—to—leading order, one finds the two ladder diagrams of fig. 1.2. They are most easily
analyzed in coordinate space, due to the simple form of the source propagator (a theta function).
It is immediately clear that adding the two diagrams effectively removes the time—ordering on
one of the source-lines, due to #(t)+6(—t) = 1. Adding the sum again with switched arguments
removes the second time—ordering, too, and we get the product of two tree-level diagrams. The

result is thus

1 1
diag.(b) + diag.(c) = 3 [diag.(a)]* = 2 Vioul - (1.10)

In a completely analogous way, one can show that the sum of the remaining one-loop diagrams
(source—self-energy insertions as well as vertex corrections) contribute ¥ - Vioou and %22. Now,
recalling the logarithm in the definition of the potential, all one-loop contributions can be seen

to cancel against the first iteration of the tree-level term.

The cancelation works in the same way in higher orders, as proven in the appendix of
[6]. Again, crossing two lines always removes one time—ordering, such that the sum of all ladder
diagrams at n—loop order contributes a term V%, ,/n!, while the others will give contributions of
the form Ek/k!-‘/éﬁglk)/(n—k) I. Altogether, the Wilson—loop exactly builds up the exponentiated

potential, so the result (1.7) gets reproduced in the perturbative treatment, indeed.

The next step would be the inclusion of electron loops (with negligible mass). This leads
to the inclusion of the fermionic determinant in the path—integral representation, such that an
exact solution is no longer possible. Hence, going beyond the trivial case of a pure abelian gauge
theory makes the perturbative treatment the only viable algebraic tool. After identifying the
non—iterative diagrams along the above arguments in coordinate space, it proves more tractable
to work in momentum space. The main effect of fermion loops is the well-known vacuum
polarization effect. This leads to an effective, 'running’, coupling aef(g%) = aer(0)/(1+11(g?)),
where ae(0) denotes the fine structure constant e*/4w. In the potential, however, fermion
loops can also contribute via light-light scattering in three-loop and higher—order diagrams. As

a result, the momentum—space potential will have the form

Vig®) = _47ra+2(q2)’ (1.11)

with ay # aes providing a useful gauge invariant definition of a 'physical’ coupling, the so—called
V-scheme [1].
Let us stop the discussion of the abelian case at this point. The QED potential can be

obtained via simple replacements from the QCD potential, to which we now turn, so a separate

calculation would be superfluous.
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1.2 Non—Abelian Case

The quark—antiquark (qg) potential, defined as the binding energy of an infinitely heavy ¢g
pair in a color singlet state, needs some minor modifications of the Wilson—loop formula (1.1),
due to the non—abelian nature of the gauge fields. In this section, after generalizing the above
definition, we will identify the non—iterative diagram classes that have to be computed for the
perturbative potential. The actual calculation of the generated list of diagrams is quite involved

and will be presented in the following chapters.

1.2.1 Definition and Expansion

The modified Wilson-loop formula reads [6, 26]

V(r)=— lim % In <t~r77exp <zg% dmw4u>> . (1.12)
r

T—o0

Like in the abelian case, I' is taken as a rectangular loop with time extension 1" and spatial
extension r. Due to the non-commuting gauge fields A, the time—ordering prescription had to be
generalized to a path ordering along the loop. Also, the normalized color trace tr(..) = tr(..)/trll

had to be introduced in the above.

In a perturbative analysis it can be shown that, at least to the order needed here!, all
contributions to eq. (1.12) containing connections to the spatial components of the gauge fields
A;(r,£T/2) vanish in the limit of large time extension 7". Hence, the definition can be reduced

to

1 ~
Voert(r) = — lim T In <tr T exp (— / ]ﬁ4z>> ) (1.13)

T—o0

where 7 means time ordering and the static sources separated by the distance r = |r| are given
by
Ji(x) = ig6,0T" [8(z) — 6z —r)] 0 (T?/4 - 23) | (1.14)

where T* are the generators in the fundamental representation (choosing the adjoint representa-
tion, one would get the potential for a static color-singlet gluino—pair). In the case of QCD the
gauge group is SU(3). Let us stay a little more general, however, and carry out the calculation
for an arbitrary compact semi-simple Lie group. Definitions for the invariants C'4 and Cr as
well as some useful relations for performing the color traces are collected in appendix D.2. The

number of massless quarks will denoted by n;.

Expanding the expression in eq. (1.13) perturbatively, one encounters in addition to the
usual Feynman rules the source—gluon vertex igd, 01, with an additional minus sign for the

antisource, like in the preceding section. Again, the time—ordering prescription generates step

"For a detailed discussion of this point, see sect. 4.3.
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functions, which can be viewed as source propagators, in analogy to HQET. Now, an overall

color trace is to be taken along the loop. The Feynman rules are collected in the appendix.

Concerning the generation of the complete set of Feynman diagrams contributing to the
two-loop static potential, there are some subtleties connected with the logarithm in the defini-
tion (1.13), as already discussed in the abelian case. After working out the color trace along the

static loop, one obtains

() = 14¢°CrO +9'Cr [CrO +(Cr-1CN D+ D + ® |
+9°Cr [ (Cr = $C4)* € +(Cr = Ca)(Cr = $Ca) €D + 1 Cal(Cr - 1Ca) D
HICIP +1CA @D +(Cr-1CH)EY +1CaD +1C4 Q) + @) + (9
+Cr@ +CED +CEE +Cr(Cr - 30N +1CrCa @D +0- @) |
+O(g%) . (1.15)

The diagrammatic notation is that of Susskind [4]. The outer loop stands for the source, while
the inner lines are gluons. Blobs denote 1Pl-insertions, containing gluons, ghosts and (light)
quarks. Diagrams are conveniently collected in topological classes, from which the actual 2—2
amplitudes are generated by cutting the source loop twice. After expanding the logarithm and

using the relations
1O = 6+6 (1.16)
OB =30D+36+20+6 (1.17)
OO0 = 8+20 +36D (1.18)
O = &+ (1.19)
O®© = &+ (1.20)

(which, using the strategy explained in the abelian case, can most easily be checked in position
space due to the trivial identity 8(¢)+6(—t) = 1), some topological classes cancel completely (one
class in the g*~term, five classes in the g®~term; compare eq. (1.15)), while only the non-abelian

parts of the others remain:

m{.) = PCrO +¢'Cr -1 +10. D+ & |
+9°Cr 1A +1AAD 1D+ D+ O
@@+ @+ @] 0wy (1.21)

This explicitly proves the exponentiation up to the two-loop level. However, for the non—abelian

case no general proof is known so far.
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114727
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Figure 1.3: Tree-Level (t) and one-loop exchange diagrams (A..D) contributing to the static
potential. Double, curly, dotted and solid lines denote source, gluon, ghost and (light) fermion
propagators, respectively. The blob on the gluon line stands for one-loop self-energy corrections,

which are given in the second line.

1.2.2 Lists of Diagrams

As mentioned above, the Feynman diagrams are generated from the topological classes of
eq. (1.21) by cutting the source loop twice. By definition, only pure exchange diagrams need
to be considered in the calculation of Vj.(r), since the others (self-energy corrections of the
sources) are independent of r. Hence, there is only one diagram at tree-level, namely the one-
gluon exchange diagram. It is shown in fig. 1.3, together with the one-loop diagrams contributing
to the potential. The set of diagrams to be considered for the two-loop correction is reduced
to the diagrams of fig. 1.4. In both figures, we have omitted diagrams that differ from the ones

shown by a mere rotation or reflection.

Let us already drop a word of caution here. In later stages of this work, when discussing
the potential in other than four dimensions, we will find that the list of two-loop diagrams
presented here is not complete. The source—self-energy corrections will become important for
infrared safety, and diagrams containing couplings to the ’vertical’ pieces of the Wilson-loop
will start to contribute. However, returning to the physical case of four dimensions, these points
are of no concern. This is why we postpone a detailed discussion of these issues to chapter 4 and

turn to the calculation of the presented exchange diagrams up to the two-loop level immediately.
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Chapter 2

Calculation Techniques

In this chapter, the calculation techniques used to reduce the analytical expressions for the
Feynman diagrams to a linear combination of elements from a minimal set of basic scalar
integrals are described in detail. Necessarily, the material presented here is somewhat technical.

To enhance readability, graphical representations of the formulae are presented where possible.

The adopted reduction strategy is complete in the sense that neither a specialization only to
integrals occurring in the calculation of the static potential nor a restriction of allowed powers
of propagators or numerator structures is done. Hence, the algorithm may well be used to treat

the two-loop—part of possible higher—order calculations.

An algorithm for massive two-loop two—point functions was already presented by Tarasov
[23]. Treating the massless case only, the new feature added here is the inclusion of non-covariant
propagators (arising from the source lines in our particular case). This effectively introduces
one more ’four’-momentum, namely the vector v, into the integral, hence making a tensor
reduction a la Passarino/Veltman [27] somewhat involved. To avoid the problem of singular
Gram—determinants, we therefore take Tarasov’s method as a basis for a generalization to

source propagators.

Before presenting the reduction algorithm in detail, it is worthwhile to explicitly give the

two cornerstones of the (purely algebraic) reduction strategy.

Following a trivial reduction of scalar products in the numerator, the first step is to trade
the remaining scalar products for operators I’, which raise the indices of the propagators as well
as the dimension of the integral. This is efficiently done by generalizing Tarasov’s method to

include static propagators.

In a second step, pure propagator integrals with arbitrary powers of the lines are reduced
in a standard way (integration by parts) [20] to a minimal set of basic scalar integrals. The new
point here, as already introduced by Tarasov in his treatment of covariant propagators, is to

mix in the T—operators, as to allow only integrals with the original dimension of space—time to

12
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Figure 2.1: The master two-loop two-point diagram

build up the basic set.

This chapter is organized as follows. In section 2.1 the general notation is introduced,
followed by a description of an optimal procedure for the integrand simplification. Furthermore, a
method for the representation of tensor integrals as well as integrals with irreducible numerators
in terms of scalar ones with shifted space—time dimensions is given. The next section describes
the structure of a generic algorithm to reduce the scalar integrals with shifted dimensions to a
minimal set of basic integrals. Each part of the algorithm is illustrated graphically to enhance
readability. In section 2.4 the general strategy to obtain such recurrence relations is outlined,

including some concrete examples.

2.1 Preparation

In this section, a description of the method to reduce the calculation of two-loop two—point
integrals with boson—type as well as static—type propagators to calculating scalar integrals only
will be given. The main strategy is to trade irreducible numerators for a shift in the integral’s

space—time dimension, using (and generalizing) the method of refs. [21, 22].

2.1.1 General Notation and Numerator Simplification

In principle, all possible numerators (containing the four vectors ky, k2, ¢, v), including scalar
as well as tensor ones, can be treated directly with the method of tensor decomposition of
individual integrals by certain operators 1" given in section 2.1.3. Nevertheless, it is useful to
do some ’naive’ simplifications beforehand, since the T—operators are 'costly’ in the sense that

they enhance the number of terms to be treated by the subsequent reduction algorithm.

There are two types of denominators,

1 :
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the former stemming from gluon, ghost and fermion propagators, and the latter stemming from

the source propagators. Adopting the conventions given in fig. 2.1, the momenta are
ki, kay ks=ki—q, ka=ky—q, ks =k —ky where ¢=(0,q). (2:2)

Due to the orthogonality of the external vectors ¢ and v, there are only three different generic

source propagators, namely Sy, Sy and Ss. For integration measures, the abbreviation
dPk;
/i = [ (2.3)

The generic two-loop two—point tensor integral then has the form

will be used frequently!.

(k1) (kz) ~-(k2)x, o [abede, zy2]
- f f (k) o), o), DY DRDS DYDESTSYSE (24)

where the symbol o means that momenta k& have to be considered under the integral sign.

The evaluation of diagrams in tensor form is more involved than the evaluation of scalar
diagrams. In practice, one contracts the tensor structure with the appropriate projectors (con-
structed from the two external vectors g,,v, and the metric tensor g,,), resulting in scalar

integrals of the form
N (Frks, kY, k3, kg, kag, kv, kav) o [abede, zyz] (2.5)

where A/(k) is a polynomial in the seven nonzero scalar products. Hence, it is sufficient to
describe the simplification of scalar numerators only.

Anticipating the result of section 2.1.3, it is most efficient to remove the products
(k1kq), ki, k3 in favor of (k1q), (k2q) from the numerator polynomials A'(k) wherever possible,
since the latter scalar products result in a lower shift of the integral’s space—time dimension.
Scalar numerators that cannot be simplified further based on this criterion will be called ’irre-

ducible numerators’.

Naive Simplifications

To eliminate scalar products quadratic in the loop momenta k, the following identities can be

used:

k2 Dy = 1

ater, we will choose b = 47, but let us stay more general here.
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k5Ds = (2(k2) = ¢*)Da+1
k2 o [a0cOe, 202] ™25 (k2 4 k2 — 2(kyky)) o [aec00, 220]
ki Dy = 1
ki D = (2(k1q) — ¢*) Dy +1
k2 o [0b0de, Oyz] ™ S (k2 4 k2 4 2(kks)) o [eb0dO, 2y0] (2.6)

An underlined variable means that the corresponding index has to be greater than zero.

Factorization

After performing the above simplifications, the scalar product (kik3) remains in the numerator
only if the propagator Ds is canceled (i.e. e=0). In this case, and if there is no propagator Ss
(i.e. z=0), the substitution

(kle) — (klvingU) + (qu;ngQ) -|-A12 (27)

where
UpVy  Guy
02 PR

allows one to factorize the integral into products of one-loop integrals. Integrals containing

A12 = kl PT kQ with PTM“’ = guy — (28)

an odd power of Ay vanish identically since the transverse tensor of eq. (2.8) will always be
multiplied by one of the external vectors ¢ or v. Integrals with even powers of A5 then factorize

as
A /2 fl (ki k1q7 klv) f?(kgv k?qa kQU) A?QI
= N(2n) /lfl(k%akl%klv) (k1 Pr k] ”/ng(kg,kgq,kgv) (ko Prka] ™. (2.9)

Here, the prefactor can be calculated as

- . 2n+1 D=2
N(Qn) — 1#1---#271 PT7M1U1 B 'PTy,Mzlen 1U1---U2n — I ( 2 ) I ( 2 ) (2.10)

(PT7#1M2 e PTyﬂQn—lﬂQn T#1~~~M2n)2 I (%) r (W) 7

where the T, 1, = Gluips ' Gusn_1pen] are totally symmetric tensors constructed from the

metric tensor only.

Irreducible Numerators

After applying the above simplifications as well as the factorization of the 'mixed’ scalar product

(k1k3), "quadratic’ scalar products left in the numerator imply a certain propagator structure:

o if (kiky) is left, then e =0 and z > 0
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o if k7 is left, then @ = ¢ = 0 and either e=0or e > 0 and z > 0

o if k2 is left, then b =d = 0 and eithere=0o0re>0and y > 0

In addition, the four ’linear’ scalar products (k1q), (k2q), (k1v), (kov) will occur in the numerator
polynomial. As already mentioned above, these irreducible numerators will be removed by the

T—-operators of section 2.1.3.

2.1.2 Simplification of the Source Structure

All eight possible combinations of source lines can be transformed to just two patterns, according
to the following flow diagram. To simplify the notation, overlined indices denote a reflection of

the momentum of the corresponding line, i.e. 7= (S7)” = 1/(—(k1v) + i€)®.

[...,chz] 5 {[...,;r[)z]
[, 277 N O [, zy0]
[ 7my2] 2

%,;y/j 1 ; {[...,Oyz]

a1 O L0 12

[ 73@2] A {[...,Oyz] _1.2 | [..,202]

[..., FyZ] T [...,20z]

In the above, the shift (1) : v — —v, the interchange of integration variables (2) : k1 ¢ kg, as
well as the (possibly repeated; that’s what the circle—arrows stand for in the graphical notation
used here) inclusion of factors of one (3) : 1 = =S5 (S{ + SQ_), (4) : 1 =55 (51_ +S§_> and
(5):1=254 (52_ + 55_) was used.

