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1. Introdution

Quantum mehanis and speial relativity belong to the most important ornerstones for the

understanding of nature. The desription of elementary partiles and their interations has to

be done on a quantum level as well as in a speial relativisti framework. Quantum �eld theory

turned out to be a very suessful way to ombine these two onepts. But due to it's omplexity

all realisti alulations are onstrained to approximation methods, like perturbation theory or

lattie simulations. Perturbation theory has indeed proved it's worth in the small oupling regime

in many appliations from the high-preision preditions for ross setions and deay rates to

the alulation of the anomalous magneti moment.

Many properties of matter shortly after the Big Bang, in heavy ion ollisions and in astroparti-

le physis an be understood by preditions of �nite temperature �eld theories. But perturbation

theory at �nite temperature T in non-Abelian gauge theories breaks down due to the appearane

of prohibitive infrared (IR) divergenes, when massless �elds are used [19℄. The IR divergenes

are of so alled eletri and magneti type [13℄. The �rst one an be ured by introduing an

e�etive infrared ut-o� mel ∝ gT , the so alled eletri mass. The seond type of infrared di-

vergenes is believed to be urable by an e�etive magneti infrared ut-o� mmag ∝ g2T , the so
alled magneti mass. The magneti mass annot be alulated at a �nite order of perturbation

theory, due to the so alled Linde problem [14℄ and is therefore non-perturbative.

But estimates for the magneti mass have been made perturbatively up to two-loop with

resummed Yang-Mills theories, where a mass term is added to the massless Yang-Mills Lagrangian

and subtrated again one order higher in perturbation theory [19, 22, 23, 25, 26, 27, 28℄, leading

to so alled gap equations, whih determine the mass self-onsistently.

At very high temperatures T one an work in a dimensional redued setting, where the equi-

librium properties of a four dimensional �nite temperature �eld theory are approximated by a

three dimensional e�etive zero-temperature �eld theory [15, 17℄.

Here we work with a reently proposed three dimensional Yang-Mills theory [22℄, where gauge

boson masses are generated by a gauge invariant interation with an auxiliary SU(N) �eld. To-
gether with a resummation sheme a gap equation is derived, whose solution should give a gauge

invariant estimate for the non-perturbative magneti mass. Indeed the gap equation leads to a

gauge invariant solution in one- and two-loop, but we show that the approah used in this work

leads to a gauge parameter dependent solution at higher order of perturbation theory.

This work is strutured as follows. At �rst we will give a short introdution to the methods of

perturbative quantum �eld theory and non-Abelian gauge theories. The diagrammati approah

in perturbation theory leads to large mathematial expressions in higher orders whih an only

be managed by automatized omputer algebrai tehniques. We will present here the integration-

by-parts tehnique [43℄ and the so alled Laporta algorithm [36℄ for the redution of Feynman-

integrals to so alled master-integrals. These tehniques will be applied to the gauge boson
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1. Introdution

self-energy up to three-loop in the above-named three dimensional spontaneously broken Yang-

Mills theory.

Furthermore we will present a method to solve master-integrals by means of di�erene equa-

tions and apply it to a sunset lass of vauum bubble integrals.

Finally we will give a short review of the one- and two-loop results of the magneti mass gap

and will give some arguments why the gap equation annot yield a gauge invariant solution at

three-loop and higher orders.

The following notation is used in this work. For Lorentz indies Greek letters are used. The

metri onvention is (ηµν) = diag(1,−1,−1,−1, ...) in Minkowski spae. For Minkowskian four-

vetors x and y the summation onvention xµy
µ =

∑

µ,ν ηµνx
µxν is used. In the Eulidean ase

we write xµyµ =
∑

µ xµyµ. Color indies are written as letters from the beginning of the Latin

alphabet like a, b, c... . It will not be distinguished between raised and lowered olor indies.

This means T a = Ta.
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2. Basis of perturbative Quantum Field

Theory

In this hapter the basi onepts of perturbation theory we will summarized, followed by a brief

disussion of regularization shemes and renormalization. We follow here basially the approah

of [1, 2, 3℄.

2.1. Funtional integrals and propagators

A natural way to arrange a relativisti theory is to start from a Lorentz invariant ation

S[φ] ≡
ˆ

d4xL({φl(x)}, {∂µφl(x)}), (2.1)

with a Lagrangian density L({φl(x)}, {∂µφl(x)}) depending on a set {φl(x)} of quantum �elds

1

as dynamial variables. At a �xed time t these �elds provide a set of omplete and orthonormal

2

eigenstates | {φl}〉 with [4℄

φ̂l(~x) | {φl}〉 = φl(~x) | {φl}〉 (2.2)

as well as for the anonial momenta

πl(x) ≡
∂L

∂φ̇l(x)
(2.3)

with

π̂l(~x) | {πl}〉 = πl(~x) | {πl}〉. (2.4)

The time evolution of a quantum mehanial system is generated by the Hamiltonian H de�ned

via a Legendre transformation

H({φl}, {πl}) ≡
ˆ

d3xH =

ˆ

d3x

(

πl
∂φl

∂t
− L

)

, (2.5)

where

∂φl
∂t has to be expressed in terms of πl and φl by inverting eq.(2.3). Working in the

Heisenberg piture and shortly omitting the label l for simpliity, the transition amplitude of an

1

The index l distinguishes for instane the �eld type or di�erent omponents of a �eld

2

Orthonormal in the sense that 〈{φl} | {φ′
l}〉 =

∏

l δ(φl − φ′
l)
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2. Basis of perturbative Quantum Field Theory

(i)nitial �eld on�guration | φi, ti〉 at time ti to a (f)inal on�guration | φf , tf 〉 at later time tf
is given by

〈φf , tf | φi, ti〉 = 〈φf | e−iH(φ,π)(tf−ti) | φi〉. (2.6)

Dividing the time in N + 1 small slies t0 = ti, t1 = ti + τ ,...,tN = tf with τ =
tf−ti
N , and

inserting unit operators, expressed in terms of intermediate �eld on�gurations | φn〉 ≡| φn, tn〉
and | πn〉 ≡| πn, tn〉 respetively, between the small slies one ends up with Feynman's famous

path integral formula [2℄

〈φf , tf | φi, ti〉 =

ˆ

Dπ

ˆ φ(~x,tf )=φf (~x)

φ(~x,ti)=φi(~x)
Dφ

× exp

[

i

ˆ tf

ti

dt

ˆ

d3x (π(~x, t))
∂φ(~x, t)

∂t
−H(π(~x, t), φ(~x, t))

]

, (2.7)

where

´

Dπ
´

Dφ ≡ limN→∞
∏N

n=1

´

dπn
2π

´

dφn .

Many bosoni �eld theories have the exponent in eq.(2.7) quadrati in π without mixing terms

of π and φ, so that one an integrate out the anonial momentum to obtain a funtional integral

over the �elds φ only. Furthermore working in imaginary time t → τ = −it and replaing the

Lagrangian by an Eulidean Lagrangian L → −LE, one obtains Eulidean path integral [1℄

〈φf , tf | φi, ti〉 = N

ˆ

Dφ exp

(

−
ˆ τf

τi

dτ

ˆ

d3x [LE(φ(x, τ), ∂µφ(x, τ))]

)

, (2.8)

where N is a �eld independent onstant that will drop out in physial alulations. For

large times τf → ∞ and τi → −∞, due to exponential suppression of higher energy states,

the amplitude 〈φf ,∞ | φi,−∞〉 is asymptotially proportional to the ground state transition

amplitude 〈0,∞ | 0,−∞〉.
One of the most important quantities in this work will be the gauge boson two-point orrelation

funtion. A onvenient way to de�ne orrelation funtions is to introdue a generating funtional

by adding a soure term Jφ into the ation in eq.(2.8) yielding

3

[3℄

Z[J ] ≡
∏

l

ˆ

Dφl exp

(

−
ˆ

d4x [LE({φl(x)}, ∂µ{φl(x)}) + Jl(x)φl(x)]

)

. (2.9)

The normalization N in eq.(2.8) an be hosen so that Z[J = 0] = 〈0,∞ | 0,−∞〉.
The two-point orrelation funtion is then simply de�ned by funtional derivatives with respet

to J [3℄

τlm(x, y) ≡ 1

Z[0]

(

− δ

δJl(x)

)(

− δ

δJm(y)

)

Z[J ]|J=0. (2.10)

In a non-interating theory the ation is quadrati in the �elds and an be written in the form

S0[φ] =
´

d4xφl(x)Dlm,xφm(x), with some di�erential operator Dlm,x. Solving the Gaussian-like
integral after ompleting the square in φ leads to the free generating funtional [1℄

3

Now again with φl to be general
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2. Basis of perturbative Quantum Field Theory

Z0[J ] = Z0[0] exp

(

−1

2

ˆ

d4x

ˆ

d4yJl(x)Glm(x− y)Jm(y)

)

, (2.11)

where Glm(x− y) is the inverse or Green's funtion of the di�erential operator Dlm,x de�ned by

Dlm,xGmk(x, y) = δlkδ
(4)(x − y). Applying the derivatives in eq.(2.10) for a free funtional Z0

leads to [1℄

τlm,0(x− y) = Glm(x− y). (2.12)

Thus the Green's funtion Glm is the two-point orrelation funtion in the free theory. Glm(x−y)
is also alled position spae propagator.

Example: Salar �eld theory A simple example is given by the free salar �eld theory de�ned

by the Lagrangian

L0 =
1

2
∂µφ∂

µφ+
1

2
m2φ2. (2.13)

Integration-by-parts in the ation S0 and inverting the ourring di�erential operator

4 Dx =
(

−�E +m2
)

leads to the propagator

G(x− y) =

ˆ

d4k

(2π)4
e−ik(x−y)

k2 +m2
(2.14)

2.2. Interations and perturbation theory

For an interating �eld theory it an be very di�ult or even impossible to solve the funtional

integral Z[J ]. One solution to this problem is to onsider interations as perturbations around

the free theory and to expand Z[J ] in small oupling parameters. The ation S[φ] an be written

as a sum S = S0 + SI , where S0 is the free part ontaining only quadrati terms in the �elds

and SI =
´

d4xLI({φl}, {∂µφl}) is the interation part. A rather general expression for suh

interation Lagrangian

5

is

LI({φl}, {∂µφl}) =
∑

k≥2

gk,i1,,,ikΦi1 ...Φik , (2.15)

with oupling parameters gk,i1,...,ik and �elds Φ ∈ {φl, ∂µφm}. The exponential in the full

generating funtional eq.(2.9) an then be expanded in the parameters gk,i1,...,ik. For perturbation
theory a very useful and easy-to-handle expression an be obtained by substituting SI [φ] →
SI [− δ

δJ ] so that the generating funtional Z[J ] an be written as [3℄

Z[J ] = exp

(

−SI

[

− δ

δJ

])

Z0[J ]. (2.16)

4

�E =
∑3

µ=0 ∂
2
µ

5

Still working in imaginary time, but omitting the label E.
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2. Basis of perturbative Quantum Field Theory

The great advantage is that one only has to take derivatives of the simple funtional Z0 in

order to do perturbation theory. Furthermore eq.(2.16) an be used to express the full two-point

funtion in terms of derivatives of Z0 [3℄

τlm(x, y) =
exp

(

−SI [− δ
δJ ]
)

(

− δ
δJl(x)

)(

− δ
δJm(y)

)

Z0[J ]

exp
(

−SI [− δ
δJ ]
)

Z0[J ]

∣

∣

∣

∣

∣

∣

J=0

. (2.17)

The two-point orrelation funtion an more onveniently be alulated in momentum spae with

τ̃kl(p) =

ˆ

d4xeipxτkl(x, 0). (2.18)

G̃kl(p) =

ˆ

d4xeipxGkl(x) (2.19)

After a suessive appliation of eq.(2.17) it turns out that τ̃kl(p) an be written as a geometri

series

τ̃lm(p) = G̃lk(p)
∞
∑

n=0

((

G̃F (p)Π(p)
)n)

km =

(

1

G̃−1(p)−Π(p)

)

lm

, (2.20)

with a not yet spei�ed funtion Πlm(p), alled self-energy. The self-energy an be omputed by

an appliation of a set of graphial rules, the so alled Feynman rules. Every propagator in Πlm

is represented by a line and every interation by a vertex.

Example: Salar �eld theory In salar �eld theory with an interation Lagrangian LI(φ) =
∑

k≥3
gk
k! φ

k
these rules are simply [1℄

1. For every line arrying momentum p write a propagator:

p

= 1
p2+m2

2. For every vertex write a oupling fator: = −g3 = −g4, and so on for

higher verties.

3. All propagators have to arry momenta so that momentum is onserved at every vertex.

4. Integrate over all momenta in a losed loop:

´

d4k
(2π)4

5. Divide by a symmetry fator aording to the number of possibilities to ombine verties

and propagators to a spei� diagram

(2.21)

In order to ompute the self-energy from the Feynman rules to order gnk , draw and sum up

all possible one-partile irreduible (1PI) diagrams with two external lines and with n verties
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2. Basis of perturbative Quantum Field Theory

onneted by propagators and trunate the external lines. A one-partile irreduible diagram is

a diagram that annot be split into two separated diagrams by utting a single line.

Applied to the salar �eld theory with LI(φ) = g
4!φ

4
, this would yield diagrammatially the

self-energy [1℄

Π(k2) =
1 PI

= + + + ..., (2.22)

where the short external lines are trunated and thus do not ount propagators. The geometri

series eq.(2.20) an be graphially represented by [1℄

τ̃(k2) =
1

k2 +m2 −Π(k2)
= +

1 PI

+
1 PI 1 PI

+ ..., (2.23)

where the external lines now have to be interpreted as propagators. A one-loop example of this

alulation will be given in setion 2.3.

2.3. Divergenes and regularization

2.3.1. Ultraviolet divergenes

The �rst order orretion to the self-energy in the

g
4!φ

4
theory at zero temperature aording to

the Feynman rules in eq.(2.21) leads to the one-loop tadpole integral

Π(1) = −g

2

ˆ

d4k

(2π)4
1

k2 +m2
. (2.24)

Using spherial oordinates in 4 dimensions

(

´

d4k
(2π)4

→ 1
(2π)4

´

dΩ4

´

d|k||k|3
)

yields an integral

Π(1) = −g

2

Ω4

(2π)4

ˆ ∞

0
d|k| |k|3

|k|2 +m2
, (2.25)

whih is divergent for large values k. These kind of divergenes are alled ultraviolet (UV) diver-

genes and appear in almost all relativisti Quantum �eld theories. This seems to be disastrous,

but there is a solution to this problem alled renormalization. Before renormalization is disussed,

it will be useful to have an idea about regularization.

Cut-o� regularization The idea of the ut-o� regularization is to integrate only up to a �nite

value Λ, leading to the �nite result

Π
(1)
Λ = −g

2

Ω4

(2π)4

ˆ Λ

0
dkE

k3E
k2E +m2

=
g

4

Ω4

(2π)4

(

(

Λ

m

)2

− ln(1 +
Λ

m2

2

)

)

. (2.26)

The divergene is now parametrized by Λ, so that for Λ → ∞ the old divergent integral is

restored. But for �nite Λ it is possible to write down a well de�ned result. This method has the

disadvantage that it breaks translational invariane, whih makes omputations more di�ult.
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2. Basis of perturbative Quantum Field Theory

Lattie regularization When spae-time is a disrete lattie with lattie spaing a, then the

momentum is limited by p ≤ 2π
a . Furthermore when the volume V of the system is limited,

then the momenta are disretized as well. Then one has to deal with �nite dimensional matries

instead of di�erential operators appearing in the ation. Instead of using perturbation theory,

one an ompute the orrelation funtions numerially for �xed values a and V . The advantage

of this method is that non-perturbative e�ets like bound states are an be better analyzed, but

an enormous omputational power is needed.