Furthermore, as for the boson—type propagators, some 'naive’ simplifications can be made:

(Fiv)Si=1 , (kv)S71=-1,
(]CQU) SQ =1 s (kg?]) S§ =-1 s

(kQU) S]S5 = Ss - S] . (211)
However, note that harmless—looking replacements like S7 = —S; are not allowed. Written out
in more detail,
1 1 2ie ¢ ,
Si = = - S 20 S omib(ky) (2.12)

—(kq1v) + 1€ k1v) + i€ ki1v)2 + €2
(

this becomes immediately clear.
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2.1.3 Tensor T—-Operators

In this section, it will be shown how to write tensor integrals as a combination of scalar integrals
with shifted space—time dimension multiplied by tensor structures made from external momenta
and the metric tensor. The method for integrals with boson—type propagators originates from the
one-loop work [21] and was generalized to arbitrary orders in [22]. Here, a generalization of the
two-loop two—point case to boson—type and static propagators is discussed. For completeness,
one-loop results are collected in appendix A.1. The concept of T—operators works for massless as
well as massive propagators. Here, the derivation is shown for the massless case, but can easily
be generalized to massive propagators. The ’massive’ and 'massless’ T—operators are exactly

the same.

For an easier comparison to the work of Tarasov, it is convenient to introduce a separate
notation for inverse propagators. Let ¢; = DZ-_1 (i=1..5) denote the boson—type inverse propa-

gators, while ¢g = Sl_l, cr = 52_1 and cg = 5'5_1. The tensor integrals of interest are written

- (k2)a k2)x, 1
// 122 Ug)ﬁ4 (l/5 )l/61 V7 1(18 ) = T,ufl--,u'ryAL-Aé (J+7 D+) / / 1 vg ! (2]3)
1J2c¢) “--cg

‘31 Co"C37Cy C5 Cg C7 Cg

where J1t are operators raising the indices of specific propagators, and D1 is the operator

shifting the value of the integral’s space—time dimension by two: D+ 1(P) = [(P+2),

For a derivation of the T—operators on the right-hand side of eq. (2.13), the integral is first
converted to an a—parametric representation. Using two auxiliary vectors aq, ay to rewrite the

tensor structure as

0

A1,

'8a1,p78a2,xl v //GXP{ @k ) 68(02k2)} ) (2.14)

a; =0

employing the a—representation for propagators (see e.g. sect. 27 in [28])

~Lexp {—ac} , (2.15)

shifting the loop momenta, and solving the ID—dimensional Gaussian momentum integrals

/de exp { - AR} = A= Dﬂ?”(g/) 0 Cdk kP exp {—) = < )D/2 (2.16)

(for real, positive coefficients A), the integral in (2.14) can be represented by

2 P/ Q, @y, ay 3 (a
H/ doi (b?f( )) eXp{_Q( fg((i)” ( )} ! (2.17)

where

fala) = (041+043+045)(042+044+045)—a§a
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fs(a) = ¢ [(a1 + ag) (3 + au) a5 + (a1 + ag) agas + @y (03 + a4) ]
2

—UZ {(oc2+oc4+oc5)oe§+(041+043+045)043+(041+042+043+044)oc§

+ 2 (g + a4) agas — 2 (0q + az) aras + 2045046057} )

Q (o, a1,02) = (a19)Q1(@) + (a29)Q2(a) + (a1v)@Q3(@) + (a20)Qa(a)

-I-anu(Oé) + (ar1a2)Q12() + (Ian(OA) ) (2.18)
with
Q1) = az(az+as+as)+ asas,
Q2(a) = a4(0q +as+ as) + azas ,
—2Q3(a) = (o + s+ as)as+ asar + (ay + a4) ag
—2Q4(a) = asag+ (01 + azs+ as) ar — (o + a3) as ,
—4Q11 () = as+as+as,
—2Q12(0/) = 05,
—4@22 (O/) = o + Q3 + ax . (2]9)

There are two crucial observations to be made at this point: First, the space—time dimension
D only occurs at one place in eq. (2.17), which allows to write the denominator f; in the
exponential function as the operator D*. Second, the entire dependence on the auxiliary vectors
ay, ay resides in the function @, allowing to pull a factor of exp(—Q/ f2) out of the integral, if
every « in () is interpreted as an operator increasing the index of the corresponding line by one
(recall the representation (2.15)). Hence, putting together eqs. (2.13), (2.14) and (2.17), one

finally obtains an expression for the T—operator:

Dt
Tul...pf,)\l.../\s = 81117“1 ---8(117}“_ 8(127)\1 ---8(12,)\., exp [(alq)Ql + ((I/ZQ)QZ
+(@0)Qa -+ (020)Qu + 2@ + (0102)Qz + 03022 | }\ (2.20)
aj:uj.]“‘

Note that, in contrast to the widely used method of tensor decomposition a la Pas-
sarino/Veltmann [27], no contractions with external momenta and the metric tensor and no

solution of a linear system of equations were needed in this approach.

2.1.4 Scalar T-Operators

For the special case that one has to reduce integrals with scalar numerators of the type

qu kgq kl’U) (kQ’U)u
rstu /fz V1 V2 Vs U4q Vs Vg V7 U (22])

€1 Cy7C37Cy C5 C Cp Cg
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only, the T—operators simplify considerably and hence are a lot easier to implement. By either
contracting the result of the previous section with the suitable combination of ¢, and v, or by
following the same lines as above introducing four scalar parameters instead of the two auxiliary

vectors, the result is

~ 1
12 =1, @ DN T (34, D%) [ [ (222
1J2 C1 ...68
with
r s b2D+ 2 2 2
T,s = 83313352 exp Tz q [Q1331 + Qaxo + Qroz122 + Quizy + Q22$2} (2.23)
T1=xz9=0
a;:uj.]"*‘
5 t qu »’Dt 2 2
T = 0,05, exp v [Qg:vg + Qazs+ Qraz3zs + Qriz3 + Q22$4} (2.24)
z3=24=0
a;=v;Jt

and the @; given in eq. (2.19).

At this point, note that the problem of numerators in two-loop integrals is solved completely
by the T—operators of eq. (2.20) and eqs. (2.23), (2.24). All possible two-loop tensor and scalar
integrals, (2.13) and (2.21), are transformed to pure propagator integrals, the reduction of which

will be treated in the next section.

2.2 Reduction: General Strategy

Before presenting the reduction algorithm in detail, it seems to be worthwhile to give an overview

over the types of integrals, the notation used and the main results.

i

D=0 — {none} Ve Vo
ve Ve [—O-r0z] — (D= Voo s
Ve [ -O0-200] — {-00-. 0O, 00O~}

Vi —@—zgg — {none}, Jss, J1a
O] — {5 )"

| S0l — {0} a7
e[S iu] = (67 -0-)"

Jr| (D ] — 0

MO

|K
o
&
“H
(e
2

[
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[—( ":":",—,:Cyz} — 0 (2.25)

Some notation used in the above compact diagram needs to be explained. Reflecting the
notation of Tarasov, the integrals are classified according to the number of different boson—type
propagators they contain. Integrals with five different bosonic lines fall in the F'—class, while
the classes V, J and Z contain those with four, three and two (or less) different boson—lines,
respectively. Classes can have a number of members, differing in topology. This is sketched by
the little graphs in brackets. Boson—type lines with a non—zero index are drawn as full lines,
while the static propagators can either lie on any full line, or, when the corresponding bosonic
line is absent, they are indicated by dotted lines. Separated by a comma, the source—structure
is explicited. Like above, an underlined index must not be zero. Furthermore, the integrals on
the left—hand side of the arrows may have any powers of propagators, and the integral measure

may have any dimension D + 2n, n being an integer.

On the right—hand sides, it is indicated what the result of the corresponding part of the re-
duction algorithm is. The graphs in curly brackets are the basic integrals. They form a complete
set. All lines drawn have the power one. Single lines stand for bosonic-type, double lines for
static propagators. The dimension of the basic integrals is reduced to the original space—time

dimension D.

2.3 Reduction: The Algorithm in more Detail

In this section, the arrows of (2.25) are filled with details. A complete set of recurrence relations
is given for each step. They are chosen to do the reduction in a very economical way, but of
course there is no guarantee that this is the optimal set. A description of the derivation of these

relations is postponed to the next section.

2.3.1 F-Reduction

All integrals involving five different bosonic propagators can be reduced to simpler cases, no
matter what the source—structure is. This is one of the major simplifications arising from having

a massless theory.

(Q-EZ)‘ v%Qy L@ne7 Va
[abede, 200] J

L@nea vq

[abede, 20z]

[abede, zy0] (i%@, {

The two recurrence relations needed are
cilabede, zyz] = {al"’ (27 -57)+e37 (47 -57) + meSQ_} [abede, zyz]  (2.26)
colabede, zyz] = {b2+ (17 —-57) +dat (37 —-57) + yS;ST} [abcde, zyz]  (2.27)
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with coefficients ¢; = (a+c+2e+ 2+ 2—D) and ¢; = (b+d+2e+y+ z— D). The bold-
face numbers are operators raising or lowering the indices of the corresponding propagators,
e.g. 11 [abede, xyz] = [a+1 bede, zyz].

2.3.2 V-Reduction

The reduction of integrals with four bosonic propagators has to be done in three steps, reflecting
the possible distinct topologies, cf. (2.25). The integrals of type V52 have an F-like topology due
to the presence of S5 and will be considered first. Next, products of one-loop integrals, V.,

will be reduced, followed by the type V4, containing V—integrals in the sense of Tarasov.

Viso—Reduction

(a) Reduce the source—structure [..., 20z2] to [..., 002].

[abed0,002] __ (see b) [abed0,002] _ (see b)
2.28) (2.29 2.30) (2.31) (2.32) (2.33 2.34
[abed0, 202] (2:28), (2-29)_ {fabedo, 101) (2:30), (2:31), (2-32), (2-33) (inn10,101] 234) v,
"/one J35

The recurrence relations needed to reduce the source indices read

(2= 1) [abed0, 202] = {2 (b2* + da*) (ST — S5 ) S5 } [abedo, #02] (2.28)
(v = 1) [abed0, 202] = {2 (b2* +d4¥) STS7 |
—2 (a1t 4+ 627 4 3T 4 da™T) Sl__} [abed0, 202] . (2.29)

The case [...,101] is then further reduced by

(a—1)g*labed0, zyz] = {(a—1)37+17 (s +28¢S7) } [abed0, 2yz],  (2:30)
(c = 1) g%[abed0, zy2] = {(c—1)17 +37 (es+ 2887 ) }labed0, zy2],  (2.31)
(b—1)g*[abed0, ayz] = {(b—1)47 +27 (o5 — 28187 ) } [abed0,zy],  (2.32)
(d = 1) g*[abed0, ayz] = {(d—1)27 +47 (cs - 25757 ) } [abed0, vyz],  (2.33)

with coefficients ¢3 = (a+2c+2—-1-D),cs = 2a+c+az—-1-D),¢s = (b+2d+y+2z—-1-D)
and cg = (2b+d+y+2z—1-D).

The last transformation is due to the integral’s symmetry. Consider
[abba0, 110] = [aabb0, 110] = [aabb0, 101] + [aabb0,011] = 2[aabb0, 101],

where first the shift k; — ¢ — k; was performed, then the identity 1 = S5(S5 + S7) was used,

and finally the exchange of loop momenta ky <> ko as well as the inversion v — —v was done in
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the second term only. Reversing the equation chain, as a special case the relation
2[11110,101] = {sfs;5 }[11110,101] (2.34)

follows, as needed in the above diagram. The right-hand side of eq. (2.34) is a product of one-loop

integrals.

(b) Treat the case [...,00z] (here, [abed, z] abbreviates [abed0, 00z]).

(2.39)_(236)_ ([1111,2] (2:40), V.., Jss
(abed, 2] (2:36)_(2.37)_(2.38) {Wlm]_og{v J
[abed, 2] (ié@, J3s | oroT o '[]35 ] {J e [ ](D)
= alll,1] 111,1
jabed, 1] (230) (237 (239 {J% o=\ [ 1] .{J

In the above diagram, two arrows do not carry labels since the corresponding recurrence relations
are not listed below (in fact, they are rather lengthy). However, these two relations are not

needed in the calculation of the potential. The others read

(2= 1) (2= 2) g*abed0,002] = {4d ((b+2d+2 - D)4* +b2* (1 - ¢*4%)) ¢S5~
—(2=1)(2—2) (27 —47)} [abed0, 00z] (2.35)

as well as

(c—1) qg*[abed0, zyz] = {(a c+1)3™ +alt3” (q2 3- )—I—(c—l)l_}[abcdo,myz] ((2.36)
')
’)

with ¢z = (a+2b+2c+d+z+y+2z—1-2D) and cs = (a+b+2c+2d+2e+2+y+2z—1-2D),
and finally

(d—1) g*[abed0, zyz] = {074_ +alt4~ (3 (d—1) _} [abed0, zyz] (2.37)

-q )+
(b—1) ¢*[abede, vyz] = {082_ +al1t2™ (3_ q’)+ (b- )4_} [abede, zyz] , (2.38)

4c9q?[al110,002]

{ta=1)3" = (a—2)17 = 37177 —¢? (a1¥37 4 274" 4 a%27)

+q" (1% +3%) 3557} [a1110,002], (2.39)
4(4=D)[11110,002] = {(2% +4%)g?S{ts;™ —1+37 —2%4-
—3%t17 —4%27}[11110,002], (2.40)

where cg = (¢ + 3 — D).

V,..—Reduction

The integrals V,,. are products of one-loop-integrals. They are reduced according to (here,
[abed, zy] abbreviates [abed0, zy0])
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labed, zy] 241, (242), [abed, 4] (243), (244), (245) (246) (1111, 33) @47), [1111, 331

To reduce the source-line indices of the one-loop integrals to 0 or 1, one uses
(z — 1) [abed0, zy0] = {—2 (a1t + ¢8%) ST ¢ [abed0, zy0] (2.41)
(y — 1) [abed0, zy0] = {—2 (b2F + da™) S5~ & [abed0, zy0] . (2.42)

In the next four steps, all boson—line indices can be reduced to 1 by

(e10 — 2¢) (a — 1) g*[abed0, 2y0] = {(a+c+z — D) (c10—2)17 } [abed0, zy0], (2.43)
(e10 — 2a) (c — 1) g*[abed0, 2y0] = {(a+c+z — D) (c10 —2) 37} [abed0, zy0], (2.44)
(er1 — 2d) (b — 1) ¢*[abed0, zy0] = {(b+d+y— D) (e1y — 2)27} [abed0, 2y0], (2.45)
(c11 — 2b) (d — 1) g*[abed0,zy0] = {(b+d+y— D) (c11 —2)47} [abed0, zy0], (2.46)

where ¢10 = (2a 4+ 2¢+ 2 — D) and ¢11 = (2b+ 2d + y — D). Finally, the integral’s dimension is
restored by

4(x4+1-D)(y+1-D)DF[11110,250]) = ¢*[11110, 2y0]P) . (2.47)
V,;—Reduction

The V4—type integrals are V—integrals in the sense of Tarasov. This type of four—boson integrals

can again be removed completely, due to the masslessness of the propagators.

(2. 48
[0bede, 2y0] /‘ S35, J1a
[0bede, xyz] [0bede, 002]
[0bede, 20z] (2.48)
[ab0de, zyz] O J35 5 Jia
[a0cde, zy0]
[a0cd <
[a0cde, zyz] [a0cde, 20z /‘2
[abcOe, zyz]
Here, the shifts (1) : k = k+¢q; ¢ = —q, (2) : ks = ki —ko+qand (3) 1 k1 = ka—ki1+¢; v — —v

as well as the interchange of integration variables (4) : ky <> kg had to be used, as well as the

relation

(2¢+ e+ z — D) [Obcde, zyz] = {65+ (4= -37) - ZS;-ST} [0bcde, xyz] . (2.48)

2.3.3 J-Reduction

Integrals with three different bosonic propagators are treated in four steps. The integrals Jss
are, topologically, of V-type. J4 ;, denotes sunset—type integrals with two different source-lines,

while Jy4, collects those with at most one source-line. Finally, J..., collects the tadpoles.
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Js3s—Reduction

(a) Transformation to the standard type [a¢b0d0, 00z].