Dimensional regularization The regularization sheme for (UV) divergenes used in this work

will be the dimensional regularization [5℄. The idea of dimensional regularization is to integrate

in a di�erent dimension d, so that the results of the divergent loop integrals beome analyti

funtions in d ∈ C with poles in spei� integer values for d. The integration measure gets simply

substituted by

ˆ

d4k

(2π)4
→
ˆ

ddk

(2π)d
. (2.27)

Let us apply this method to the more general integral

J(x, d,m) ≡
ˆ

ddk

(2π)d
1

(k2 +m2)x
. (2.28)

Working in d-dimensional polar oordinates with

´

dΩd = Ωd = 2πd/2

Γ(d/2) and integrating over

z = k2/m2
yields

J(x, d,m) =
1

2

Ωd

(2π)d
(

m2
)(d

2
−x)
ˆ ∞

0
dz

z(
d
2
−1)

(z + 1)x
. (2.29)

Making the substitution z = u
1−u leads then to the integral

J(x, d.m) =
1

2

Ωd

(2π)d
(

m2
)(d

2
−x)
ˆ 1

0
duu(

d
2
−1) (1− u)(x−

d
2
−1) . (2.30)

This an be written in terms of the Euler Beta funtion

B(x, y) ≡
ˆ 1

0
duux−1(1− u)y−1 =

Γ(x)Γ(y)

Γ(x+ y)
(2.31)

so that [1℄

J(x, d,m) =

(

m2
)(d

2
−x)

2dπd/2

Γ(x− d
2)

Γ(x)
. (2.32)

The �rst order φ4
self-energy orretion in dimensional regularization is then simply

Π(1) = −g

2
J(1, 4 − 2ε,m) = −g

2

(

m2
)(d

2
−1)

(4π) d/2
Γ(1− d

2
). (2.33)
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2. Basis of perturbative Quantum Field Theory

The divergene appears now as the pole of the Gamma funtion in d = 4. Writing d = 4 − 2ε
and using the expansion

6 Γ(ε) = 1
ε − γ +O(ε) one an write the result as a Laurent series in ε

Π(1)(d = 4− 2ε) = −g

2
J(1, 4 − 2ε,m) = −gm2

8π2

(

1

ε
+ ln(

4πe−γµ2

m2
) +O(ε)

)

, (2.34)

where the number γ ≈ 0.5772 is the Euler�Masheroni onstant. The mass sale µ has been

introdued to get a dimensionless argument in the logarithm. Sine we will later work in a three

dimensional theory it is interesting to have a look what happens for d = 3 − 2ε. Although the

integral in eq.(2.25) would be in�nite in three dimensions, it is �nite in d = 3 − 2ε with ε → 0
where

J(1, 3 − 2ε,m) =
m

(4π) 3/2
Γ(−1

2
) = −m

4π
+O(ε). (2.35)

This is due to the fat, that limits have been interhanged. But in the sense of analyti ontin-

uation this gives a meaningful result. For an expansion up to the �rst order in ε see eq.(B.30).

Some important fats about dimensional regularization

� One an shift the integration variable:

´

ddkf(k + p) =
´

ddkf(k)

� The sale substitution

´

ddkf(λk) = |λ|−d
´

ddkf(k), leads to the fat that mass sale

independent integrals vanish:

´

ddk 1
(k2)α6=d/2 . = 0

� The trae of the metri tensor is ηµνη
µν = d

� Dimensional regularization preserves important symmetries like gauge invariane and uni-

tarity [5℄

2.3.2. Infrared divergenes

In addition to the UV divergenes there an be infrared (IR) divergenes due to small momenta.

These divergenes appear when propagators are massless, so that the integrand has a pole at

k = 0. Consider the integral J(x, 3, 0). For x ≥ 2 this integral is learly infrared divergent in

three dimensions. Unfortunately in many ases dimensional regularization does not work for

IR divergenes, beause the integral J(x, d 6= x/2, 0) vanishes. On the other hand there are

many physial alulations where IR divergent integrals ontribute. These integrals have to be

regularized in a di�erent way. The obvious solution to the problem is to introdue a infrared

ut-o� parameter m by the replaement

1
p2

→ 1
p2+m2 . We will later realize this regularization

in a somewhat fanier way under the term resummation, whih will be disussed in setions 4.3

and 4.4.

6

This easy to obtain from the Weierstrass representation

1
Γ(ε)

= εeγε
∏∞

k=1

(

1 + ε
k

)

e−ε/k
or from the funtional

equationΓ(ε) = Γ(1+ε)
ε

and γ ≡ −Γ′(0) [8℄.
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2. Basis of perturbative Quantum Field Theory

In ontrast to the UV divergenes, IR divergenes annot removed by renormalization. But for

the omputation of observables one usually has to add up diagrams so that the IR divergenes

anel out in the end of the omputation. This anellation annot always be realized in pratie.

This might for example be the ase when an in�nite number of diagrams has to be summed up

in order to anel the divergenes.

2.4. Renormalization

A reasonable physial observable should be �nite when the regularization parameter ε is set to

zero. It would therefore be nie to somehow anel the divergent terms in the ε-expanded result

of Π(1)
or other alulated quantities. This an be done by renormalization. The general idea

behind this is to resale the �elds and all parameters by some onstants Zi whih an absorb

the divergene. For this purpose the �elds φl and parameters λ in the Lagrangian are renamed

to bare �elds φl,B and bare parameters λB , where the parameter λB an be the mass-parameter

mB or the oupling gB (or a gauge parameter ξB introdued later in this work). Then the

renormalized �elds and parameters are de�ned by [9℄

φl,B =
√

Zφl
φl,R (2.36)

λB = ZλλR (2.37)

and the bare Lagrangian LB({φl,B}, {∂µφl,B}, {λB}) is expressed in terms of the renormalized

quantities leading to a new Lagrangian L′({φl,R}, {∂µφl,R}, {λR}). Writing Zi = 1 + δZi, one

an split the new Lagrangian into two parts

L′({φl,R}, {∂µφl,R}, {λR}) = Lren({φl,R}, {∂µφl,R}, {λR})
+ Lct({φl,R}, {∂µφl,R}, {λR}, {δZφi

}, {δZλ}), (2.38)

where LR is the old Lagrangian in terms of renormalized �elds and parameters. Lct is an addi-

tional ounter term Lagrangian, whih is dependent on renormalized �elds and parameters and

also on the new parameters δZi. The δZ ′
is are themselves dependent on the oupling gR and

have to be expanded in a series in gR during the perturbative expansion.

One a perturbative expansion has been done, one an �x the parameters δZi, so that the result

for Πlm(p) or other quantities are UV-�nite. This an be done by several possible renormalization
shemes. One of these shemes is alled minimal subtration (MS) [6℄, where the parameters

δZi are hosen suh that they simply anel the

1
ε term in divergent expressions like eq.(2.34).

Another sheme is alled modi�ed minimal subtration (MS), where one also removes the terms
γ and log(4π) from the �nal result [1℄. For this purpose it is ommon to de�ne µ̄2 = 4πe−γµ2

,

so that these terms get absorbed into the renormalization sale. After the theory has been

renormalized, i.e the δZis are �xed, all other observables omputed in perturbation theory will

be �nite.

12



2. Basis of perturbative Quantum Field Theory

A theory has to be renormalizable in order to ensure that the above tehniques work in all

orders of perturbation theory with a �nite set of parameters. In the framework of renormalization

one an lassify theories in three ategories aording to the mass dimension of the oupling [1℄:

Super-Renormalizable: [g] > 0

Renormalizable: [g] = 0

Non-renormalizable: [g] < 0

The above methods work only without limitations in (super-)renormalizable theories for all

order of perturbation theories. Examples for renormalizable theories in four dimensions are the

salar φ4
theory, QED and non-Abelian gauge theories. In this work we will disuss the latter

one in detail in hapter 3.

The renormalized result an depend on the arbitrary mass sale µ introdued in eq.(2.34) in or-

der to have a dimensionless argument in the logarithm. In fat, using dimensional regularization,

one has to introdue this energy sale µ in the interation Lagrangian, so that the oupling keeps

its mass dimension for di�erent spae-time dimensions. Therefore one obtains a sale dependent

renormalized oupling [3℄

ĝR(µ) = µ(d−4)/2Z−1
g gB . (2.39)

In Yang-Mills theories with

7 Nf < 11
2 Nc one an show that this running oupling beomes small

for higher energy sales µ. For example the one-loop result alulated by Wilzek, Gross and

Politzer reads [9, 10℄

ĝ2R(µ) =
16π2

β0 ln(
µ
µ0
)
, (2.40)

with some number β0 =
11
3 Nc − 2

3Nf , whih is positive for Nf < 11
2 Nc, and some referene mass

sale µ0. The phenomenon is alled asymptoti freedom and is an argument why perturbation

theory works well for high energies in suh theories.

The µ-dependene of the trunated perturbation series an be taken as an estimate of the size

of higher order orretions [22℄.

7

Number of olors Nc and number of �avors Nf
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3. Non-Abelian gauge theories and

spontaneous symmetry breaking

The last hapter was about a rather general treatment of funtional methods in quantum �eld

theory, leading to the de�nition of the two-point funtion and to the idea to ompute this funtion

with diagrammati rules. Now these methods shall be more expliitly applied to a speial lass of

theories, namely the non-Abelian gauge theories. In this hapter we follow basially the notation

and the approah of [1℄ and [3℄.

3.1. Gauge invariane and the Yang-Mills Lagrangian

Additionally to the invariane of oordinate transformations, i.e invariane under Lorentz trans-

formations and translations in spae-time, there an be some internal symmetries relying on

simple ompat Lie groups G. Examples for suh groups are U(1), SU(N) and SO(N).
Suppose there is a Lagrangian that is loally invariant under the ation of a unitary represen-

tation U(α) = eiα(x) ∈ G on omplex n-omponent spin 0 �elds φ

φ(x) → φ′(x) = U(α)φ(x) = eiα(x)φ(x), (3.1)

where α(x) is a linear ombination α(x) = αk(x)Tk of n×n matrix generators Tk determined by

Tk ≡ −i
∂U(α)

∂αk
|α=0, (3.2)

with real parameters αk(x). The generators have some nie properties. Firstly they obey a Lie

algebra [7℄

[Ta, Tb] = ifabcTc, (3.3)

with real numbers fabc alled the struture onstants. One one has spei�ed the struture

onstants the whole algebra is spei�ed. Seondly they form a vetor spae with a salar produt

given by the trae. Thus one an �nd a orthogonal basis onventionally normalized suh that

(Ta, Tb) ≡ Tr (TaTb) =
1

2
δab. (3.4)

In general the generators are not Abelian, i.e the struture onstants do not vanish. These

theories are alled non-Abelian gauge theories or Yang-Mills theories and are the fundamental

bakground of the eletroweak interations (U(α) ∈ U(1) × SU(2) ) and Quantum Chromody-

namis (U(α) ∈ SU(3)). In ontrast eletrodynamis is desribed by an Abelian U(1) gauge

symmetry ontaining only one single generator.

14



3. Non-Abelian gauge theories and spontaneous symmetry breaking

In order to desribe dynamis, every theory must ontain derivatives in the �elds. The deriva-

tives transform under loal transformations as

∂µφ → ∂µ (U(α)φ(x)) = (∂µU(α))φ(x) + U(α)∂µφ(x), (3.5)

so that an extra term (∂µU(α))φ(x) arises due to the produt rule. This term an be absorbed

by introduing a so alled ovariant derivative [1℄

Dµ ≡ 1n×n∂µ −Aµ, (3.6)

where Aµ is also some linear ombination of the generators Aµ = igAa
µT

a
. These new vetor

�elds Aa
µ are alled gauge �elds. The ovariant derivative shall transform in suh away, that the

term Dµφ transforms ovariantly under unitary representation of the symmetry group. This is

equivalent to demanding the transformation rule as

Dµ → D
′

µ = U(α)DµU
†(α). (3.7)

Comparing eq.(3.5) and eq.(3.6) with eq.(3.7) �xes the transformation behavior of the gauge

�elds Aµ to be

A′
µ = U(α)AµU

†(α) + (∂µU)U †. (3.8)

The transformations in eq.(3.1) together with eq.(3.8) are alled gauge transformations. Again

the most straightforward way to get a gauge invariant theory is to onstrut a gauge invariant

Lagrangian out of Dµ, Aµ and φ. Clearly the ombinations φ†φ and (Dµφ)
†(Dµφ) are gauge

invariant beause U(α) is unitary. In order to get dynami gauge �elds one has to introdue the

�eld strength tensor Fµν de�ned by the ommutator [1℄

Fµν ≡ −igF a
µνT

a ≡ [Dµ,Dν ], (3.9)

whose transformation behavior is

F ′
µν = U(α)FµνU

†(α). (3.10)

Using the yliity of the trae it is easy to see that Tr (FµνF
µν) is also gauge invariant. A

rather general gauge invariant Lagrangian ontaining the �elds φ and Aµ is therefore

1

L = − 1

2g2
Tr (FµνF

µν) + (Dµφ)
†(Dµφ)− 1

2
m2φ†φ− V (φ†φ). (3.11)

Some omments:

� An in�nitesimal transformation is the �rst order expansion U(α) = 1+ iα+O(α2). Using
the ommutator of the generators yields the in�nitesimal transformations of the �elds [1℄

A
′a
µ = Aa

µ +
1

g
∂µα

a + fabcAb
µα

c +O(α2) (3.12)

φ′ = (1 + iα+O(α2))φ (3.13)

1

The Lagrangian is given here in real and not in imaginary time in order to keep the notation from the literature.
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3. Non-Abelian gauge theories and spontaneous symmetry breaking

� The omponents of the �eld strength tensors read [1℄

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν . (3.14)

� From now on we will restrit to the gauge group SU(N) where det(U) = 1 and equivalently
Tr(T a) = 0 for all generators. The number of free parameters αa

and generators T a
isN2−1

respetively. Aording to quantum hromodynamis N will be replaed by the number

of olors Nc in equations. But it should be emphasized, that the treatment here is quite

general and not restrited to Quantum Chromodynamis.

� In the further treatment the pure gauge part of eq.(3.11)

LYM = −1

4
Fµν,aF

µν
a , (3.15)

will be identi�ed to be the Yang-Mills Lagrangian.

� Later the term adjoint representation will be used. In the adjoint representation the gen-

erators have the form (Ta)bc = −ifabc [7℄.

� Every Lie algebra satis�es the Jaobi identity [T a, [T b, T c]]+[T b, [T c, T a]]+[T c, [T a, T b]] = 0
[7℄. Written in terms of the struture onstants this reads

fadef bcd + f bdef cad + f cdefabd = 0 (3.16)

3.2. Quantization and Faddeev-Popov Lagrangian

In order to apply the methods from hapter 2 for gauge theories it would be natural to de�ne

the generating funtional Z in the same way for the ation SYM [A] =
´

d4xLYM . Considering
the funtional integral of this pure gauge part

Z = N

ˆ

DA exp (iSYM [A]) , (3.17)

one obtains the di�erential operator

δab (η
µν
�− ∂µ∂ν) (3.18)

after partial integration of the �elds in the ation. This operator is not invertible, beause �elds

of the kind ∂µα belong to the kernel of this operator. But these are simply part of the �elds

whih gauge transform the �elds Aµ to some gauge equivalent �elds. Thus we integrate over an

in�nite number of gauge equivalent �elds. The solution of the problem is to �x all suh redundant

�elds by a gauge �xing ondition

G[A] = 0.

In the funtional integral formalism this an be ahieved by inserting a delta funtional δ[G[A]]
into the integral. This method is known as the Faddeev-Popov trik [11℄. Let us label gauge

transformed �elds by
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3. Non-Abelian gauge theories and spontaneous symmetry breaking

AU
µ ≡ UAµU

† + (∂µU)U †. (3.19)

The trik is to insert a suitable unity [3℄

1 = ∆−1
G [A]∆G[A], (3.20)

with ∆G[A] =
´

DUδ[G[AU ]] and ∆−1
G [A] = det

(

δG
δα |G=0

)

, into the funtional integral eq.(3.17),

so that [3℄

Z =

ˆ

DAdet

(

δG

δα
|G=0

)
ˆ

DUδ[G[AU ]]eiSY M [A]. (3.21)

Due to the fat that the measure DU is invariant under a transformation U ′′ = U ′U , it is easy
to show that the funtional ∆G[A] as well as its inverse ∆−1

G [A] are gauge invariant. A gauge

transformation AU → A leaves the measure DA also invariant. One an therefore write the

funtional integral as [3℄

Z =

ˆ

DU

ˆ

DAdet

(

δG

δα
|G=0

)

δ[G[A]]eiSY M [A], (3.22)

with the integration over the gauge orbits U fatored out. The in�nite onstant

´

DU drops out

in the alulation of physial quantities. The delta funtion an be written as an exponential

funtion, so that the gauge �xing funtion G is part of the ation. Shifting Ga
to Ga + Ca

with an arbitrary α-independent funtion Ca
and averaging over all these new funtions after

multiplying Z with a Gaussian weight exp(− i
2ξ

´

d4xC2
a(x)), results in [3℄

Z = N

ˆ

DAdet

(

|δG
δα

|G=0

)

exp

(

i

ˆ

d4x

(

−1

4
Fµν,aF

µν
a − 1

2ξ
G2

))

, (3.23)

with a onstant N. The determinant det(M) ≡ det
(

| δGδα |G=0

)

an be written as some integral

over anti-ommuting Grassmann �elds ca

det (M) =

ˆ

Dc̄Dc exp

(

−i

ˆ

d4xc̄a(x)Mabcb(x)

)

. (3.24)

These new �elds ca are alled ghost �elds and do only appear in quantum orretions but not

in physial states. Nevertheless they are important to maintain gauge symmetry and annot be

negleted in intermediate omputations.