[2b0d0, 2y0] = { —O—C)—,myO] =0

[ab0dO0,
[260d0, ayz] j—< [ab0d0, 202] __(249)_ [4b0d0, 002] (see b)
[0bed0, xyz] 1 [060de, 202 5 O
e, z0z]
[060de, zyz] {
[060de, 2y0] [abe00, 202] (2:50)_ [abc00,002] ) 6
abc00, z02] L2 abc00, 00z
[abc00, zyz] ‘\v e O
[a0cd0, zyz] /‘2 [abc00, zy0] = { —OQ—,:cyO] =0
[a0cOe, zyz] 3

The shifts needed are (1) : k1 — k1 4+ ¢, (2) 1 ko = ko +q, (3) : kg — ky — ko, (4) 1 by —
ky — ka, kg — ki, (5) : kv — k1 — ko +q, ko — ¢ — ko and finally (6) : ky — ¢ — ko, ko — —ky.
Two of the integrals are identically zero, because they are a product of a one-loop—bubble—
and a one-loop—tadpole—integral, the latter of which vanishes (in the massless case at hand) in
dimensional regularization due to the absence of a dimensionful parameter. The two recurrence

relations used are

(2a 4+ z — D) [ab0d0, zyz] = {—ZS;-SI_} [ab0d0, zyz] , (2.49)
(2b+y+ 2 — D) [abe00, 2yz] = {28FST }[abe00, ayz] . (2.50)

(b) Reduction

2.51 21 (2.52) (2.53) (2.54 21 (2.55 21(D)
[ab0d0, 002] (2:31),  [ab0d0,002] Q)‘( o);( U); [11010,002] (2:33),  [11010,002]

c{

The source—line is reduced by
(2= 1) (z = 2)[ab0d0,0yz] = {(2a+2— D)2a1*S5~ }[ab0do, 0y2], (2.51)
while relations for the bosonic lines read

(d—1) (c12 — b+ d) ¢*[ab0d0, zyz] = {e1a(c1o+b+d —2)47} [ab0d0, zyz], (2.52)
(b—1) (c12+ b— d) ¢*[ab0d0, zyz] = {ciz(c1z+b+d—2)27} [ab0d0,zyz], (2.53)
(a— 1) (2a — D) ¢*[a1010, 00z] {—2¢1317} [a1010,002] , (2.54)

with ¢1o = 2a+b+d+z4+y+2z-2D) and ¢13 = (2a+2—2—D)(2a+2z+1-2D). A reduction

of the integral’s dimension is then accomplished by
4erq (2 — D)DF[11010,002]P) = — (2 - D) ¢*[11010,002]P) (2.55)

where ¢;4 = (2 4+ 1—-2D)(z+ 3 —2D).
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Ji42y—Reduction

(a) Reduction of source-lines.

< {

Where the shifts needed are (1) : k - k+¢; ¢ & —g and (2) : ko — ki —

relations can be used:

[0bcOe, 110]
']14,x

(2.57)

[0bcOe, 1y0] St

(2.56)
(TP
2

{

ko, and two recurrence

[0bc0e, 210]

0bcOe,
[0beDe, yz] [0bc0e, 2:0z]

[a00de, 2y =]

']14733

(z — 1) [Obede, zy0] {~2¢5* (ST - 87) ST — 2¢8+S7 ™ } [0bede, ay0],  (2.56)

(y — 1) [abcOe, zy0] { 2e571 (81_ — SQ_) Sy — 2b2+82__} [abcOe, zy0] . (2.57)

(b) Reduction of bosonic lines. To save space, here only [bce] will be displayed instead of

[0bcOe, 110].

[111] (2.?)4) {Ell](D)
J 7 14,z
[1e1] (2.60) ) 7' [111]
ed] (2_509_)> Z O |[121] (2.63) {J14,x
[bee] (150@, [b1e] [11€] (lgﬁ, [112] (2.62) {[121]J
Jiaz, 4 Jrage, 2 Jia,z
[111] J

The shift reads (1) : ky — ¢ — ko, k2 = ¢ — k1; v — —v. The recurrence relations are

(b=1)(c=1)q

(e=1)-1q

cig(c—1)(c—2) q*

[0bcOe, zy0]

2[0bc0e, zy0]

[0bcOe, zy0]

{e=1)(eis5+e)2"+(b—1)(c+2e+z—1- D)3~
+ (=1 ((c=1)57 — 2575737 } [0bcOe, 2y0] , (2.58)
{le=1)(c15+0)3" +(c—1)(2b+e+y—1— D)5~
+ (¢ —1) (e = 1) 27} [0bcOe, zy0] (2.59)
{e17(c—2)8~

+ ex (— (c—2)q* + (c1s + e+ z) 3_) 3-5%StS;

+e(c—2) (c19+2) 2783751} [0bcOe, zy0] (2.60)

1y (e — 1) ¢*[0bcOe, zy0] = {0175_ +z ( e—1)g*—(cig—c—2+D) 5“) sfs;
+ ¢ (16 +2) 2783757} [0bcOe, zy0] (2.61)
(442 — D)[0b1d2,2y0] = {(4+z - D)3¥5™ + S]] } [0b1d2, zy0], (2.62)
(5 D)g*[01201,110] = {(4— D) (11-3D)3™ +D* (9(3 - D) 5+s{+++

+2(11 - 3D) (257 S+ 4+ 3¥5+SET — 57
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+3(5— D)2t SHH) 378787 101201, 110],  (2.63)

with coefficients ¢15 = (b+c+2¢e+24+y—1-2D),c16 = 2c+z - D), cir = (c+e+ 2z —
D)(4b+2c+2e+2+2y—2-3D),c18=(2b+c+e+y—2D) and ¢19 = (2¢e + 2 — D). In the

last step, the dimension is reduced by

3c0DT[01101,110]P) = {_ (7-3D)5%STs; [q2D+ +6DTt ((5 —-3D) (2% 4 5%)
+3(3-20)St4) | +(3-D)q*}[01101,110]P) (2.64)

Wlth Cop = (2 - D) (5 - 3D) (7 - 3D)

Ji4,—Reduction

(0bc0e, z00] __(2:65) {[Oche,loo] 01101, 100](2)
CUE, T :

’ 7—0—’ (2.66) (2.67) (2.68) (2.69) D)
[0bc0e, 0y0] 1 (0bee, 000] 2= o 101101, 000] 2=, (01101, 000]

Here, all relations used in the lower line can be obtained by Tarasov’s relations in the massless
limit, of course. Like above, four recurrence relations corresponding to the unlabeled arrow are
not listed, because they are not needed for calculating the potential. They will be relevant for
higher—order calculations only. The shift is given by (1) : ky — ¢ — ko, ko — ¢ — k1; v = —v,

the relations read
21 (z — 1) [0bcOe, 200] = {— (2642 — D) b2% + 2¢21¢3%) ST~ + [0bcOe, 00]  (2.65)

with cg1 = (b+ e+ 1 — D), as well as

(b — 1) (2b — D) ¢*[0bc0e, 000] = {c2227 } [0bcOe, 000] (2.66)
(c— 1) (2¢ — D) g*[0bc0e, 000] = {c2237 } [0bcOe, 000] (2.67)
(e — 1) (2¢ — D) ¢*[0bc0e, 000] = {c9257 } [0bcOe, 000] (2.68)
(2—-13D)(3—3D) (4 —3D)D*[01101,000]”) = (2— D)g*[01101,000]"), (2.69)

with oo = (204 2c+2e —3D)(b+c+e—1-D).

J....—Relations

The remaining three—boson—integrals are identically zero:

[ab00e, zyz] = [ ( | ) ,xyz} =0 [00cde, zyz] = [ﬂl,myz} =0

This is obvious from the little graphs, since massless tadpoles vanish in dimensional regulariza-

tion.
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2.3.4 Z-Relations

All integrals with two (or less) bosonic lines are identically zero, independent of their source
structure. From the ten possible boson structures, for eight of them this is immediately clear

because they are special cases of the J,..,—relations:

[0600e, 2y 2] [000de, zyZ]

[a000€, zyz] = {,zyz} =0 [00cOe, zyz] = [,wyZ} =0
[@b000, 2y =] [00cd0, zyz]

[@00d0, zyz] /1 [06c00, zyz] / 2

The shifts needed here are (1) : kg — ko + ¢ and (2) : kg — kg — ¢.

For the remaining two integral types, we have

[a0c00, 2y z]

[060d0, zyz] = [ —C/—,acyz} =0

This zero is a consequence of a simple integration by parts (see next section for notation):

0 = {akQ’ngﬂ,} o [a0c00, zyz] = {gw + kzyﬁkz’“} o [a0c00, 2yz]
= {g,uu + k2,0, (—yS; + zS;')} o [a0c00, zyz]
0 = {0k k1 } o [060d0, 2y2) = {gu + k1 10k, , } © [060d0, 2]
= {gw + kv, (—xSi" — zS;')} o [a0c00, zyz] (2.70)
Eliminating the terms proportional to v, by contracting with either q,, ¢,q, or (9., — v,v,/v?),

one can conclude that [a0c00, zyz] = 0 and [060d0, zyz] = 0, indeed.

2.4 Derivation and some Examples

All recurrence relations listed in the preceding section can be derived by a combination of two
methods: first, a generalization of the traditional method of integration by parts [20] to include

the static propagators, and second, the use of T-operators (see section (2.1)).

2.4.1 Traditional Method
From the trivial identity 2
0 = [ [ 0, Pulln, ks, g, 0) DIDEDSDIDESTSYSE
1J2

= {&CLMP‘L(M, ko, q, U)} o [abede, zyz] (2.71)

2There is a similar identity with 9%, , of course.
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one can derive generic relations among the two-loop—integrals by choosing P, in a clever way.
Doing the derivatives, one produces a numerator containing ¢,,, = D as well as scalar products
of the momenta. The latter are written as inverse propagators, like 2(k1q) = ¢* + ki — (k1 —q)? =
q> + 1~ — 3~. For the inverse static propagators, the relation
Sy =85, +55 (2.72)
can be used in addition to (kyv) = ST and (kov) = S5 .
As an example, consider eq. (2.71) with P, = (k1 — ¢),. Doing the derivatives, one gets the
relation (2.26). Now, settinga=b=c=d=e=1and z =y =2=0,
(4= D)[11111,000] = [20111,000]—[21110,000]+ [11201,000]— [11210, 000]
= 2[20111,000] - 2[21110,000], (2.73)

where the last line follows from the integral’s symmetry under an exchange of inner momentum

labels. This relation can be illustrated as

D=5 (-C---00) . .14

where a dot on a line means it is squared. In this particular case, a non—trivial two-loop diagram

is expressed through diagrams of much simpler structure, which sheds some light on the enor-
mous power of the integration by parts method. Another explicit example was already given in

eq. (2.70).

2.4.2 Additional Relations

The new idea, as introduced by Tarasov, is to replace the scalar products obtained after dif-
ferentiation not only by inverse propagators, but also by T—operators. In this way, relations
between integrals living in different space—time dimensions can be obtained in addition to the
‘traditional’ ones. For numerators containing the integration momenta only linearly, the scalar

T—-operators can be used to get the relations
1
0={(kiq) — (k1q)} = {q2D+Q1 5 (q2 +17 - 3_)} o [abede, xyz]
1
0 ={(k2q) — (k2q)} = {q2D+Q2 —3 (q2 +27 - 4_)} o [abede, vyz2]

{D+Q3 - Sl_} o [abede, zyz]
0 = {(kov) — (kov)} = {D+Q4 - SQ_} o [abede, xyz] . (2.75)