Choosing the ovariant gauge Ga[A] = ∂µAa
µ and onsidering only in�nitesimal gauge trans-

formations, yields [1℄

(

δG[A]

δα

)

ab

=
1

g
∂µD

µ
a , (3.25)

with Dµ
ab = δab∂

µ + gfabcA
µ
c the ovariant derivative in the adjoint representation.
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3. Non-Abelian gauge theories and spontaneous symmetry breaking

a, µ

b, ν c, ρ

a, µ b, ν

c, ρ d, σ

−ig2[f abef cde(gµρgνσ − gµσgνρ)
+f acef bde(gµνgρσ − gµσgνρ)
+f adef bce(gµνgρσ − gµρgνσ)]

=

=

gf abc[gµν(k−p)ρ

+gνρ(p−q)µ

+gρµ(q−k)ν ]

a c

b, µ

= −gf abcpµ

p

p

k

q

−iδab

k2+iε

(

ηµν − (1− ξ)
kµkν
k2

)

=

=
i

k2+iεδ
ab

a b

a, µ b, ν

.

Figure 3.1.: Feynman rules for a gauge �xed Yang-Mills Lagrangian. Curly lines are gauge bosons

and dotted lines are ghosts.[1℄
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3. Non-Abelian gauge theories and spontaneous symmetry breaking

Let us summarize what happens after the appliation of the Faddeev-Popov method. The

Lagrangian LYM gets e�etively replaed by

LYM → LYM + Lgf + Lgh, (3.26)

where Lgf = − 1
2ξ (∂µA

a
ν)

2
is the gauge �xing Lagrangian and Lgh = c̄a(−∂µDab

µ )cb is the ghost
Lagrangian. The quadrati part of the Yang-Mills Lagrangian together with the gauge �xing

part provides an invertible di�erential operator

δab

(

ηµν�+ (1− 1

ξ
)∂µ∂ν

)

. (3.27)

The orresponding propagator and the other Feynman rules are summarized in Fig. 3.1. A

more general Lagrangian (.f eq.(3.11)) also ontaining salar matter �elds φ reads

L = −1

4
(F a

µν)
2 − 1

2ξ
(∂µA

a
ν)

2 + (Dµφ)
†(Dµφ)− 1

2
m2φ†φ− V (φ†φ) + c̄a(−∂µDab

µ )cb. (3.28)

3.3. BRST Symmetry

The Lagrangian in eq.(3.28) is of ourse no longer gauge invariant beause it has been gauge �xed.

But instead it is invariant under a larger symmetry namely the so alled BRST symmetry [12℄.

To show this, one has to introdue auxiliary bosoni salar �elds Ba
and rewrite the Faddeev-

Popov Lagrangian in terms of Ba
(omitting the salar �eld φ potential and the mass term) [1℄

as,

L = −1

4
(F a

µν)
2 + (Dµφ)

†(Dµφ) +
ξ

2
(Ba)2 +Ba∂µAa

µ + c̄a(−∂µDab
µ )cb. (3.29)

The original Lagrangian an be restored by integrating out the �elds Ba
. The Lagrangian in

eq.(3.29) is now invariant under the BRST transformations given as,

δAa
µ = εDac

µ cc

δφ = igεcaTaφ

δca = −1

2
gεfabccbcc

δc̄a = εBa

δBa = 0, (3.30)

where ε is an anti-ommuting number. The transformations δAa
µ and δφ are simply gauge trans-

formations with αa(x) = gεca(x) and therefore leave the �rst two terms in eq.(3.29) invariant.

The third term in eq.(3.29) is invariant beause the �elds Ba
are invariant. The transformation

of the fourth term is aneled due to the spei� transformation of the �elds δc̄a in the �fth term

of the eq.(3.29). The transformation of ca leads to a term ontaining a produt of two struture

onstants that vanishes due to the Jaobi identity eq.(3.29) [1℄ .
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3. Non-Abelian gauge theories and spontaneous symmetry breaking

BRST invariane leads to so alled Ward-identities, whih are important for the disussion of

renormalization of non-Abelian gauge theories. Furthermore the BRST invariane is important

to ensure that physial observables are gauge parameter invariant [1℄.

3.4. Spontaneous symmetry breaking in gauge theories

Later in this work a gauge boson mass term will be introdued as an infrared ut-o� regulator

in a resummation sheme. But one has to keep in mind that it is not possible to simply add a

mass term

∆L =
1

2
mAµA

µ
(3.31)

into the Lagrangian sine it breaks the gauge symmetry. But this does not mean that gauge

bosons have to be massless one and for all. There is a mehanism alled spontaneously symmetry

breaking where the massless gauge bosons gain a mass due to an interation with other partiles.

In order to see what is meant by spontaneous symmetry breaking onsider a Lagrangian with a

global O(N) symmetry [1℄

L =
1

2
(∂µφ)

T (∂µφ) +
1

2
µ2φTφ− λ

4

[

φTφ
]2

, (3.32)

with N real salar �elds φ = (φ1, ..., φN ) having a negative mass squared m2 = −µ2
. These

salar �elds are massless and have an interation term with �elds quadrati in the potential

V (φ) = −1

2
µ2φTφ+

λ

4

[

φTφ
]2

. (3.33)

This potential has a loal maximum at φ = 0 and an in�nitely degenerated nontrivial minimum,
as long as µ2 > 0 (see Fig. 3.2). The minimum is given by an orbit with the modulus squared

as,

φT
0 φ0 = v2 =

µ2

λ
. (3.34)

The modulus v = µ√
λ
is alled the vauum expetation value of the �elds.
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3. Non-Abelian gauge theories and spontaneous symmetry breaking
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Figure 3.2.: The plot of the Mexian hat potential or Higgs potential V (φ1, φ2) = −1
2µ

2(φ2
1 +

φ2
2) +

λ
4

[

φ2
1 + φ2

2

]2
. (Plot made with Mathematia)

After hoosing one spei� point φ0 the �elds φ an be rewritten in terms of quantum �u-

tuations χ with φ = φ0 + χ and the Lagrangian an be expressed in terms of the χ �elds. For

example if the minimum value has been hosen to be φ0 = (0, ..., 0, v) then the shifted �eld reads

φ(x) = (χ1(x), ..., χN−1(x), v + χN (x)). (3.35)

Writing χN = σ for onveniene the Lagrangian an be expressed in terms of χk
and σ by [1℄

L =
1

2
(∂µχ

k)2 +
1

2
(∂µσ)

2 − 1

2
(2µ2) (σ)2 −

√
λµ (σ)3

−
√
λµ(χk)2σ − λ

4
(σ)4 − λ

2
(χk)2 (σ)2 − λ

4

[

(χk)2
]2

. (3.36)

Now this Lagrangian onsists of a massive �eld σ with mass mσ =
√
2µ and (N − 1) mass-

less �elds χk=1,...,N−1
. The O(N) symmetry in eq.(3.36) is no longer apparent beause it is

spontaneously broken by hoosing one spei� point of the minimum orbit. But instead there

is an unbroken O(N-1) sub-symmetry in the massless χk=1,...,N−1
�eld. These �elds are alled

Goldstone bosons and their appearane is guarantied by the Goldstone theorem [1℄.

The idea of spontaneous symmetry breaking an easily be extended to non-Abelian loal

gauge theories. Assuming the Lagrangian be to invariant under a loal gauge transformation one

has to introdue the ovariant derivative de�ned in eq.(3.6). The ovariant kineti part of the

Lagrangian written expliitly in terms of Aµ and φ reads

1

2
(Dµφ

T )(Dµφ) = ∂µφ
T∂µφ+Aµφ

T∂µφ− ∂µφ
TAµφ− φTAµA

µφ. (3.37)
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3. Non-Abelian gauge theories and spontaneous symmetry breaking

Assuming the �elds φ to have a non-vanishing vauum expetation value φ0 and writing them

in terms of quantum �utuations χ, there appears a mass term2

for the gauge �elds

∆L = −1

2
φT
0 AµA

µφ0 =
1

2
m2

abA
a
µA

µ,b, (3.38)

with a positive semide�nite mass matrix mab = g2φT
0 TaTbφ0 [1℄. Additionally there is a quadrati

interation

∆L =
1

2

(

φT
0 Aµ∂

µχ− ∂µχ
TAµφ0

)

= φT
0 Aµ∂

µχ (3.39)

between the massless Goldstone bosons and the gauge �elds. This term is not very onvenient

and an be removed in the Rξ gauge.

3.5. The Rξ-gauge

Consider the gauge �xing funtion

G = GaT a =
1

ig
∂µA

µ − iξg
(

(T aφ0)
†χ
)

T a, (3.40)

hosen suh that the gauge �xing Lagrangian LGF = −1
ξTr

(

G2
)

ontains a term φT
0 ∂

µAµχ whih

anels the inonvenient interation term eq.(3.39), after partial integration.

Applying the Faddeev-Popov method for this gauge �xing, the quadrati part for the gauge-

and Goldstone bosons is [1℄

∆L = −1

2
Aa

µ

([

−ηµν�+ (1− 1

ξ
)∂µ∂ν

]

δab − ηµν(m2
A)

ab

)

Ab
ν +

1

2
(∂µχ)

2 − 1

2
ξ2(m2

G)
ijχiχj ,

(3.41)

with (m2
G)

ij = ξg2(φT
0 Taφ

T
0 Ta)

ij . The interesting aspet of this gauge is that the Goldstone

bosons get a gauge dependent mass term. This indiates that the Goldstone bosons are not

physial. Therefore they are onsidered as auxiliary �elds. It will also turn out that the ghosts

beome massive with a gauge dependent mass. For the three dimensional Yang-Mills theory

disussed in hapter 4, we will also use an Rξ−gauge with the same motivation to anel inon-

venient terms. Furthermore it is possible to prove the renormalizability of spontaneously broken

gauge theories in the Rξ - gauges [1℄.

2

At �rst sight the sign of the mass term seem to be wrong. But the physial �elds appear as the spatial

omponent in this term. The spatial part of the Minkowski metri yields the minus sign.

22



4. Eulidean three dimensional SU (N) model

Now that all the important quantum �eld theoretial onepts have been introdued, we are

prepared to disuss the model whih will be in the fous of this work. The infrared problems in

Yang-Mills theories shall be ured by massive gauge boson propagators. The idea is to add a mass

term to the free gauge �eld Lagrangian and to subtrat it again in higher orders of perturbation

theory. This resummation method should not break gauge invariane. Therefore one has to

generate the mass term by means of spontaneous symmetry breaking with an auxiliary �eld.

The resummation will lead to a gap equation for the gauge boson self-energy, whose solution will

be an estimate for the dynamially generated gauge boson mass. This model is a generalization

of a similar approah by O. Philipsen for SU(2) [19℄ to an SU(N) theory.

4.1. Theory Lagrangian

Reall the de�nition of the ovariant derivative Dµ = 1n×n∂µ − Aµ with Aµ = igAa
µT

a
(.f.

eq.(3.6)). We start from a three dimensional Eulidean SU(N) gauge �eld Lagrangian (f.eq.(3.15))

LYM = − 1

2g2
Tr ([Dµ,Dµ])

2
(4.1)

with a oupling g2 arrying mass dimension [g2] = 1. We apply the spontaneous symmetry

breaking, following the approah of [21℄ and [22℄, by means of an SU(N) like �eld

Φ(x) =
m

g
exp(π(x)), π(x) ≡ i

g

m
T aπa(x), πa(x) ∈ R, (4.2)

where �elds πa
play the role of the dynami variables and not Φ. The transformation of Φ under

SU(N) is de�ned by ΦΛ ≡ UΦ with U = exp(Λ(x)) and Λ(x) = igT aΛa(x). The interation

between Φ and the gauge �elds is given as usual by

LSSB = Tr

(

(DµΦ)
† (DµΦ)

)

, (4.3)

where the trae is taken to get a salar quantity. The gauge bosons gain the mass term

LSSB ∋ ∆L = −m2

g2
Tr(AµAµ), (4.4)

beause of the yliity of the trae and the fat that Φ†Φ = m2

g2
. In fat, the appearane of

this mass term an also be understood as a onsequene of a non trivial vauum expetation

value

m
g appearing as the �rst term of the exponential series of Φ. One an write the �elds Φ as

Φ = m
g + Φ̂ where Φ̂ ontains the π �elds. The ruial point is that self interations of the π′s
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4. Eulidean three dimensional SU(N) model

are already ontained in the Lagrangian eq.(4.3) due to the nonlinear dependene of Φ on π. The
exponential leads to an in�nite number of interation terms whih also ontain derivatives of the

�elds. Furthermore the Lagrangian is not of �rst or seond order in the oupling g as usual,

but it ontains an in�nite number of orders in the oupling. Therefore, in perturbation theory,

the Lagrangian yields additional verties in every order. These are generated automatially with

QGRAF [20℄ and the orresponding Feynman rules are generated in a FORM [29℄ program. However

the theory is renormalizable, beause the oupling has a positive mass dimension (ompare

setion 2.4).

Further analysis of the LSSB term after writing it in terms of Φ̂, leads to an inonvenient

interation term inluding ∂µ(Φ̂ − Φ̂†)Aµ, whih an be aneled with an Rξ like gauge �xing

term

LGF =
1

ξ
Tr

(

(

1

ig
∂µAµ + iξmTr

(

(Φ − Φ†)T a
)

T a

)2
)

. (4.5)

The orresponding ghost part turns out to be

LFP = Tr

(

2(∂µc̄) ((∂µc)− [Aµ, c]) + gξmc̄(Φ†c+ cΦ)
)

, (4.6)

where c ≡ caT a
.

For pratial omputations it is onvenient to add a total derivative

LTD = −Tr
(

∂µ
m

g
(Φ− Φ†)Aµ

)

(4.7)

to the Lagrangian, so that one does not need to apply the partial integration for the anellation

of the ∂µ(Φ̂ − Φ̂†)Aµ terms. Finally the omplete Lagrangian of this model written in terms of

Φ̂ reads [21℄

L = Tr

(

− 1

2g2
([Dµ,Dν ])

2 + (∂µΦ̂)
†(∂µΦ̂) +

(

(∂µΦ̂)Φ̂
† − Φ̂(∂µΦ̂)

†
)

Aµ − m2

g2
AµAµ

− 1

ξg2
(∂µAµ)

2 − ξm2

2
Tr

(

(Φ̂− Φ̂†)T a
)

(Φ̂− Φ̂†)T a + 2(∂µc̄)((∂µc)− [Aµ, c])

+gξmc̄(Φ̂†c+ cΦ̂) + 2ξm2c̄c

)

. (4.8)

The propagators an be obtained by onsidering the terms quadrati in the �elds Aµ, c and π
only. This yields
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4. Eulidean three dimensional SU(N) model

µ ν

a b

a b

a b
= δab

k2+m2

[

ηµν − kµkν

k2+ξm2(1− ξ)
]

= δab

k2+ξm2

= δab

k2+ξm2
,

(4.9)

where solid lines are salars, dotted lines are ghosts and urly lines are gauge bosons. Up

to three-loop there are 15 di�erent verties presented in Fig. 4.1. An example for the vertex

Feynman rules in FORM notation an be found in hapter 5.

Figure 4.1.: Verties ontributing to three-loop. Curly lines are gauge bosons, dotted lines are

ghosts and ontinuous line are salars.
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4. Eulidean three dimensional SU(N) model

4.2. The full massive gauge boson two-point funtion in the

Eulidean SU(N) model

The gauge boson two-point funtion τabµν an be alulated using the methods from hapter 2.

First we ompute the self-energy as a sum of all 1PI graphs and then sum up the orresponding

geometri series. In order to simplify this omputation, it is useful to isolate the Lorentz and

olor struture of τabµν �rst. How this works out will be explained in the following subsetion.

4.2.1. Color struture

The self-energy Πab
µν has only two olor indies and thus an only be proportional to δab, so that

one an write

Πab
µν = δabΠµν . (4.10)

Although this simple struture is obvious from a theoretial point of view, it is not quite so easy

to obtain in a pratial alulation. The �rst step is to projet out the olor struture by a

multipliation with

Pab =
1

N2
c − 1

δab, (4.11)

so that

PabΠ
ab
µν = Πµν . (4.12)

The Feynman rules for this model (see for example setion 5.2.3) ontain only olor tensors like

δab and fabc
, whih an be written as traes by

δab =
1

2
Tr(T aT b) (4.13)

fabc = −2iTr([T a, T b]T c). (4.14)

After all struture onstants have been expressed in terms of traes, any ontribution to Πµν

ontains produts like

Tr(T a1T a2)Tr(T a1T b1T a3)Tr(T a2T b2T a4)Tr(T a3T a4)Tr(T b1T b2)..., (4.15)

where all indies are ontrated. The traes an be expressed as sums over the indies by

T a1
i1i2

T a2
i2i1

T a1
i3i4

T b1
i4i5

T a3
i5i3

T a2
i6i7

T b2
i7i8

T a4
i8i6

T a3
i9i10

T a4
i11i9

T b1
i12i13

T b2
i13i12

..., (4.16)

and with a repeated appliation of the ompleteness relation

N2
c−1
∑

a=1

T a
ijT

a
kl =

1

2

(

δilδkj −
1

Nc
δijδki

)

(4.17)

the whole olor algebrai struture disappears and only the number of olors Nc remains as olor

related quantity.
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4. Eulidean three dimensional SU(N) model