o
[l
—
~~~
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<
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~~~
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<
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—
[l

The operators Q are the functions @ given in eq. (2.19), understood at a; = v;J*.

The last relation useful for deriving the recurrence relations can be obtained from eq. (2.17)

and reads

0={1-1}= {D+f2 - 1} o [abede, Tyz] . (2.76)



2.4. DERIVATION AND SOME EXAMPLES 29

Again, the operator f; denotes f; of eq. (2.1.3) at aj — v;JT.
As an example, consider the recurrence relation used to reduce the source-index of a Jy4 o~

type integral, eq. (2.65). It is derived by a straightforward evaluation of the derivatives in the

following relation:

—1
0 = {—8/@,“ (Fau(b+ 1)2F + (ky = k2) ,e5%) bz"‘"TTD"' + (1+bte—D)(z—1) {D*f, — 1}
+ ((2+42b—D)b2t + 2(1+b+e—D)e3*) ST {D* Qs — ST }} o [0be0e, 200] (2.77)

Here, all three kinds of relations, eqs. (2.71), (2.75) and (2.76), are used to build up the needed

recurrence relation.

To end this section, it should be emphasized that relations are not always as compact as
the few examples given here. Combining partial integrations and the T-relations in a way to
give useful recurrence relations is sometimes more an ’art’. Hence, an elegant automatization of
the derivation of the complete set of recurrence relations (see the very recent proposition [29]

and references therein) would be most welcome.



Chapter 3

Results

Here, we utilize the results derived in the preceding two chapters to obtain expressions for the
static potential in four and three dimensions. We have to compute the set of Feynman diagrams
contributing to the potential up to two loops, cf. figs. 1.3 and 1.4. The method employed can

be briefly summarized as follows:

e All dimensionally regulated (tensor-) integrals are reduced to pure propagator integrals
by a generalization of the method of T—operators [22]. The resulting expressions are then
mapped to a minimal set of five scalar integrals by means of recurrence relations, again
generalizing [22] as well as [20] to the case including static (non-covariant) propagators.
The generalized T—operators as well as the generalized recurrence relations were discussed
in detail in chapter 2. These two steps have been implemented into a FORM [30] package.
Thus, we constructed our method to be complementary to the calculation in ref. [9],
assuring a truly independent check of the four—dimensional result presented therein. At
this stage, one obtains analytic coefficient functions (depending on the generic space—time
dimension D as well as on the color factors and the bare coupling), multiplying each of

the basic integrals. Results are given below in section 3.1.

e The basic scalar integrals are then solved analytically, see appendix B. Expanding the
result around D = 4 (which is done in both MAPLE [31] and Mathematica [32] considering
the complexity of the expressions) and renormalizing, one obtains the final results. The

four— and three—dimensional cases are discussed in sections 3.2 and 3.3, respectively.
Important checks of the calculation include
e gauge independence of appropriate classes of diagrams, in D dimensions,
e confirmation of cancelation of infrared divergences,

e correct renormalization properties.

30
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These points will be addressed below, where appropriate.

3.1 D Dimensions

Let us finally present results for the static potential. All calculations are performed as outlined
above, allowing an automated algebraic reduction of every diagram to the minimal set of ba-
sic integrals in a generic dimension D. The bare momentum—space potential is obtained after
summing all exchange diagrams contributing to the potential. The relevant set of diagrams was
discussed in chapter 1.2. There it was demonstrated that, due to the logarithm in the definition
of the static potential, a large class of diagrams cancels exactly against iterations of lower—
order ones, such that only a subset has to be considered for the potential. These subsets of

non—iterative diagrams are shown in figs. 1.3 and 1.4. The two-loop potential can be written as

Volg®; 96, D) =

2C
—g(;zF {1+dei(a® D) +gieala®, D)+ O(gl) } - (3.1)

The coefficients ¢;, being functions of the momentum exchange g and the generic dimension
D, are obtained directly from the diagrams, i.e. ¢; results from summing the set of one-loop
diagrams displayed in fig. 1.3 and ¢35 represents the two-loop ones of fig. 1.4. Employing dimen-
sional regularization [33], the only dimensionful parameter is g, so the ¢; exhibit a trivial scale

dependence

e’ D) — (ﬂ)iew) (32)
Y (4m)D/2 | AT >

This becomes clear by noting that the gauge coupling acquires a dimension for D#4. Counting

mass dimensions, we thus have
go~4=D , (9) (g’ D)~0 , Vig~2=-D, (3.3)

such that the coordinate-space potential V' (r) « [dP~!q V (q) has the correct mass dimension
of one. The perturbative coefficients ¢; can be further classified according to their color structure.

We define

¢ = cnCy+cioTrny, (3.4)
g = enCh+ c1CaTrny + co3CrTEny + 024T13~n§ . (3.5)

Working in the linear covariant gauge with arbitrary gauge parameter, and performing the

calculations as described above, we get the following results for the coefficients ¢;;(g?, D)

(4D —5)(D—2)
. = 2(D — 1) _O_ (3.6)
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Ci2 = _% _O_ (3.7)

7D* —19D3 — 156 D? + 740D — 776

T T A5 (D4 (D-1) OO

27D?-705D%+8012D7-51866D%4+210247D5 -552129D*+936394D3-983620D2+574696D-139520 1 N\

(D =5%(D=1)*D =3)(D—4)? q*

D® —11D*+59D3 — 223D?% 4+ 484D — 374
(D=5)2(D=1)(D=3)(D—4) G

(D—-1)(3D - 11)(D — 4) 3D-11
+ CEBE O -5 ¢ OO (3.8)

(D* —10D3 + 33D?% — 14D — 64)

o = UENIGENE 0

4(14D°% = 155D* + 672D — 1415D% + 1412D — 496) 1

(D—=4)(D=3)(D—-1)? q
2(D? - D - 8)
I CENCEE Y G (3.9)

2(D — 2)(D? = 7D + 16)

= T oD -4 OO~

8(D—2)(D—-3)(D*—4D+8) 1
(- 1) (D -4y IS (3-10)

O

[Sv]

+

2
Co4 = % -OO- (3.11)
The small pictures denote the set of basic scalar integrals, discussed in appendix B. There,
generic solutions in terms of Gamma functions can be found. As expected, every coefficient ¢;;
is gauge independent separately. By far the most work had to be done for ¢y1, while the other
three two-loop coefficients are obtained from the subset of diagrams containing internal fermion
loops. The coefficient ¢4 could have been obtained from the one-loop result already, by squaring

C12.

3.2 Four Dimensions

In this section, renormalization as well as infrared cancelations for the four—dimensional static
potential will be discussed. We will find that the constant part of the two-loop coefficient differs
from the previously known one [9], and pin down the origin of this discrepancy. It is interesting

to note that this difference, being due to the omission of certain diagrams in the calculation of
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ref. [9], can be detected best keeping the gauge parameter arbitrary throughout the calculation,
which in turn needs a fairly sophisticated method, like the one we have presented. Finally,

results are presented for the coupling in the so—called V-scheme, as well as in coordinate space.

3.2.1 Renormalization

In D = 4 — ¢ dimensions, the renormalized potential Vg as well as the renormalized strong gauge

coupling apr are defined by

9% _

1672
where the subscript 0 denotes the bare quantities. Note the difference in the normalization of

Vo= uVa |

Zufagr , (3.12)

2
apr compared with the usual strong coupling constant as = Z—Sr. It is chosen such as to keep
formulae more compact, avoiding e.g. an accumulation of factors of 47 in the definition of the
renormalization group S function, see below. The factor 7 is assumed to have an expansion in

the renormalized coupling,

Z = 1+arZ (€)+akZ () + ..., (3.13)
and we choose to work in the MS scheme, related to the MS scheme by the scale redefinition
p? = eV JAn .

One the one hand, the factor 7 is well known in QCD. The coefficients of the Beta function
are defined by the running coupling,

;ﬂaﬂz ap = —foak — Biay — ..., (3.14)
11 4 34 20
Po=5Ca=gTrny ,  Bi= 3031 — 4CFTrng — 5 Calrny . (3.15)
Hence, the coefficients in the expansion of Z are given by
/ 2 " 4 1
ZMS (f):—gﬂo ) ZMS(f):gﬂg—zﬂl . (3.16)

On the other hand, 7 can be obtained from the bare potential by requiring that the UV
divergences be canceled. To do so, suppose we did not know about the Beta function. In terms

of renormalized quantities, the potential can be written as

Crl6m? _ _
Vr(g®) = g {1 tag e (1P/a) +al_er (i*/q%) + O(a?_ )} (3.17)
where a__ = a__(p?) is understood. The MS coefficients ¢; and ¢, can be obtained from the

MS MS
bare ones given in eqs. (3.6) — (3.11) by comparing renormalized and bare potentials, using

eq. (3.12). The result is

cy m(ﬁQ/CI?) = (eﬂ/ﬂ

e - (7/a?) = (“
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Now, requiring these coefficients to be finite, 7' and Z" are fixed by the one-loop and two-
loop terms, respectively. In fact, the anticipated result (3.16) is reproduced exactly, which gives
an important check of the calculation. As a further check on the pole terms, the vertex and
gluon wave function renormalization constants (7; and Z3 ', respectively) have been extracted
separately from the diagrams. They depend on the gauge parameter and agree with the ones
given in [34]. The relation to the coupling renormalization constant as defined above is 7 =
AVARE

An important question that needs to be asked at this point is how one assures that all
e—poles arising from expanding the bare coefficients ¢;; around D = 4 correspond to ultraviolet
divergences only (remember that, in dimensional regularization, infrared divergences will be
regulated automatically by the same parameter ¢, which is a potential source of unwanted
cancelations between UV and IR poles). To answer this question, i.e. proving IR finiteness,
one has to perform a full calculation using a different regularization scheme. Details will be

presented in the next subsection.

Infrared Behaviour

To regulate the infrared divergences, we choose a massive scheme. All propagators are supplied
with an artificial 'mass’ term, 1/k* — 1/(k*+m?*). As an immediate consequence, the recurrence
relations presented in chapter 2 are no longer valid. Also, the set of basic integrals is enlarged,
since vacuum-like integrals do no longer vanish. We will calculate the poles of these mass—
regulated integrals by expanding around D=4. Next, letting m — 0 in the prefactors of the
poles, we recover the pure UV divergences of the original, massless, diagram. These can then be
compared with the e—poles of the massless calculation, exposing the IR divergences whenever a
difference shows up. If the difference is a simple pole 1/, it corresponds to a pure IR divergence,
which we will then term —1/¢;., such that IR divergences would be regulated by D = 4 + ¢;,
[6].

For the one-loop case, we have obtained an alternative, complete set of recurrence relations,
which is given in appendix A.2. Using the same strategy as for the massless case, the bare
one-loop contribution (—g2Cr/q?) g2 c1(g?, m?, D) can be calculated for every single one-loop
diagram, see fig. 1.3, in terms of the massive basic integrals A and B, as given in appendix B.3.
Let us not give the full results here, since we will be interested in the poles only. Using the
strategy outlined above for every diagram, namely first expanding in ¢, then letting the auxiliary
mass vanish and finally comparing the emerging UV—pole—terms with the poles of the massless
calculation, we discover two infrared divergent diagrams. Displaying the IR poles only and
omitting an overall factor of (—g3CrC4/167%¢?),

diag.(A) = 4-2 , diag.(B) = 4+ 2% . (3.19)

—€r —€ir
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Here, the gauge parameter £ is defined as being zero for the Feynman gauge. It is related to the
one introduced in the Feynman rules (see appendix D) by £ = n — 1. As already observed in

1

[6], the TR divergences cancel in the sum', such that the remaining divergences are of pure UV

type, indeed.

At the two-loop level, consider the self-energy contributions to the potential, diagrams
(i) of fig. 1.4, first. Since they do not contain static propagators, we can take full advantage
of the algorithm presented in [23], and its implementation in the Mathematica [32] package
TARCER ([36]. After this reduction step, one obtains analytic results for the bare coefficient
(—92Cr/q*) g6 c2(g?, m?, D) of each diagram in terms of basic massive scalar integrals. The
minimal set of integrals is listed in appendix B.3. Expanding the coefficients in D = 4 — ¢, the
UV poles are obtained. Comparing with the poles of the massless diagrams, one finds a perfect
match, to conclude that no single two-loop self-energy diagram exhibits an infrared divergence.
Cancelation of IR divergences in the remaining diagrams, i.e. those containing at least one static
propagator, was already shown in ref. [6] explicitly. As in the one-loop case, it turned out that

the different topological classes form IR finite sets of diagrams.

To conclude this subsection, it has been demonstrated that IR divergences do occur in
single diagrams (involving static propagators) at D=4, but cancel in the sum. Hence, the above
procedure of extracting the renormalization constants from the massless calculation leads to

correct results.

3.2.2 Renormalized Potential

Expanding eq. (3.18) up to constant terms, we get the coefficients in the renormalized potential,

cf. eq. (3.17), as

a () = a4+ Boln(z), (3.20)
e (2) = ay+ BgIn*(2) + (B + 2B0ar) In(2) (3.21)
with
a; = % 4 — 29—0Tan , (3.22)
a; = (% + 47? — %4 + 23—2C(3)) o <% + ?C@)) CaTrng
_ (53_5 _ 16g(3)> CpTrns + %0 TEn? . (3.23)

These constants constitute the main result of the two-loop calculation [35]. Comparing them

with the results given in ref. [9], we find a discrepancy of 27* in the pure Yang—Mills term

'n fact, IR finiteness occurs on the level of topological classes already, since both diagrams A, B € @
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(ox C%) of ay. This amounts to a 30% decrease of a, for the case of ny = 0, and a 50% decrease
for ny =5 (for SU(3)), which is the case needed for ¢t threshold investigations. This difference

can be traced back to a specific set of diagrams, as outlined below.

Comparison

The origin of the discrepancy is eq. (14) in the second paper of ref. [9]. To explain the cru-
cial point, let us add the diagrams in question, using the notation explained in appendix B.

Neglecting the overall minus sign, the couplings and the color factors, they give

>§< + >K + >< = /1/2(D23551125 + DiasS1125 + D235S1122)

= /1[2(D14SS”25+D23551225)

= /1/2D1455112 (S5 + S5) (3.24)

where the identity S1S; = S5(S2 — S1) (compare [9], sect. 4) was used for the last term of the
first line, and the trivial exchange of loop variables k; <> ky was done in the last term of line
two. In the last line, S5 = S(—ks). One then obtains

1 1
(k1o — kao) + ie + — (k1o — koo) + ie

2ie c + .
T o 2o (ko k) (3.25)

cf. eq. (2.12). Hence, contrary to the assumption in [9], the sum of the integrands in eq. (3.24)

Ss + S5

reduces to a delta distribution multiplying the remaining propagators.

Now, considering the color traces as well as the gluon-source couplings and the overall sign,
one gets as a contribution to the bare static potential (for simplicity, we use the Feynman gauge

here to make the point clear)

diag.(a6) + diag.(b3) = —*"4—60FCZ1 (K +XX) - “JQ—tﬂ)CFCZ1 X
- oo XK e (R X+ X) -

While in [9] the latter term was discarded, we evaluate it in D = 4 — ¢ dimensions to give

6(D—-4)(3D—-11) 1
X+ K+ XK = P LD

1 1
= —W?‘FO(E) . (3.26)

Note that the factor of (D — 4) in the numerator cancels the single pole in the scalar integral,

such that only the constant part of ay is affected by this discussion, while the pole terms are
not changed by the omission of this term. Hence, dividing out the overall factor (— %),
we identify the 272C? difference with respect to ref. [9].
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V-Scheme

The static potential can be used for a definition of an effective ’physical’ charge, which is

conventionally called ay [1]. Defining

1672 ay(q?)

o ) (3.27)

its expansion in terms of the a__ is given by eqs. (3.17), (3.20) and (3.21). Concerning the

convergence of this series, let us give some numbers. For SU(3) and Tr = L, we have

(1033 = 1.11ng) +a?_(456.75 — 66.35m, + 1.23n%) + ...} . (3.28)

MSs

‘IV(‘IZ) =

(g?) is understood. In ref. [9], the first number in the two-loop term was

MS
634.40. One could have written the expansion in terms of Otm/ﬂ' (= 4am), as is usually done,

but apparently the convergence properties do not look very promising in either case. Knowledge
of the three-loop coefficient 357 [34] can be used to derive the corresponding coefficient in the

V—scheme from eq. (3.17). While Sy and B; are universal, one finds

By = S — a8 + (a2 — a?)Bo (3.29)
206 447> 11#4 242
- (_5_'+ 3 12 C())
445 1672 7t 704 224
_<T+ 3 _?+TC(3)) CjTan+<9+—C( ))CAT%T@
686 176 184
— <T - —C( )) CaCpTpng +2CETrny + <— - = C( )) CFTJ%nff (3.30)

The new value for a; leads, for SU(3) and ny = 5, to a 50% decrease of 5} compared to the
formula given in ref. [9]. Still, 3} is much larger than 8}, and hence the effective coupling

defined by the potential runs faster than the MS coupling.

3.2.3 Fourier Transform

The strictly perturbative potential of eq. (3.17) can be transformed to coordinate space. For

this purpose, we need Fourier transforms of terms having the form In"(q?)/q?. Writing

=2 =2\ ¥
fi fi
n"|=]= |0, | =
(.12) [ (q2> ]
and defining the auxiliary function [9]

Flr, iy u) = i / (;Tq)g ‘2‘;()7’;1’2 , (3.32)

(3.31)

u=0
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we can re-express the Fourier transforms, which we need, as

/((217")3 In™ (“_2) expé#") = [00F(r iy u)] |,y - (3.33)

q

Using a Schwinger parameter

1
CBEZ = 1+" / dz 2% exp(—zq?) , (3.34)

the auxiliary function can be evaluated for |u| < 1 to give [37]

Pl = P e (ZC —1—(—1)”)) . (3.35)

We obtain, as our final result for the two-loop static potential in coordinate space,

V(r) = / ((;Tq)g exp(igr) Vr(q*) = —Cr dray (/) ; (3.36)

r

with

s (@1 + Bol)

ayv(1/r?) = aMS{

+a? ((1/24‘53([/2"‘%) + (81 + 2B80a1) L )‘I‘O(

M

) } . (3.37)

|51
JJ

where L = 2In(fire”) and again 0o = am([ﬂ). Note the appearance of the new term %/33 in

the two-loop coefficient as compared to eq. (3.21).

There are now numerous concepts for a ’renormalization group improvement’, i.e. for an
‘optimal’ choice of the MS scale parameter ji in order to reduce large logarithmic corrections.
Examples include the 'natural choice’ i = ¢™7/r and the choice i = exp(—y —a1/280)/r, which
eliminates the one-loop coefficient completely. Due to this freedom, it is not very illuminating to
present plots of the coordinate space potential. A general feature is that, at increasing distance,
the large two-loop coefficient begins to dominate quite soon, even causing the potential to
decrease again above some 7., to signal that the perturbative approach can be followed up to
this critical distance at most. For a discussion of a variety of scale choices we refer to ref. [9].
The smaller coefficient ay found in our calculation does not change the plots presented there
qualitatively. The reason is that the term %ﬂg, which shows up as a result of the Fourier
transform as shown above, is of the same order as ay. A comparison with four—-dimensional
quenched lattice results is given in ref. [38]. There, it is concluded that the perturbative potential
already fails to describe the slope of the lattice potential at the smallest distances that are
numerically tractable, hence invalidating the possibility to match the two potentials at small

distances.
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3.3 Three Dimensions

In three dimensions, one obtains a gauge—invariant, infrared finite result for the potential at
the one-loop level. Fourier transforming back to coordinate space, the one-loop correction con-
tributes a linear term to the potential. The size of this term is compared with lattice simulations.
For the two-loop case, after discussing the renormalization, we will turn to the problematic
infrared (IR) sector. Although a mechanism will be presented that cancels IR divergent contri-
butions from the self-energy, the overall sum of exchange diagrams is shown to be IR singular

and hence non—physical.

3.3.1 One-Loop Result

This section is based on our publication [39]. Let us briefly recapitulate the results given there.
From eqs. (3.1), (3.6) and (3.7), and plugging in the basic integral from the appendix, the bare

one-loop potential reads

2 *Cr 2 20 ( 2)D24 F(%)F(%)
V(g ):_gq2 {1—}—g [(4D = 5)Cx —4ATpng ] p (1‘167r)D2_1 F(%) + ... p (3.38)

One clearly sees that the dimensionally regulated potential is perfectly finite in D = 3 di-
mensions. Hence, setting D = 3, no renormalization is needed (Zl = 0 in the language of
section 3.2.1) and one obtains

_9°CF

2
q2 {1+3§—|‘1|(7CA—4TFTLf)—I—...} . (339)

VP (q*) =

Concerning the possible cancelation of IR and UV divergences, both (if present) showing up

as poles in ¢, the three-dimensional one-loop case proves harmless. Using the massive coefficients
of section 3.2.1 and expanding them around D = 3 — ¢, none of the one-loop diagrams shows a
UV divergence, and since they are finite in the massless calculation also, there are no poles in
€;r. This is due to the fact that the leading IR behaviour shows up as 1/m poles in the coefficient
of ¥ when letting the auxiliary mass m — 0, while dimensional regularization (DR) absorbs
these power divergences. In contrast, the diagrams that exhibit single poles in ¢;,. in the 4D case

started with a logarithmic divergence In(m), to which DR is sensitive.

In two (spatial) dimensions the Fourier transforms, which we need, read —27/g* — In(r/r¢)
and —27/|q|> — r . They can be derived within distribution theory, since the potential is
understood as an operator acting on wave functions which fall off fast enough. The scale rg
introduced in the above is purely arbitrary. Since the potential is defined only up to a constant,

a change in rq is irrelevant. Hence, let us choose the only natural scale at hand, ro = 1/¢2, to
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obtain for the perturbative potential in coordinate space

e . .

ViR = S L n(g’r) + or+ O(g™?) (3.40)
4

with ¢ = g640 (7C4 — ATpny) . (3.41)

The first term constitutes the well-known Coulomb potential in two space-dimensions, while

the linear part is the new information added by this investigation.

The linear term can be compared with lattice results [40]. There, /7 /g* is measured in the
3D pure SU(N,) theory for N, = 2, 3,4, 5 using smeared Polyakov loops. Specializing our result
(3.41) to this case (Tw = 1/2, CpCy = (N2 —1)/2, ny = 0), it reads

pure SU(N,) : \/ 128 ~ 0.1324/N2 — 1. (3.42)

The comparison (see table 3.1) shows qualitative agreement, especially concerning N.—

dependence.
Ne | Vo/9% it | VT/9|pert | lat/pert
2 34 .23 1.47
3 .5b 37 1.48
4 .76 b1 1.48
5 97 .65 1.49

Table 3.1: Comparison of lattice and analytical results

The lattice results are, at least in the range of the parameter N, covered, larger by a factor
of 3/2. The outcome of this calculation suggests that the perturbative part of the potential may

constitute a sizeable part of the full potential.

As is to be expected from the dimensional considerations, the next coefficient in the 3D
coordinate space potential will, if it exists, contribute a quadratic term Ar?. Considering the
concavity and monotony of the potential [41], it will therefore bear information on the range of
validity of the perturbative potential. While this argument was a main part of the motivation
that led us to investigate the two-loop potential, let us discuss the expansion of the two-loop

coefficient around D=3 in the next section.

3.3.2 Two-Loop Infrared Problems

To analyze the structure of counterterms, let us start the discussion by the power—counting
method, as usually used in proofs of renormalizability. If the superficial degree of divergence d

of any Feynman diagram (defined by the number of loop momenta in the numerator minus the
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number of loop momenta in the denominator) is negative, there are no ultraviolet divergences.
If this number turns out to be zero (or greater), the diagram is expected to have a logarithmic
(or higher) divergence, which has to be regulated by the counterterms. At one loop, we have
d = D —6 for our diagrams. As usual, D denotes the number of space-time dimensions. It is
useful to define the number of ’external legs’ in our case as the number of propagators that
carry the exchange momentum ¢ only, since these lines do not contribute to the UV behaviour
inside the loop integrals. Hence, we conclude that for diagrams with 0 (1,2,..) ’external legs’,
D has to be greater or equal 6 (4,2,..) to make the diagram potentially UV divergent. At two
loops, d = 2D —10, such that for 0 (1,2,..) ’external legs’, we need D > 5 (4,3, ..) for potential

UV divergences. It is now clear that the general condition for UV divergences is

e n-loop diagram = d=nD —2(2n+1)=n[D - (4+2/n)] ,

e ¢ ’external legs’ =— D > 4 + 2_71& for UV divergence .

For D=3, it follows from the above general inequality that UV divergences can occur only if the
condition 2e >n+2 is satisfied. This means that only self-energy diagrams (for which e=2; cf.
diags.(i1))? at n <2 loops are potentially UV divergent, while vertex corrections (e=1; as an
example,see diag.(b1)) as well as the ladder diagrams (e=0; cf. diag.(a6)) are ultraviolet finite. It
has become clear now that the 3D theory is superrenormalizable (there are only a finite number
of potentially UV divergent diagrams), and that there is no vertex renormalization needed. The
wave—function renormalization is completely fixed by one— and two-loop self-energy diagrams,
and hence the Beta function will be known exactly after calculating these diagrams (it will turn

out to vanish identically, i.e. the 3D coupling does not run).

Consider the self-energy diagrams (diags.(i) of fig. 1.4) in massive regularization first. Along
the lines of section 3.2.1, one can express them in terms of the basic massive integrals, listed
in appendix B.3. Expanding the coeflicients as well as the integrals around D = 3 — ¢ while
keeping the mass regulator finite, the UV divergences are extracted. They cancel in the sum,
so there is no wave function renormalization at two loops. Comparing with the poles of the

massless diagrams, we find the following IR divergences:

(€+5) [((E+2)*+10)Cy — 8Tpny ]

diag.(i1.b) = ) , (3.43)
diag.(i1.c) = —2L(E+ Q)QGJ(r_lgz)CA —8Trns] (3.44)

An overall factor of g°CrC'4/167q* was omitted here. The two terms do not cancel in the sum,
leaving the class @ IR divergent in three dimensions. The form of the IR divergence has been

obtained before, cf. ref. [15], where it was noticed that the infrared divergences of the two-loop

*Note that diagrams with e > 2 are not one-particle irreducible, cf. diag.(i2), and are hence renormalized

automatically as pure iterations.
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self-energy in pure gauge theory disappear by choosing the gauge (7+1)% = —10 (note that our
E=n-1).

To motivate the mechanism that leads to the cancelation of IR divergences originating from
the self-energy diagrams, it is instructive to investigate a simpler, exactly solvable problem
first, namely the one-loop potential for D = 2 — ¢. Employing the strategy explained in sec-
tion 3.2.1 once more, we find four diagrams being infrared divergent. Omitting an overall factor

of (—gaCrC4/47q?), and again denoting € = —¢;, for pure IR terms, they read

2 2
diag.(A) = % L ding.(C) = % , (3.45)
diag.(a) = _1()%75_52 ,  diag.(b) = 2_—:5 . (3.46)

In the sum, they cancel, but note that already in this two-dimensional case, the self-energy by
itself is not IR finite. Depicting the minimal IR finite set on the level of the topological classes

introduced in the first chapter, we can write

@ + @ + @ IR finite (D=2) . (3.47)

Thus, for the first time, we observe a cancelation that goes beyond just adding topological

classes, which was the mechanism that emerged in the 4D case, put forward in [6].

Returning to D=3 after this short digression, we note that infrared divergences in the non—
self-energy type diagrams can be obtained by setting ¢ = —¢;,. in the usual expansion of the
analytic two-loop coefficients (i.e. by expanding around D = 3 4+ ¢;,.), since it it clear from the
above power—counting arguments that no UV divergences are present (e € {0, 1} here). The IR
divergences are collected in appendix C and include in particular (omitting the same factor as

above)

(€=5) [((€+2)*410)Ca = 8TFny]

diag.(f1) = 6(—e) , (3.48)
diag.(g2) = —2E&- DI +62()_2;)10) Ca—8Tpns] (3.49)

With diags.(f2),(f3),(g1) being (IR) finite, we can construct an IR finite set of diagrams in a
fashion similar to (3.47), adding

@ + @ + @ IR finite (D=3) . (3.50)

The potential thus seems to have the nice feature of absorbing the bad behaviour of the self-

energy in a well-defined way.

Summing up the remaining IR divergences, we notice that they do not cancel completely.

We are left with the divergent part which, using the notation introduced in eq. (3.2), is given
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by

1672C%  24mw2C%
G(D=3+6)=——L ZA L T VA L0 . (3.51)

2 .
€r Eir

All dependence on the gauge parameter &, present in the individual contributions displayed
in app. C, has canceled, so that we are left with a gauge independent infrared pole structure.
A closer look on the IR structure of the involved diagrams is unavoidable now. It is possible
that these divergences are specific to the momentum space treatment, in the sense that they
are induced by the exchange of limit and summation in the original definition of the static
potential, which had to be done to derive the set of p-space Feynman rules (see appendix D.1).
This potentially dangerous step can be circumvented by performing an analysis in coordinate

space directly, which will be done in the next chapter.



Chapter 4
Coordinate Space

To understand the origin of the infrared problems that occurred in the momentum space cal-
culations, one needs to go back to coordinate space. The vacuum expectation value of the
Wilson—loop, defined with finite temporal extension T is not divergent. However, divergences

can be introduced by the limit T — oo, in which the static potential is extracted.

The problem in momentum space is that the limit has to be performed before the inte-
grations are done, in order to get Feynman rules with energy—momentum conservation at the

vertices (keeping 7" finite destroys translational invariance).

Hence, let us aim at calculating the finite Wilson—loop directly in coordinate space, and
performing the large—T limit at the very end. It is clear from the outset that such a calculation
is much more involved compared to the momentum-space approach, since there is one more

scale.

4.1 Dimensional Analysis

To illustrate the structures to be met, let us start with some general dimensional considerations.

Displaying the relevant parameters only, the potential is defined as

1
/ = — lim — W (g%
! Th—rgoT (g%T,r) . (4.1)

In a perturbative analysis, the dimensionless function W will be expanded in powers of the
coupling,

W5 T,r)=g*Fpe(T,r)+g* Fpu(l,r)+ ... . (4.2)

Since the gauge coupling is dimensionless in four dimensions only, in general the functions

2,.4—D
’

F carry dimension. The appropriate dimensionless expansion parameter would be g°r S0

44
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writing
Fp(Tr) =P o (1)), Fprr)= ()" fu @), ete. (4.3)

defines dimensionless functions f, which as a consequence can only depend on the ratio T/r.
Aiming towards extracting the potential, the large-T" asymptotics of these functions has to be

found. In general, we will find powers as well as logarithms, so the situation is as follows:

—00

f(z) = Z Zcij zt Ind 2

1=00 j=0
= ZZCZ-J-:CZ lnjcc-l—chjacln]ac-l—clom-l—ZZciij In’ z . (4.4)
t=00 j=0 7=1 =0 j=0
diverge in limit vanish in limit

The divergent terms have to cancel in the sum of all diagrams. This is to be shown below. It
is clear now, that enforcing the limit before adding all diagrams can lead to infrared problems,
which is exactly the situation encountered in the momentum-—space calculation. The only terms
in f(T/r) contributing to the potential are the linear ones. There is one important exception
to the structure depicted in the last formula, namely the tree-level (g?) contribution for D=3.
In this case, since we had pulled out a factor of r, the ¢;g—contribution to the potential is a

constant (with respect to r), and thus can be dropped. Instead, the ¢11—term gets important

here:
— . r .
‘/91;)_3 = _Th_?éofff(T/r):_Th_i%o{ ...—I—culn(T/r)—I—clo-l—...}
= — i In(T —cqq . 4.5
Tl—rgo{ + i1 In(T/rg) —e1 In(r/ro) + €10 + } (4.5)

div. consty constr  vanish