4.2.2. Lorentz struture

The two Lorentz indies arried by the self-energy an only ome from the tensors ηµν and pµpν .
It is therefore onvenient to de�ne linearly independent transverse and longitudinal projetors

(following [19℄)

PT,µν ≡ ηµν −
pµpν
p2

(4.18)

PL,µν ≡ pµpν
p2

, (4.19)

with the properties

Pµσ
T PT,σν = Pµ

T,ν (4.20)

Pµσ
L PL,σν = Pµ

L,ν (4.21)

Pµσ
T PL,σν = 0 (4.22)

Pµ
T ,µ = d− 1 (4.23)

Pµ
L,µ = 1, (4.24)

where we have used the fat that ηµνηµν = d in dimensional regularization. The self-energy an

then be expressed in terms of these projetors and some salar funtions ΠT and ΠL as

Πab
µν(p, ξ) = δabΠµν = δab

(

PT,µνΠT (p
2, ξ) + PL,µνΠL(p

2, ξ)
)

, (4.25)

where the ξ-dependene has been written in order to indiate that the self-energy is in general

a gauge dependent funtion. ΠT is alled the transverse and ΠL the longitudinal part of the

self-energy. The projetion operators eq.(4.18) and eq.(4.19) an be used to projet out either

the longitudinal or the transverse part.

The same onsideration an be made for the gauge boson propagator leading to the deompo-

sition

Dab
µν = δabDµν = δab

(

1

k2 +m2
PT,µν +

ξ

k2 + ξm2
PL,µν

)

. (4.26)

The summation of all 1PI insertions into the propagator yields the full massive gauge boson

propagator

τabµν(k) = δab (Dµν +DµρΠ
ρσDσν +DµρΠ

ρσDστΠ
τηDην + ...) , (4.27)

as a geometri series. The omputation an be split into two parts by means of the projetion

operators yielding

τabµν(k) = δab

(

DT

∞
∑

n=0

(DTΠT )
nPT,µν +DL

∞
∑

n=0

(DLΠL)
nPL,µν

)

, (4.28)
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4. Eulidean three dimensional SU(N) model

where

DT =
1

k2 +m2
(4.29)

DL =
1

k2 + ξm2.
(4.30)

The full gauge boson two-point funtion reads then

τabµν(p) = δab
(

PT,µν

p2 +m2 −ΠT (k2, ξ)
+

ξPL,µν

p2 + ξm2 − ξΠL(k2, ξ)

)

. (4.31)

4.3. Resummation of the model

Now we will study the resummation sheme of this model in more detail. The infrared diver-

genes arising in massless three-dimensional Yang-Mills theories are due to massless gauge boson

propagators used in perturbation theory. One possible solution, alled resummation, is to add

a mass term Lm to the Lagrangian, in order to make propagators massive. The term Lm will

be subtrated again, but in one order higher in the perturbative expansion, so that the gauge

boson propagator remains massive. In an in�nite perturbative expansion one would get bak the

original massless theory. In a �nite order perturbation theory the undetermined mass parameter

oming from Lm, will not vanish though, but it an be interpreted as a higher order ontribution

to magneti mass and an be �xed self-onsistently by means of a gap equation.

Starting from the massless Yang-Mills Lagrangian in eq.(4.1) and following the approah of

[23, 22℄, the resummation is done by introduing a ounting parameter l, rearranging the Yang-

Mills Lagrangian to an e�etive Lagrangian

Leff =
1

l

(

LYM (
√
lA) + ∆L(

√
lA,

√
lπ,

√
lc)− l∆L(

√
lA,

√
lπ,

√
lc)
)

, (4.32)

so that for l = 1 the original massless theory is restored. The �elds A, π, and c get resaled to√
lA,

√
lπ, and

√
lc, suh that l and g2 always appear together as lg2. An expansion in l would

therefore inlude the perturbative expansion in g2. The resummation is then simply done by an

l expansion and by setting l = 1 in the end of the alulation.

The Lagrangian ∆L has to be hosen in a gauge invariant way and there are several ways to do

this. Some examples are given in [25, 26, 27, 28℄. For example following the so alled proedure

A from [22℄, one ould hose ∆L = LSSB + LGF + LFP .

However we will use a di�erent approah, namely the so alled proedure B from [22℄, where

we start from eq.(4.8) and apply the replaement

1

g2 → lg2

m2 → (1− l)m2. (4.33)

1

This replaement is not done for the mass m appearing in π, but for the oupling.
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4. Eulidean three dimensional SU(N) model

After this replaement the new Lagrangian ontains terms ∝ l and ∝ l2 oming from terms ∝ m2

and ∝ m4
in the old Lagrangian, respetively. Thus one has to extend the Feynman rules for

the resummed theory by so alled ounter-terms

2

(.f [22℄).

In order to avoid suh terms during the omputation we ompute the gauge boson transverse

self-energy ΠT in the unresummed model from setion 4.1 with the Lagrangian de�ned in eq.(4.8)

perturbatively up to three-loop. Afterwards we derive a gap equation for ΠT and apply the

resummation sheme de�ned in eq.(4.33) on the gap equation level. This proedure should be

equivalent with proedure B.

The resummed Lagrangian in proedure B has to be BRST-invariant in order to obtain ξ-
independent physial results order by order in perturbation theory. The BRST-invariane an

be proven by using transformations similar to eq.(3.30), but with �elds A, Φ and c resaled with√
l. These transformations are3 [22℄

δBAµ = ω(∂µc) + ω
√
l[c,Aµ] (4.34)

δBΦ = ω
√
lcΦ (4.35)

⇒δBπ = ω

∞
∑

n=0

Bnl
n/2

n!
(−1)j

(

n
j

)

πn−jcπj +O(ω2) (4.36)

δBc = ω
√
lcc (4.37)

δB c̄ = −ω

ξ

(

(∂µAµ)− (1− l)ξm2
Tr

(

(e
√
lπ − e−

√
lπ)T a

)

T a/
√
l
)

, (4.38)

where Bn are the Bernoulli numbers and ω is an anti-ommuting Grassmann number. Further-

more in [22℄ it was shown that both proedures lead to the same results for the mass gap in

one-loop as well as in two-loop.

4.4. Gap equation

The mass parameter in the resummend three dimensional Yang-Mills theory is �xed by a self-

onsisteny equation and the solution of this equation gives an estimate of the mass gap.

The pole of the transverse propagator is believed to be a gauge invariant quantity order by

order in perturbation theory for BRST-invariant theories [22, 24℄. The longitudinal part an be

gauged away in the unitary gauge and is therefore not physial [22, 23℄. Following the approah

of Eberlein [23℄, a gap equation an be derived by the natural requirement that the pole of the

transverse part of the full propagator

τT =
1

p2 +m2 −ΠT (p2)
(4.39)

remains at p2 = −m2
. Expanding the self-energy in p2 = −m2 + ε yields [21℄

2

Not to be onfused by the renormalization ounter term.

3

Note that in [22℄ the ghost are de�ned by c = igT aca

29



4. Eulidean three dimensional SU(N) model

τT
p2=−m2+ε

=

1

(1−Π′
T (−m2))

− ΠT (−m2)

(1−Π′
T (−m2))

− ε+O(ε2)
, (4.40)

where Π′
T (−m2) = ∂p2ΠT (p

2)|p2=−m2 . The ondition that the pole remains in all orders of

perturbation theory at p2 = −m2
, results in the gap equation [22℄

ΠT (−m2)
(

1−Π′
T (−m2)

) = 0. (4.41)

It is easiest to ompute the self-energy for the unresummed theory in eq.(4.8) �rst and then

to perform the resummation simply by substituting m2 → (1 − l)m2
and g2 → lg2 in the full

propagator as

τT =
1

p2 +m2 + (ΠT (p2, (1− l)m2, lg2)− lm2)
, (4.42)

leading to the resummed gap equation [21℄

0 =

(

ΠT (p
2,m2 − lm2, lg2) + lm2

1− ∂p2ΠT (p2,m2 − lm2, lg2)

)

p2=−m2

. (4.43)

The L-loop gap equation an be obtained by the l-expansion of eq.(4.43) up to lL and setting

l = 1 afterwards. Unfortunately this equation has a rather ompliated l-dependene so that

an l expansion is not very onvenient. But it an be made easier by inluding the summand

4

p2 +m2
in the numerator and by applying a mass shift operator exp(p2l∂m2), leading to [21℄

0 =

(

ep
2l∂m2

ΠT (p
2,m2, g2l)− p2 −m2

1− ∂p2ΠT (p2,m2, lg2)
+O(lL+1)

)

l=1,p2=−m2

. (4.44)

This equation an now easily be expanded in l and therefore in g2, using the perturbation

expansion

ΠT (p
2,m2, g2l) =

∑

n≥1

(g2l)nΠ
(n)
T (p2,m2) (4.45)

for the self-energy

5

. The quantities Π
(n)
T (p2,m2) are the n-loop self-energies in the unresummed

theory in eq.(4.8) with g2 fatored out. All information of the resummation is now enoded in

the struture of the gap equation.