Note that this clarifies the appearance of the logarithmic Coulomb potential as well as the need

to introduce the arbitrary scale rq in 241 dimensions.

4.2 Results

One should realize that it is very easy to get lost in a lot of work when diving into the two-loop
coordinate space calculation. On top of having the additional scale T' (compared to the p—space
calculation), there is no simple UV regularization scheme ' (like MS). So the real structure
of terms to be expected is slightly more complicated than sketched above, since an UV cutoff
scale has to be introduced. Furthermore, one has to deal with a large number of integrals to
be expanded quite far (up to seventh order in some cases, which would even make a numerical

treatment very delicate), if one wants to prove the IR cancelations analytically. Finally, things

'See e.g. [42] and references therein for the differential renormalization method for one-loop calculations.
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Figure 4.1: Diagrams discussed in this chapter. Mirror diagrams as well as rotated ones are not

shown, but are understood to be included where appropriate.

are completely different in 4D and 3D. This gets immediately clear by noting the different
structures of the gluon propagator 2, cf. eq. (D.3).

These preliminary warnings should serve as an excuse for not (yet) being able to discuss
the complete infrared sector at this place. Below, some results obtained so far will be presented.
All calculations are done in the Feynman gauge, and only the diagram classes without internal

gluon—couplings are treated, see fig 4.1.

4,2,.1 Tree-Level

As a simple example, let us start by evaluating the tree-level class (@ ). Using the z—space
Feynman rules given in eqs. (D.2) and (D.3), the tree-level contribution can be evaluated for
D=4 and D=3 as follows.

D=4. In four dimensions, the situation is clear:
2 = a0 12

X
=F
ti = = — [ _dzo [ _dyo
gy _

= g’ [Z <g + arctan(T/r) — arctan(r/T)) —1In ((T/?“)2 + 1) ]

472 | r

2This is exactly what makes a momentum—space calculation more universal: Feynman rules in p-space have
the same form for any dimension, while only at a late stage of any calculation, i.e. when expanding/calculating

integrals or when doing the Fourier-transform back to z—space, one ’feels’ the dimension.
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2

T>r 9° T 0
= 1 T . +0(T%) |, (4.6)
c10

so an attractive Coulomb—potential

92

. 1
— lim T{tl} = - (4.7)

T— 00 4rr

results from the gluon exchange diagram (note that color factors, like Cr in this case, are
suppressed in this chapter). There is no danger in performing the limit. This will no longer be

true in three dimensions, so let us turn to that case immediately.

D=3. For the exchange diagram, a comparably simple integration gives

n=3 ¢’ 7 2 1
hos a/_;d“ e
2y T T/r)?+1+T/r
] R e
T2r _% [;z/gln(T/r)—}—(2—21n(2))%+(’)(T0)] : (4.8)

€11 c10

Proceeding in the way outlined above, the ¢;;—term can be split,

eq.(48) = L7 [—2€1n(T/r0) + 2€1n(r/r0) +(2=-2In(2)) g + (’)(TO)] L (4.9)

47

where the first term will be dropped in the potential as a (infinite, but r—independent) constant,
the second term gives the Coulomb potential, and the last one can be dropped as a (finite)
constant. Alternatively, one can calculate the r—independent diagrams of this class (here, an
UV cutoff @ has to be introduced),

(t2 + rotated) D=3 —2£/%dx0/% dyow
dm )7 -3 (vo — ®0)”
2 E (5 B —ro—a
UV reg _29 / de/ dyo (yO xq (21)
mI-% -3 (Yo — o)
2
gr T a
= 2T @mT/e)-2) = +2° 4.1
- [emrya -2 L2t (4.10)

and observe that the overall sum gives a manifestly IR finite contribution to the potential,

) 1 ) 1
_ Th_r>noo T @ = — Tlinoo 7 { t1 + (t2 + rotated) }
1 g*r [T T 0 ] _ '
= Tlféo T [2? In(r/a) — 2? In(2)+O0(T") | = by In(r/2a) (4.11)

Now, the UV cutoff a sets the scale of the Coulomb potential, and one can identify ry < 2a.
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4.2.2 One-Loop

It is no longer possible to obtain closed analytic expressions for the integrals occurring here,
but the asymptotic T—expansion for members of the one-loop class @ can be driven to the

needed accuracy.

D=4. Introducing the UV regulator a as above,

_ 9t T T 0
o = |2y In(T /r) —2n (1161(2)+ 1)+ OT )] , (4.12)
(02 + rotated) = (4‘3;)2 :\%E; In(T/r)+ 27 (= In(r/a) +In(2) + 2) % +O(TY) ](4.13)
sum = (4‘3_2)2 :271' (=In(r/a)+1) ; + O(TO) ] . (4.14)

The disconnected diagram oz is UV divergent, but IR finite in the limit, and since it does
not depend on r, it can be omitted here. Like in the tree-level case, the sum of the exchange

diagrams has an IR—finite limit.

D=3. The individual diagrams contribute

gir? T T2 N T2 .
o = I | 2 ) + (sme-d) o0 )] o (415)
21 C;O
gir? T 2 N T2 .
(03 + rotated) = (im)? ;/2-/7*_2 In(T/r) + (—21n(2)+5—%) po o(T7) ] . (4.16)
€21 02'0
4,2 2 g2
) _gr o
(03 + rotated) = 7 | T r_Q] . (4.17)
—~
Like in the 3—dimensional tree-level case, only the sum permits a finite limit,
— lim l @ = — lim l { 01 + (02 + rotated) + (o3 + rotated) }
T—oo T - T—oo I’ ! 2 o 3 o
. 1 947‘2
= —1 — L =0. 4.1
AT amyz 101 =0 (4.18)

In this case, the only contribution (in Feynman gauge) to the potential comes from the one—

gluon—exchange diagram, @ .

4.2.3 Two-Loop

Omitting an overall factor of —g¢%r®/(47)3, the known two-loop coefficients of the functions

Jqo (I'/2r) are displayed as a set {c32, €31, €30; €25 €13, €12, €11, €10} While ¢3;, corresponding to
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T3In? T, is the highest divergence to occur, the terms beyond ¢;¢ vanish in the potential, like

discussed above.

For the class @ , we have obtained

ay = {0, (=64r), - & (13857 —72In 241272 In 2-90¢(3)); [0]; [0], [—.4],.. .}
ag = {0,&, —4(-204372412In2-12¢(3)); 0; 0, 0,0, ...}
az = {0,-16, 8 (22472 4+12In244¢(3)); 05 [3.2], .. .}
ag = {0,-5(=15472), - & (=168+10724901n2-6x2 In2+45¢(3)); 0; [0], [0], [3.15], .. .}
as = {18, -18(_20472+12In2), & (530-2572—4801n 242472 In 24 1441n” 2-108((3)); 0; [2], . . .}
ag = {-18,8(-284n2424In2), - & (127-7n?~168In2+672 In 2472In* 24+9¢(3)); [0]; [ 6], . . .}
ar = {0,0,2(==6¢(3));0;0,0,0,0}
as = {0,0,%(r-6¢(3));0;0,0,0,0}
sum = {0,0,0;[0];[—.8],...} (4.19)

Numbers in square brackets were obtained only numerically, using the Monte—Carlo integra-
tion routine Vegas [43]. The leading IR divergences, ¢3;, cancel analytically. The sub-leading

divergences are not known analytically.

The class @ has been calculated to the same precision,

by = {0,2(12-7), & (~704+397>+312In 2—127° In2-360In? 2+ 1441n® 24252¢(3)); [0]; 0, 0, 0, [—.88] }
by = {0,2(-30427), — & (182-97”~132In 24127 In2-1801n? 24 72In® 2+18¢(3)); 0; [—1.16], . . .}
bs = {0,2(18-n2), & (99-5n2~54In 2437 In2—-18¢(3)); 0; [.67],.. .}
by = {0, 0, £ (245-1472=1141n 2467 In 24901n? 2—-36 In’ 2—81((3));0;0,0,0,0}
sum = {0,0,0;[0]; [—.49],...} (4.20)

Like above, the leading divergences c3; cancel analytically, while the further numerical treatment

points towards the non—cancelation of ¢;3—terms, corresponding to 7' In” T

4.3 A New Type of Diagrams

We are now in a position to discuss the long—standing question of the role of the end—pieces
of the Wilson—loop. For brevity, we will call these the ’vertical’ source-lines (see fig. 1.1), as
opposed to the "horizontal’ source-lines considered so far for the ’traditional’ diagrams. Again,

the Feynman gauge will be used here.

Let us first analyze the set of possible new diagrams. First, there is a new class of diagrams
involving gluons coupled to the vertical pieces only. These we will call 'dual’ diagrams, since

their contributions can be obtained from the traditional set by interchanging I’ <> r. An example
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Figure 4.2: Fxamples of new diagrams that are nonzero in Feynman gauge.

is provided by the diagram t3 of fig. 4.2. Second, there are new diagrams in which vertical and
horizontal source—lines are connected. We will call them 'mized’ diagrams. Examples are ds..dg
of fig. 4.2. Due to the diagonal Lorentz structure of the gluon propagator, it is easy to see that
all mixed diagrams containing direct gluon exchange between horizontal and vertical source—
lines vanish in Feynman gauge (this is not the case if the gluon is dressed, since the self-energy
insertion leads to non—diagonal terms). Third, we identify a new class of ’factorized’ diagrams,
in which horizontal and vertical source—lines are connected among themselves only, like ag,
a1 and bs of fig. 4.2. Their contributions can be obtained by simply multiplying lower—order

traditional and dual diagrams.

Dual diagrams. This class of diagrams can be shown to not contribute in the limit of
large I'. The argument is the following. If the diagram is disconnected, it cannot depend on
T, so it is suppressed by the overall 1/7 coming from the definition of the potential. For the
connected diagrams, a propagator connecting the vertical’ source-lines at +7'/2 and —7"/2 van-
ishes asymptotically like 1/7 (1/7?%) in D=3 (D=4). Nevertheless, let us give the leading terms
of the lowest—order dual diagram, since, besides supporting the above dimensional argument, it
will play an important role for the two-loop factorized diagrams. From eqgs. (4.6) and (4.8), by
interchanging T < r, we get for T > r

b - 4g—7r22 :;2 O <T_4)] =4 (4.21)
2 [seo()] e

Mixed diagrams can contribute to the potential. While the one-loop mixed diagrams
vanish in pairs due to symmetry reasons, we have analyzed one two-loop class (in D=3) so far.
Consider the diagram class involving the gluon—4—vertex. In a numerical treatment, one can
see that each of the diagrams starts with a ¢;g—term, giving a contribution to the potential in

the limit of large T', while being IR finite. Suppressing a common overall factor, the relative
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strengths of the coefficients ¢;¢ are
dym (4], di~[-4] , di~ (-2, den 4], (4.2

There are, of course, many more mixed two-loop diagrams. Considering all of them, it might
happen that their sum does not contribute. The above example is given here only to make a

first case for a non—vanishing non—traditional diagram.

Factorized diagrams. Recalling the above argument for dual diagrams, it is immediately
clear that for D=4 the factorized diagrams cannot contribute. The reason is the 1/7?% suppression
factor coming from any dual diagram, so the multiplying traditional diagram would have to
exhibit a T divergence, which is not the case according to the explicit calculation above. In
D=3 dimensions, the situation is much more interesting. Here, the dual diagrams vanish like
1/T only, so any traditional diagram with a T?divergence (or worse) at (n—1) loops will lead to
an n—loop factorized diagram that can potentially contribute to the potential. Such traditional
diagrams are immediately recognized from the above calculation: o5..03, cf. eqs. (4.15) — (4.17).
While folding o3 with t3 (which is the tree-level diagram dual to #;) falls into an abelian class
of diagrams and hence is part of the exponentiated tree-level potential, folding 0, and o, with

t3 does have non—abelian parts. We thus have

bs = t3®0
6,.3
D=3 grT r 2\ -1 ]
= —(47r)3 [2 . In(7/r)+ (21n(2)—5+T) . + O (T ) , (4.23)
ag = t3® (0g +rot.)
6,.3
p=s g [ T A\ T -1 ]
= ok [ 2 . In(T/r) + (—2ln(2)+5—T) . + 0 (T ) . (4.24)

Considering cancelations, note that there is one important difference to the one-loop case, where
in the sum of 0; and o3 the leading IR divergences cancel. Here, after folding with the dual tree-
level diagram, the resulting terms b5 and ag do not belong to the same color—class anymore.
In fact, the color factors are CrC%/2 and C'rC%/4 respectively (cf. eq. (1.21)), leaving IR

divergences even in the sum of b5 and ag. Another diagram shows an even worse behaviour,

=== _ 6,.3 T
=ty i = 4T [2% A (T/r) + (=6 + 41n2) - In(T/r)

(4m)°
2 T 0
+ (7_%_61n(2)-|-21n2 2) - +0 (T ) 1 (4.25)
where
_ 4.9 2 2 ’
D=: qgr T r L
LS G [ U (6 a2 () (o) o7

+4§ In(T/r) + (—4 +41n 2) g +0 (TO)] (4.26)



52 CHAPTER 4. COORDINATE SPACE

was used.

The surprising result of this analysis is that in D=3, the omission of diagrams containing
gluons coupling to the end—pieces of the Wilson—loop is no longer justified, as opposed to the
4D case. It was proven that these new types of diagrams first occur in a two-loop calculation.
Whether or not they will solve the IR problem of the two-loop calculation in D=3 remains an

open question.

4.4 Discussion

As seen above, the general mechanism for IR cancelations in three dimensions is that the
leading divergences (which are of power type) are canceled inside the topological classes. This is
in accordance with the situation in D=4, where (at one loop) Fischler [6] pointed out that the
(leading) IR divergent term of a given diagram, stemming from a gluon coupling to the source
at large times, is canceled by a diagram where the same gluon couples to the source of opposite

charge, thereby introducing a relative minus sign.

Concerning the cancelation of sub-leading divergences, this simple argument cannot be
applied. At present, no firm comment can be made on this point, since the coefficients ¢;; are

not yet known analytically. In a numerical analysis, they do not seem to cancel inside the classes.

What has become clear now is that the IR poles in ¢, as seen in the 3D two-loop calculation
in p-space (cf. sect. 3.3.2 and app.C), did not have to cancel inside the topological classes,
since they are not the leading divergences. Instead, they correspond to the ¢j;—terms in the
x—space language, which collect the logarithmic divergences. The leading IR divergences found
here turned out to be power—like, and hence could not be observed in p—space since they are

suppressed by the chosen (dimensional) regularization scheme.

Furthermore, the z—space analysis has lead to the unexpected (but, considering the IR
problems in p-space, most welcome) conclusion that in D=3, there is a new class of diagrams.
While for D=4, it was shown here that the vertical pieces of the Wilson—loop do not contribute
to the potential up to two loops, we have discussed some new diagrams that include gluon—
exchange with the vertical pieces and survive the limit of large 7" in D=3. It was shown that on
the two-loop level, these new structures contribute to the IR sector as well as to the finite part

of the potential, and hence cannot be omitted in a three—dimensional calculation.



Chapter 5

Further Results for the Static Vi,

This chapter is organized in two separate parts. In the first section, we discuss problems arising
in higher orders of the four—dimensional (4D) perturbative static singlet potential. The material
presented is entirely based on the literature, and we will give the main arguments only. The
second section documents work we have done on the one-loop potential in a massive theory,
the SU(N) Higgs model. The results are used for a proof of infrared finiteness of the QCD
potential in dimensions D > 2. After completion of this work, an interesting application of
the full SU(N) Higgs potential has appeared [44], where in the context of finite temperature
dimensional reduction the static potential is used for a matching of the renormalized gauge

coupling in the broken phase.

5.1 Logarithms of the Coupling in Higher Orders

The Wilson—loop definition of the static potential suffers from IR divergences when computed
at finite orders of perturbation theory, i.e. in a power series in the strong—coupling constant
as. In a 4D analysis, this was first shown by Appelquist, Dine and Muzinich (ADM) [7]. The
leading TR singularities of the static Wilson—loop were found at a relative order a?, correspond-
ing to three-loop contributions to the potential. It was argued that these singularities can be
regulated by resumming a certain class of diagrams, giving rise to terms logarithmic in the
coupling and leading to a breakdown of the power—series expansion at three-loop order. Thus,
the problem was posed of whether the static potential could be defined in some way at any
order in perturbation theory. This problem was attacked very recently in [11]. Before describing
the redefinition proposed in [11], let us illustrate the main argument for the occurrence of the

above-mentioned divergences.
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Figure 5.1: Series of infrared divergent diagrams that need to be resummed. Dashed lines denote

Coulomb exchange.

5.1.1 The Main Argument

In this section, we will give the main argument of ref. [7] for the breakdown of the naive pertur-
bative expansion. Working in Coulomb gauge, the gluon propagator splits into instantaneous
and transverse parts, Doy ~ 1/k* and Dij ~ (8;5 — kikj/kQ)/kQ. The FP—ghosts couple to the
transverse gluons only, so they do not play a role in the discussion of this section. Consider
now the first diagram of fig. 5.1, the so—called H-diagram. Working in coordinate space, sim-
ple dimensional considerations suggest that, after the two spatial integrations coming from the

internal vertices have been performed, it is proportional to

T/2 T/2 3 2
dt, / .CrCi (5.1)

diag.(1) « / dt,

-T/2 —rj2  (ta—t)2 427

where (T'x r) is the dimension of the rectangular Wilson—loop, as usual. For this single diagram,
the leading term for large 7 (i.e. T" > r, to be exact) is easily obtained, and the result is

proportional to a2 T/r, hence contributing as o T/r to the potential.

Next, consider a single additional Coulomb gluon to be exchanged, as shown in the second
diagram of fig. 5.1. Using eq. (D.16) and remembering that the three—gluon—vertex is totally
antisymmetric, one can convince oneself that the non—abelian part of the new contribution gives
an additional factor of —C'4/2 - as(ty — t1)/r in the above integral. The leading term then has

the form

diag.(2) o« af w +O(Tn°T), (5.2)

S

contributing a divergent term to the potential. This divergence, which originates from the in-
tegration region of large relative time component (t; — 1) o< T, but finite spatial coordinates
|z| < r, signals the breakdown of the perturbative expansion for the potential. However, since

the divergence is only logarithmic, it can be dealt with by a selective resummation.

Summing over any number of internal Coulomb gluons, an exponential builds up as an

additional factor inside the integral (5.1). One obtains

_ T/2 T/2 Cy a; a;CrC3
dig (@) o [, [, dtnexp (=52 -n)) TS
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T 3 2
T/ dt (1 - i) exp (_Q %t> @CrCh
0

T 2 r 12 4 r2?
T [T/ r exp(—ay)
_ .3 24 _ o\ expl—ay)
= a,CpCH . /0 dy <1 T y) i g2 (5.3)

Ca
2

taking the upper integration limit to infinity. Using [;°dy exp(—ay)/(1 + y*) = In(a)sin(a) +

where a = as. While the second term is suppressed at large T, the first one can be evaluated

g(a), where the function g(a) is analytic at @ = 0, the large-7" result is

T
diag.(3) ~ a2CpC%—(In(a)sin(a)+ g(a))
T
. I (e C

= o/,‘;CFCfl? (5 + 7‘4 g In (o) + O(ag In° as)> . (5.4)
The first term simply reproduces the well-behaved contribution of diagram (1), while the fol-
lowing term, being proportional to a?In ay, spoils the naive perturbative series. In ref. [7] it is
conjectured, though, that the static potential can in principle be computed at small o, even
beyond the two-loop level, if the expansion is organized in a double series of the form a? In"™ «;

with m < n.

5.1.2 A Novel Definition

Led by the fact that the TR divergences originate from massless gluons that are allowed to
self-interact at arbitrarily small energy scales, and noting that the potential can be defined
rigorously as a matching coefficient in an effective field theory approach, the authors of ref. [11]
resolve the problem described above. Keeping the mass of the ¢g pair large but finite, they
construct a series of effective theories, exploiting the scale hierarchy m > mv > Aqcp, where
m and v are the heavy—quark mass and velocity, respectively. The procedure is well-known.
Starting with QCD and integrating out the hard scale first, one arrives at non-relativistic QCD
(NRQCD) [45]. Next, integrating out the soft degrees of freedom defines what they call potential
NRQCD (pNRQCD) [46], leaving only ultrasoft degrees of freedom with energies much smaller

than muv.

It turns out that the definition of the static potential as a matching coefficient in pNRQCD
does not coincide with the Wilson—loop definition, since the latter does not exclude ultrasoft
contributions. The matching of pNRQCD and NRQCD has to be performed at a scale p that
lies in between the soft and ultrasoft scales, and since p > Aqcn, it can be done perturbatively.
As a result of this matching, a correction term to the Wilson—loop definition emerges. As given
in ref. [11], this additional term depends on the dynamical scale generated by the difference of
octet and singlet potential, which to leading order equals [V,(r) — V(r)] = (;—A 2=, and exactly
cancels the o In a,—term (5.4) arising from the Wilson—loop. For more details, we refer to the

original paper [11].
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The long—standing issue of how to define the perturbative potential in higher orders seems
to clarified. Let us remark, however, that the proposed redefinition does not play a role below the
three-loop level, hence justifying the Wilson—loop definition in lower orders and, in particular,

leaving the two-loop results presented in this work valid.

5.2 One-Loop Potential in a Massive Model

As an example for the calculation of the static potential in a massive theory, let us choose the
SU(N) Higgs model. While staying close to the notation of ref. [47], where the SU(2) model was
examined, we present and discuss our generalized lagrangian in appendix D. Shifting the Higgs
field around its non—trivial vacuum expectation value, all fields acquire a mass term, allowing

for a manifestly infrared finite calculation.

In the massless limit, and omitting all diagrams containing scalar particles, the QCD po-
tential (with ny = 0) can be rederived. The new feature in such a procedure is the separate
treatment of UV— and IR—singularities, the former showing up as poles in the e-parameter of
dimensional regularization, and the latter giving rise to divergent terms in the massless limit
only. Calculating the full SU(N) Higgs potential seems to be superfluous at first sight, but since
the number of additional diagrams to be calculated is small, adding them to the QCD-like ones

provides important checks (gauge independence!).

All Feynman rules for the model are collected in appendix D. The calculation can be done
using the same strategy as for the massless case treated in the rest of this work, i.e. by first
removing all numerators using the T—operators, then using a set of recurrence relations to
reduce the scalar integrals to a basic set, next solving the basic integrals, and finally expanding
them in the dimension of interest and identifying the renormalization constants. While the 7T—
operators are universal in the sense that they work for massless as well as massive propagators,
the recurrence relations need to be modified compared to the massless case. For the one-loop

case, we have again found a complete set, which is displayed in appendix A.2.

At the one-loop level, the additional scalars only come in as new contributions to the one-
loop self-energy, see fig. 5.2. Let us come to the results in terms of basic integrals immediately.

Summing up all one-loop diagrams, fig. 1.3 and fig. 5.2, the gauge independent result reads

4 2 2 2 20,2
n _ _ gCr 1 B q° — miy +my,; (D —1)*miy
v = <q2+m%V>2D—1H(QC“‘ 4CF)( i Ty

m3y(—21+ 25D — 7D?) — ¢*(39 — 52D + 16D?) ,
2 A (miy)
4(q* + 4myy)

4
+Cx

2 2 20— 1 2
+ (20 — 4Cy) W " 4*(’12( )4, (m%)



5.2. ONE-LOOP POTENTIAL IN A MASSIVE MODEL 57

0.4

0.0

99,
e,
009 w90
\\ //
—_ Jﬁmﬁd
\\ //
« Jﬁﬂﬂ@ﬂﬂﬁ,
10999998909999)
/ \,
t\\ y

J J J J
2 2 g g
S % g S 7N §
oY 9 Q \ Q
offg I o — @ —¢ | o —o A
S 9. &L a S / B
DS Q S\ NS Q
S S & &
) ) ) )

Figure 5.2: Additional one-loop vector self-energy diagrams for the SU(N) Higgs model. Solid

and dashed lines denote Goldstone and Higgs bosons, respectively.

12mjy (3—2D) + 3¢>(4D-3) | 2(g°+mjy)*(D-1)(D-3) 2
+Cy ( g + T, B (miy, miy)
_mi 2 _ 2 2\ _ (2 2\2
+ (204 — 4Cp) ¥ 2m (2D :2;’2 i)~ g ) B(mév,mif)} (5.5)

For the above—mentioned massless limit, we need results on the level of individual diagrams.

Omitting an overall factor of

_ 9'CF Ca (5.6)
(q*+miy)* D—1" '
the contributions of the three diagrams involving source propagators are
(1) = @+mi)’ 4m%v(1—77)+q2(9+4D(D—3)—77)A(mz )
4mb, q%(g* + 4m}y,) w
n—1 2\, 16myy D(D —2) 4 8miyq*(D - 2) — ¢ 2 o
+ q A (?7mW> + om2, (g + 4mB) B (mw, mW)
mpy (n— 1)% - 2m%,¢*(2D - 3 —n) + ¢*
+ = o B (miy, nmiy
—
2 2
—q° — dnmy, 2 2
+ T oml, B (an7 Umw)} (5.7)
(D - 1)(g* +miy) 2 2
B) = 1-D)A A .
(B) —n {(1=D)A (mby) + A (nmdy) } (5.8)
2 2 2 2
_ g +my [ (n—1)my +q"(4D - 6+7n) 2 2
© = L < 4 (k) ~ 4 ()]
4 (o _ 2 2o _ 4
n 8my (2 — D) —I—ngvq (7T—4D)+¢q B (m%vam%/v)
2myy,

(¢> + miy) (—(n—1)*m3y +2miyq°(2D -3 —n) — ¢*)

+
q2

m%V B (m%,v, nm%,v)
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(g% + 4nmiy)

2
q
+
2m¥,

B (nmav,nmav)} (5.9)

Now, let us analyze the limit mpy — 0 of the above expressions, which corresponds to the IR

behaviour of the massless calculation. Although individual diagrams are singular in this limit,

(A)a(B) ~ (D_2)72+B(070)7 (5'10)

T {—3(1) —1)(D = 2)A(0)

q4
q2
+ Z(27—321)-|-81)2—277—772)13(0,0)} . (5.11)

The power divergences o< 1/m}, cancel between diagrams A and B.

The remaining diagrams contributing to the one-loop potential are of self-energy type. Ow-

ing to the transversality of ¢ and v, only the transverse part of the self-energy tensor contributes,

(D) = —9276’7)2 lr(g?) (5.12)

(g% + m},

The function Il7, expressed in terms of basic integrals, is listed below for completeness.

Mr(g") = M5°(¢") +TH(e") + 17 (%) + T (¢°) + 113 (¢%) + 1T (¢%) + 11 (¢7)  (5.13)
R I

s gi(4D — T+ ) + quZ(;Lnl;)?— 9+ 2n) + miy(n—1) A (Um%/V>

w
L (2miy - q;g%j +dnmyy) |, (nmiy. nm%v)} (5.14)
) = ) S i)}

0 (g = 92(2%4_—14017) {q2 - 772124- My, (md) + q’ + ﬂjj;;— My (m%)

L ma 272D - S)mjvf;; mir) = (miy —mi)* o (i m;,)} (5.16)

1197 (¢%) = 0 (5.17)
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H;Ll(q2) _ gchcAl()QSL; —4CF) {(D —?;%jm%/ A (ﬂﬁv)} (5.18)
h(q?) — g2(2%4_—14CF) {_D; Ly (qu)} (5.19)
1 (q?) = 92(2%4_—1401?) {3(D4— ) A<m%)} (5.20)

Note that this is not an entirely new result. Compare, for example, ref. [47] (where 7 was
given for N=2, D=3) and ref. [44] (diagrams for the potential, for N=2). Whenever possible,

gauge independent subgroups of diagrams were presented in the above.
For I17¢, the part collecting the Yang-Mills type diagrams, the limit my — 0 gives

m2,—0 gQCA
[1%;-c lV_>
T D-1

{—(D —2)2 A(0) + q; (6D — 74 2n+n?) B(0,0)} . (5.21)

Combining with the above result for the source-type diagrams, eq. (5.11), we get

yum_ 9CaCr (4D =5)(D=2) [ 2
v - 2o i { A0+ B, 0)} (5.22)

for the one-loop static potential in pure Yang—Mills theory. The special combination of basic
integrals occurring in the above curly brackets is perfectly IR finite for all D, as can be seen in

a regularization—scheme independent way by performing the kg—integration first:

/de{_21+1 1 }_ dP='k 2 1
: R RE— T e T M k@ k)

B AP~k |k
- ZN 277 D-1 2+4k2
2 D;“ r(2)yr(x2

(167 (2L

In the last line, to obtain the result, dimensional regularization was chosen. It coincides with
eq. (B.3) (setting b = 4x? there), of course, since A(0) = 0 in dimensional regularization.
Ultraviolet divergences in the potential (5.22), arising for D > 4 only, are canceled by the

counterterms.

To complete the collection of massive one-loop results, let us give the fermionic contribution

nf
W= LN m) (5.24)
2
T
nfr(g?m?) = 2L {4(D—2) Amd) = 2(D = 2)(q* +4m?) B(m#,m})}  (5.25)

In the limit where all quark masses be negligible (i.e. m? <« ¢?), the familiar IR—finite combi-

‘/YM

nation of massless integrals occurs again. Adding the gluonic part , as given in eq. (5.22),
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the one-loop result for the static QCD potential, eq. (3.38), is rederived as

VROD _ _gq(;“F 2(117)7—_?1) [(4D —5)Ca — 4Tyny] {—% A(0) + B(0,0)} : (5.26)

The special combination of massless basic integrals A and B is manifestly infrared finite, as

demonstrated above.



Conclusions

We have analyzed in detail the perturbative static potential in QCD, defined by the Wilson—loop
formula. A full two-loop calculation of the class of contributing exchange diagrams has been
performed. Working in the linear covariant gauge, and keeping the gauge-parameter arbitrary
throughout the calculation, we have shown analytically that this class of diagrams forms a

gauge—independent set.

To perform the necessary analytic reduction of the individual diagrams, we have derived an
algorithm that is suited to cope with the special type of integrals occurring in the calculation,
namely massless two—point functions involving boson—type as well as static (non—covariant)
propagators, hence depending on two orthogonal momenta. The reduction method is kept very
general, and is shown to be complete in the sense that neither limitations concerning the pos-
sible tensor structures in the numerators nor restrictions on the maximal powers of individual
propagators are present. Hence, it could be well used to treat the two-loop subgraphs occurring
in higher—order calculations of the potential. This new calculation method has enabled us to
present, for the first time, analytical results for the two-loop coefficients in the static potential

in arbitrary dimensions.

Specializing to four dimensions, we have presented results on the potential in momentum
as well as in coordinate space. The two-loop coefficient ay that we have obtained [35] gives
an important check on results presented before by other groups. Finding a (numerically) quite
substantial discrepancy, we have compared the two approaches and agreed with the author of
the original calculation on the origin of this difference, which has turned out to be due to the
omission of specific contributions in his work. Furthermore, it has been shown that the bad
convergence of the perturbative series does not improve considerably taking into account the
new value of ay. Hence, the use of a physical coupling, defined by the potential, as expansion
parameter seems to be disfavored. Further studies are clearly needed to clarify the role of

higher—order corrections, which have been shown to be potentially infrared divergent.

In three dimensions, the static potential exhibits a linear term in coordinate space. The
size of this term has been compared with existing lattice calculations in pure SU(N,) gauge

theory, and has been found be of the same order of magnitude, while showing the correct
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N, dependence. Considering the two-loop coefficient resulting from the exchange diagrams, we
have demonstrated that the result (although being gauge independent) is infrared divergent.
In a subsequent analysis directly in coordinate space, non—exchange type diagrams have been
shown to contribute to the Wilson—loop defined potential in three dimensions, while they vanish

for the four—dimensional case, as we have shown explicitly on the two-loop level.

Finally, since we have demonstrated that the mechanism which controls infrared cancela-
tions in the two—dimensional one-loop potential is in operation for the corresponding three—
dimensional two-loop subclass of diagrams also, one might hope that a further examination of
these infrared problems in three dimension may yield interesting results for the more compli-

cated four—dimensional case also.



Appendix A
One-Loop Reduction Formulae

In the one-loop case, it is possible to achieve a complete reduction even for integrals involving
static as well as massive boson—type propagators. The necessary relations will be presented in

this appendix.

A.1 One-Loop T-Operators

Here, the one-loop T—operators are documented for completeness. The notation used, as well

as the derivation, is analogous to the two-loop case, cf. sections 2.1.3 and 2.1.4.

The one-loop tensor 1T—operator reads:

/(k1)ﬂl"'(k1)ﬂr — O /GXP{(alkl)}
1 M1 7H'r_l

ey 5’ g’ eresies oo
1
Trloor (3t DY /7 A.l
H1ebbr ( ’ ) 1 le1cgscg6 ( )
bDT 1 1
Tilloi’}i = 8‘11,;»1 Oy . €XP {T [(alq)a3 + (alij)(—§a6) + Q%Z] } - (A.2)
a;= J+
The one-loop scalar I'-operators are:
(qu)r(klv)t 1-loo + + 1
/IW = Qui9urVprgr - Vurygs TM...;EH (J , D )/IW
~ 1
= 17, (3", DHT, (J+7D+)/m (A.3)
bD* 1
T, = Q:exp{—(f [—332—}—:16&3] H (A.4)
oL 7T 4 220
(13=U33+
~ bDF 1 1
— t 2 2
T, = 0,exp {TU [Zy - §y046] } L (A.5)
a6=u66+
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As explained in the two-loop case, these T—operators are valid for massless as well as massive

integrals.

A.2 Massive One-Loop Relations

For the case of massive propagators, as e.g. used in section 5.2, the reduction formulae given in
chapter 2 have to be modified as follows. Replacing the relations of eq. (2.6), the numerators of

massive scalar integrals can be simplified according to

k%Dl = 1- m%Dl y (Aﬁ)
k%Dg = 14 (2[€1q - q2 - mg)Dg y (A?)
leqDng = D3 - D1 -|— (q2 - mf -|— mg)Dng . (AS)

Instead of eqs. (2.41)-(2.47), one can then use the following recurrence relations for massive

one-loop propagator integrals:

(2 = Dlac,s] = {-2(a1* +¢8%) 877} [ac, 2] (A.9)
(a=efac,a] = {e17+ (a = 1)(g* + m} + m2)3™ - 2em38717~ } [ac, 2] (A.10)
2(a — 1)mi[a0,z] = {—(D-2a—2z+2)17}[a0, 2] (A.11)
e3¢’ D [11,2] = {—er+ (¢ +mi—md)1™ + (¢ — mi+md)3~}[11,2] (A12)
eaD*[a0,2] = {-2m}}[a0, 4] (A.13)

with ¢; = (mi —m3)? +¢*(g* +2mi +2m3), co = 2mi(D—2a—c—x+2) — (¢* + mi+m3)(D —
a—2c—z+1),c3=2(D—2—1)and ¢4 = (D —2a— z+2). Three more relations are obtained
by interchanging 1 <+ 3 (and @ ¢ ¢, of course) in the above. For the case 2 = 0, the last four
relations can be checked against the one-loop relations found in section 4.5 of Tarasov’s paper

[23]'.

"Note that Tarasov works with Minkowskian metrics, such that for a comparison one needs to do the replace-

ments ¢°> - —¢% and 17 — —17 etc.



Appendix B

Basic Integrals

Here, we collect the results for the integral basis that occurs in the calculation of the static

potential. We adopt the dimensional regularization scheme and work with Euclidean metrics,

diag(1,1). Our notation is as follows: We have two types of denominators, D; = D(k;) = ki?’

stemming from gluon, ghost and fermion propagators, and S; = S(k;) = with v =

1
v-k;+ie?
(1,0), stemming from the source propagators. The loop momenta are ki, ko, ks = ki — g,
kqs = ky — q, ks = k1 — ko, where ¢ = (0, q) is the external momentum. We abbreviate the D-

_d;g’g , while products of propagators will be written

like D1 Dy = Dy5. The integrals have been calculated by introducing Feynman parameters for

dimensional integration measure as [, = u° [

bosonic propagators in the usual way,

1 T 1 n—1_m-—1
_ Lt m) / PR , (B.1)
zry™  D(n)T(m) Jo  [z2 + (1 = 2)y]mt
and by rewriting source propagators in the more suitable representation
1 I o0 m—1
SRIUESTORY LR (B2)
zry™ U(n)0(m) Jo " [o 4 zy]mtn

In the first two sections, we will list the one-loop— and two-loop basic integrals. Since all
integrals are massless two-point functions, there exist analytical results in terms of Gamma
functions. The last section collects the massive two-point integrals needed for the discussion of

infrared divergences.

B.1 One-Loop Basis

The basic set of massless scalar one-loop two—point integrals consists of two members only. This

is due to the well-known fact that massless tadpole integrals vanish in dimensional regulariza-
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tion.

8(1-D) I(&R)r(L)?

1
(@) O = wlr=apaze Tw O (B.3)
_ 6o D) T(ERPr(ER)
O = /1D1351 - Z\/E(1 —D)(3-D) r(D) Go  (B4)
G = (WZ )7 2

Even though the integral (B.4) does not occur in the one-loop part, it is listed here because it
will be needed for the one-loop-iteration part of the two-loop calculation. Integrating out the

zero—component of eq. (B.4) first, one gets the nice relation

-0 = _i_\/’% O, (B.6)

The expansions in four and three dimensions read (with the Euler number vy = 0.5772..)
D=4—¢ D=3-¢
2 2 ~ ~
(|(‘1—|) O (;+2+(2—;—4)€+O(€2)>G (r4+0(e)) VT &
~ 4 72 o) . ~
—O— ( ﬂ'—}—O() e ;_E€+O(€) VTG
=~ e 1 1 /7\2 bu? 2
G=cron m (qu ) q? <3> (mﬂqz)

(B.7)

B.2 Two-Loop Basis

As detailed in chapter 2, the complete set of basic scalar integrals for massless two-loop two—
point functions involving boson—type as well as static propagators contains the following mem-

bers (compare the chart on page 19):

—_
*
o0

=

( 9 = /)
OO -OO— J Y
-D- oo -G © (B9)
Note that all integrals displayed in the first line have an even dimension, while those in the

second line are odd-dimensional. For the calculation of Viiae only the first line of integrals is
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needed, while the second line will contribute to higher—order calculations only. This ’decoupling’

can be best understood by a simple dimensional argument: Due to the orthogonality of ¢ and

v, the only dimensional parameter that can occur in the prefactors of the integrals is ¢2. Hence,

even— and odd—dimensional basic integrals can never 'mix’ and contribute to the same quantity.

The analytic results, given for generic dimensions ), read

(200 = ] [

L SD-1 (R

= -2b-a7  rop P (B.10)
(&) O = »if [P

— 12 I'(5-D)T(2)3 )

T D220 -3)(D-4)  T1(LH) Gp (B.11)
<%>_®_ =D //Dlzabss

_ 642D -1)(2D - 3)(2D - 5) I'(5— D)L(552)r (D)2 (2)

- (1-D)(D- 2) (D—3)(D—14)2 D) GE (B.12)
<%>_@_ = D //D235512

— ,3D-1)3D-5)3D-7) I'(5-D)L'(D)*I'(3L)

— 487 D103 (D -1 O ED) Gp? (B.13)

OO0 = /1/2D1234S12
_ 42—D774(D_2) (5 D)ZF(D)Z )
= T 2D 37 1Dy P (B.14)
The expansions in four and three dimensions are given by
D=4—¢ D=3—¢

(%)‘@‘ <%+§+12—%+O(6)> G (772+O(e))776~¥2
'@O‘ <—7T4 + 0(6)) G? (_1_26 + %ﬂj + O(e)) (2
%) (9 (‘%-%—16+%2+O(6)) G? <§+O(€)>ﬂ_52 (B.15)
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(¢7)?

8 2
——2‘|'7T—-|-O
€

3 (e)) w G?
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B.3 Massive Integrals

When the propagators become massive, vacuum integrals no longer vanish in dimensional reg-
ularization, such that the set of basic integrals has to be enlarged. The following two massive

one-loop integrals are needed:

O =am* ., <O =Bmin) . (B.16)

In dimensional regularization, they can be evaluated as

dPk 1 mP=-2 /9_D
2 = —_ €
A(m) = pu Qﬂ. 9o N\ND k2+m2 = M (47T)§F< 5 ) (B.l?)
dPk 1 1
B(m? md) = /
(mlamQ) K (27.‘.)17 kz_}_m% (k—q)Q—}—m%
D—4
g’ /4—D\ ! m? m3\ 2
- (47r)§r 2 /odz -2tz tl-25
m2—m2 mi mimoy
pmteci 1= [0+ 2 () i o)
+m +m >
10y + g ln(}t)} o)
= ) >< .
(47T)§ 2 D=3—¢: 2arctan (#lnz) + O(e)

9. q’ 1 1tz
D=2—¢: len (1_35)—}—0(6)

where z = /1 — y? with y = ‘122&#
Correspondingly, the minimal set of static massive two-loop integrals has to be enlarged

also. According to ref. [23], it contains the two-loop integrals

s C S R (B.19)

as well as products of the above one-loop integrals. Here, every line is understood to represent
a massive propagator 1/(k* + m?), all masses being equal, while a dot on a line means it is

squared.

Results for these integrals in D = 4 — e dimensions can be found in ref. [48]. For other cases,
which are however not relevant for the discussion of section 3.2.1, see e.g. the overview [49].
While the first integral of the list (B.19) is finite, the others exhibit double and simple poles.

For D =3 — ¢, results are given in ref. [50]. For the use in section 3.3.2, it suffices to know

the pole terms, to which only two of the integrals contribute:

) ! ~
N (471')2 26 ' e (4m)? 26 . (B-20)

The other six integrals are finite in dimensional regularization.




Appendix C

Infrared Poles in Three Dimensions

Here, the infrared poles of all two-loop non—self-energy diagrams are collected, as needed in

section 3.3.2. Expanding the individual diagrams in D = 3 + ¢;, and omitting an overall factor
of Crlag’ (4M2> E”, they read

16rq' \ @2
diag.(a3) = O _jzf)cf‘ L2 Hi; 2964 4 o) (C.1)
diag.(a5) = O _f)CA e 6:7?2)0*‘ + o) (C.2)
diag.(a6) = (—162%2165)04 N (_32+3—2§,+ Cy + o (C.3)
diag.(b2) = 8 tég)@ L2 135* 280Ca 4 o) (C.4)
diag.(b3) = 8 _;f)CA L 6= 16_5; 280Ca 0(1) (C.5)
diag.(c2) = _iffA + (_75__652)&‘ +0(1) (C.6)
diag.(c3) = 8562“ S fifQ)CA +00) (.7)
diag.(c4) = _221;(14 + _4_82?‘4 +0(1) (C.8)
diag.(c6) = 125;“ + (275fifz)c“‘ +0() (C.9)
diag.(el) = (12 tsf)CA L @254 li: $)Ca o(1) (C.10)
diag.(e3) = (=4 _6245)0“ L9 U_i; 269Ca o(1) (C.11)
diag.(f1) = % + (€=5)((11+ 45_2;5)0“ —8Tems) | o) (C.12)
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—3€ir

The poles of the self-energy diagrams have already been given sect. 3.3.2, while the remaining

diagrams of fig. 1.4 are not IR singular.

What seems surprising at first sight is the non—cancelation of the leading 1/¢2, poles inside
the topological classes. Guided by a simple argument given in the 4D treatment of ref. [6] (see
sect. 4.4), such a cancelation of leading IR divergences can be expected to occur in the three—
dimensional case also. However, as is explained in chapter 4, there is no contradiction. It turns
out in the coordinate—space calculation that the leading IR divergences are power—like, and
while they do cancel inside the classes, the ¢;,—poles seen in momentum space correspond to
the sub-leading (logarithmic) divergences and hence their cancelation is not guaranteed by the

above—-mentioned argument.



Appendix D

Feynman Rules

In this chapter, all Feynman rules needed in this thesis are summarized. We work in Euclidean

space, g, = diag(1l,1,1, 1). Integrals are often abbreviated as

oo ol e

In the same fashion, a slashed delta—function carries the appropriate power of 27 in the numer-
ator, e.. flq) = (q)/ (2P,

The 'non—standard’ rules (arising from the perturbative expansion of the Wilson—loop) are
derived and explained in detail, including some specialties concerning the transformation from
coordinate to momentum space. This is done in the first section. In the second section, the
SU(N) Higgs model is explicited, to introduce notation for the ’standard’ Feynman rules listed
here. From the rules of the massive theory, one immediately deduces those for QCD by omitting
all scalar particles and setting the masses to zero. The fermionic rules are given also. Finally,

dropping the color structure, QED rules can be obtained. Hence, we will not list the cases of
QCD and QED explicitly in this appendix.

D.1 Non-Standard Feynman Rules

From the Wilson—loop formula eq. (1.13), it is straightforward to derive a set of Feynman rules

in coordinate space. Represented in a graphical notation already, the result is

V(r) = —qlgréo—z:tr/ /

diags.

[ X y , X y H(yo — ;ro) s
3 t—igT" 8,00 (x — r)0(T? /4 — () |
usja
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0000

1 igT 6 ,00(2)0(T*/4 — 28) , + standard rules (D.2)

!

Inside the brackets, it is understood to insert all diagrams contributing to the potential. These
were already detailed in section 1.2, when discussing the expansion of the logarithm in the
original Wilson—loop formula. The full set of coordinate—space ’standard rules’; like e.g. the

gluon propagator (in Feynman gauge)

5abg Y
ab 42 (y f z)? (D=4)
Pow -y = Y 0:3)
] . (D = 3)
Ar/(y — z)?

will not be given here.

From eq. (D.2), one can derive a set of momentum—-space Feynman rules. The sign—
convention for Fourier transforms we use is given by f(z) = [ 9k exp(—ikz) f(k). This con-
vention manifests itself in the sign of the causal 7¢ in the source—"propagator’ below, which is
nothing but the Fourier transform of the #—function. Plugging in the momentum—space repre-

sentations, we get
v = | exp(z'qr)v (r)
— lim = Z tI' / // 73 Ek (upper line) — q) yg’inner vertices! X

T—oo T

diags.
[ — s
" ’ po + i€’
o Sy R ——; .
P10 31 P20 . _igTa(S“O sin ((plO — P20 — kO)T/Q) 7
hadrke (p1o — P20 — ko) /2
H,ango . - sin ((pro — P20 — ko)T/2)
= . a ‘
5 Higlmo + st. rules D.4
Po Gl Po 10 (plo e k‘o)/Q ’ ( )

The first delta—function guarantees that the net momentum transfer from the quark— to the
antiquark-line equals g, while the trigonometric functions originate from the factors of 8(1%/4 —
z2) at each vertex in z-space. They are very disturbing in a momentum-space calculation,
since as a result of keeping the time—extension 1" of the Wilson—loop finite, there is no energy—

conservation at the source—gluon vertices.

The standard procedure to extract practical Feynman rules is to exchange limit and sum-
mation now. One immediately recognizes that the needed energy—conserving delta—functions

build up at each vertex according to

- (poT'/2)
T—oo p0/2

= #(po) - (D-5)
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These delta—functions can then be used to solve the remaining pp—integrals. Finally, the over-
all factor of % gets canceled by a delta—function with zero argument, which becomes clear
remembering the origin of this function,

T/2

T
T = 711_r>noo T /T/2 dt exp(it-0) = h_r)noO —=1. (D.6)

Along these lines, one arrives at the ’asymptotic’ Feynman rules

= —_ Z tl‘/ /yg Ek upper 111’19) - ) q0:0 ><
diags.
R S
G
“E : 1igT"0,0 , + standard rules ] , (D.7)
Qi’:

where now E—p—conserving delta functions are implied at each vertex. It is this set of Feynman
rules that is used for calculations of the static p—space potential. By convention, the normalized
color trace tr {1} = tr {7} /trll has to be taken in the direction opposite to the arrows on

the source—lines.

Using the ’asymptotic’ Feynman rules, it is thus possible to calculate contributions to the
potential in momentum space directly, without having to perform the limit of large times in the
end. However, it is important to keep in mind that exchanging limit and summation is defined
only if no divergences are present, a feature that cannot be guaranteed on the level of individual
diagrams. Such large—time divergences correspond to infrared divergences in momentum—space.
Hence, it should be expected that the contributions of individual diagrams to V(q) can be
IR singular, making the use of an TR regularization scheme necessary. Note that dimensional
regularization regulates not only the UV divergences, but also the IR ones with the same
parameter, such that in integrals with both types of divergences it will be necessary to extract
the IR divergences beforehand, e.g. by employing a massive regularization, as is done in this
work, cf. sections 3.2.1 and 3.3.2.

D.2 SU(N)

Some useful formulae concerning the group SU(N) (or any other compact semi—simple Lie group)

are collected here.

T® are the (hermitean and traceless) generators of the fundamental representation, normal-

ized by

tr(79T°) = Ty 6°° . (D.8)
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Figure D.1: Fuclidean Feynman rules for two—point functions. Curly, dotted, plain and dashed

lines denote gluons, ghosts, Goldstone and Higgs bosons, respectively.

The totally antisymmetric structure constants are defined by the Lie algebra
[17a7 jvb] — Z'fabc 110 , (Dg)

while the Casimir operators of the fundamental and adjoint representation are

TaTe — CF ’ facd fcdb — CA 5(16 ’ (DlO)
respectively. For the group SU(N), it is common to set Ty = %, so their values are
N%Z-1
Cr= oN ) Cp=N (SU(N)) . (D.11)

The totally symmetric structure constants d**® can be defined by the anticommutator,
1
{T*, "} = (C4—20F) 61 4d%eTe | do*° = T—tr({T“,Tb}TC) . (D.12)
f

For the group SU(2), d***=0. Useful relations include
=0, d?d* = (8CE — 3C,) 5. (D.13)
With the help of both types of structure constants, products of generators can be rewritten as
TT = (LCx = Cp) 81+ L(d™ 4 if**)1e . (1D.14)

Further useful relations needed for the color sums in this work are
TTT = (Cp—1C4) TP (D.15)
TTPTeT® = (Cp — LCA) (TP — LCx8 1), (D.16)
as well as the Jacobi identity

0 = fabefecd T fbcefead T fcaefebd . (D17)
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Figure D.2: Fuclidean Feynman rules for three—point functions. All momenta p are defined

outgoing. The abbreviation § = g,/4Ts/N = g\/2C4 — 4CF is used. Note that § = g for SU(2)
with Tf = 5

D.3 Standard Feynman Rules

Let us define the SU(N) Higgs model by the action

S = /deﬁ /deEtr [%WWWW+ (D,®)'D,® — 2” q>Tq>+ (qﬁ@) (D.18)

where ® = \/%U]l + 12T collects the N? real scalar fields o and 7%, and the covariant
derivative D, =9, — igW, as well as the adjoint fields W, =W} T are defined in the usual

way. For SU(N) relations, like trace normalization etc., see sect. 1).2.

The lagrangian has to be supplemented by gauge—fixing and Faddeev—Popov ghost terms,

1
Lar = % (GQ)Q , G = (%W: - npmwn" (D.19)

Lrp = —(c¥)* M ¢ (D.20)
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Figure D.3: Fuclidean Feynman rules for four-point functions. For the definition of the totally

symmetric constants d**° see App. D.2.

1
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N ‘”_“% P fﬁ mo AL g7, T
-

Figure D.4: Fuclidean Feynman rules for quarks. Arrows denote the fermion flow. Traces are

to be taken in the opposite direction.

The gauge-fixing condition G is chosen such that the term proportional to W,0,m, which is
induced by the shift below, cancels in the action. The matrix appearing in the ghost term is the
variation of the gauge—fixing condition, §G® = M A’ under infinitesimal gauge transformations
given by ® — U®, W, — éUDMUT, U = exp(igT*A?).

Shifting the Higgs field around the classical minimum of the potential, o = o’ + mTW \/TEf,
the mass term for the vector bosons is generated, and one obtains the set of Feynman rules
depicted in this appendix. There are two quartic vertices that contain parts proportional to the
not too familiar symmetric structure constants d**¢ (cf. fig. 1).3). However, these parts do not

contribute to the one-loop self-energy calculated in section 5.2.
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