The gap equation ontains a mass and a momentum derivative due to the mass shift operator.

Working at the diagram level it is muh easier to ompute the mass derivative instead of the

momentum derivative. For this purpose the dimensional relation [21℄

(

p2∂p2 +m2∂m2 +
4− d

2
g2∂g2

)

ΠT (p
2,m2, g2) = ΠT (p

2,m2, g2), (4.46)

4

This is allowed, beause of the on-shell ondition p2 = −m2

5

Note that Π
(n)
T arries the mass dimension 2− n, whereas ΠT arries the mass dimension 2.
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4. Eulidean three dimensional SU(N) model

an be used to write all momentum derivatives in terms of mass derivatives.

The expansion of the gap equation in eq.(4.44) up to four-loop, using eq.(4.45) expressed in

terms of mass derivatives only, is given as

0 = m2
{

1 + g2A
}

(4.47)

0 = m2

{

1 + g2
4− d

2
A+ g4

(

2− d

2
A2 +B

)}

(4.48)

0 = m2

{

(1 +
g2

2
((4− d)A +C) + g4

(

(d− 4)(d − 2)

4
A2 + (4− d)B +AC

)

(4.49)

+g6
(

(d− 2)2

4
A3 +

8− 3d

2
AB +D

)}

(4.50)

0 = m2{1 + g2 (6A(4 − d)− 6C + E) +O(g4)}, (4.51)

with abbreviations

Πab = ∂b
p2∂

a
m2Π|p2=−m2 (4.52)

and

A =
Π

(1)
00

m2
, (4.53)

B =
Π

(2)
00

m2
+AΠ

(1)
01 , (4.54)

C = (d− 4)Π
(1)
01 −m2Π

(1)
02 , (4.55)

D =
Π

(3)
00

m2
+AΠ

(2)
01 +

(

d− 4

2
A+B

)

Π
(1)
01 (4.56)

E = 3(2− d)m2Π
(1)
02 + 4m4Π

(1)
03 . (4.57)

Assuming the gap equations to be gauge invariant at eah order, it is lear that the terms A,...,E
should be gauge invariant as well. Indeed this has been proven in [22℄ for the one- and two-loop

equation. As we will show later, this is not the ase for higher orders in perturbation theory. In

order to understand this problem, it is neessary to have expliit results for the funtions Πab.
One these funtions have been evaluated, eq.(4.47) - eq.(4.51) an be solved form. This would

then give the desired mass gap approximation. The gap equation has the general struture

0 = m2

(

1 +
g2

m
K1 +

g4

m2
K2 + ...

)

, (4.58)

where the dimensionless real numbers Ki an depend on

µ2

m2 and Nc as well, where µ is the

renormalization sale. Setting m = Kg2 and �xing a value for

µ
g2
, one an solve this equation

at least numerially, leading to an Nc-dependent solution K. For the one- and two-loop result it

will even turn out that

31



4. Eulidean three dimensional SU(N) model

m = K ′g2Nc, (4.59)

where K ′
is a Nc-independent number. In order to interpret m as a mass, the solution for K has

to be a real non-negative number.

The omputation of the self-energy diagrams an be very di�ult and needs therefore some

omputer algebrai tehniques. These methods will be disussed in the next hapter.
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theory

In this hapter we will present the most important omputational methods, algorithms and

omputer programs used in this work to do the self-energy omputation. In the �rst part we

will start with a rather general disussion and lassi�ation of Feynman integrals. Then we will

explain the so alled Laporta algorithm for the redution of Feynman integrals to a small set of so

alled master-integrals. Afterwards we will show how to solve these master-integrals numerially.

The seond part shall give the reader a detailed disussion of the work �ow, in partiular it will

be presented how to obtain salar Feynman integrals from diagrams.

5.1. Redution tehniques for salar Feynman integral

5.1.1. Notation

In this general part we will follow and introdue the notation of Laporta [36℄

� The number of loops is denoted Nk with loop momenta ki=1,...Nk

� Number of external lines is Ne .The external momenta are pi=1,...,Np, where Np is the

number of independent momenta. Np = Ne − 1 if Ne > 0.

� The number of internal lines is Nd and the propagators have denominators Di = q2i +m2
i ,

where qi is the momentum and mi the mass arried by the ith line. qi is any linear

ombination of the momenta {ki} and {pi}.

� Many alulations in this hapter will be independent of the normalization of the integration

measure. Therefore it is useful to hide normalizations like

1
(2π)d

in a ompat notation

ddkl
(2π)d

→ [ddkl].

The most general Nk-loop Feynman integral in dimensional regularization an be written as [36℄

(

Nk
∏

l=1

ˆ

[ddkl]

)

Vsδ, (5.1)

where the integrand

Vsδ =

∏Np

i=1

∏Nk
j=1(pi · kj)δij1

∏Nk
i,j=1(ki · kj)δij2

∏Nd
i=1 D

γi
i

, γi ≥ 0, δijl ≥ 0 (5.2)
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is a produt of propagators and salar produts in the numerator. The number of salar produts

that an appear in the numerator is Nsp = NpNk + Nk(Nk + 1)/2. Sine eah denominator Dj

arries a linear ombination of momenta from {ki} and {pi} it is possible to anel some of the

salar produts in the numerator. For every denominator Dj hoose a unique salar produt

(p · k)j that appears in the denominator. One an then write [36℄

(p · k)j
Dj

=
1

Cj

(

1− Dj − Cj(p · k)j
Dj

)

, (5.3)

with a onstant Cj hosen so that the term Cj(p · k)j is aneled by the same term appearing in

Dj. This anellation an be done as often as possible in the integrand in eq.(5.2). Finally one

ends up with a sum of integrands [36℄

V ′
niαβ =

Π
Nsp−n
j=1 (p · k irred.)

βj

j
∏n

j=1D
αj

ij

, n ≤ Nd, αj,βj ≥ 0, (5.4)

with Nsp − n irreduible salar produts (p · k irred.)j whih annot be aneled by some de-

nominator. The index set i = {i1, ..., in} labeling the denominators is any subset of {1, ..., Nd}.

5.1.2. Integral families

For our lassi�ation of Feynman integrals it will also be important to understand the notion

of integral families. Given Nk loops with Np-independent external momenta, an integral family

is de�ned by a olletion of Nsp di�erent denominators {D1, ...,DNsp}, so that eah of the Nsp

possible salar produts an be written as a linear ombination of inverse propagators and kine-

mati invariants [39℄. Every integral family is therefore haraterized by the number of loops

and a set of momenta and masses arried by the propagators. Every integral belonging to an

integral family an then be written as

I(a1, ..., aNsp) =

(

Nk
∏

l=1

ˆ

[ddkl]

)

1

Da1
1 ...D

asp
Nsp

, (5.5)

with indies ai ∈ Z . The integrals in eq.(5.4) will be brought to this form in our omputation,

beause many omputer programs like Reduze [39℄ work with the onept of integral families.

Example: Consider the one-loop integral

ˆ

[ddk]
2pk

((k − p)2 +m2)x
. (5.6)

The salar produt an be written as pk = 1
2

(

(k − p)2 +m2 − k2 −m2 − p2
)

. This suggests to
de�ne an integral family by the set of propagators

1 {k2 +m2, (k − p)2 +m2}. The integral an
therefore be written as

1

The hoie is obviously not unique. One ould also have hosen the propagators {k2, (k−p)2+m2}. As explained
later we will hose the families always in suh a way, that propagators with negative powers are massless.
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I(0, x− 1)− I(−1, x)− p2I(0, x) (5.7)

with

I(a, b) =
1

(k2 +m2)a((k − p)2 +m2)b
. (5.8)

5.1.3. Setors

Given an integral family with Nsp propagators {D−1
1 , ...,D−1

Nsp
}. Eah subset {D−1

i1
, ...,D−1

in
}

of Nd ≤ Nsp propagators de�nes a setor of the family [39℄. Eah setor has an identi�ation

number

ID ≡
Nd
∑

k=1

2ik−1. (5.9)

There are

(

Nsp

Nd

)

di�erent setors for eah Nd and

∑Nsp

Nd=0

(

Nsp

Nd

)

= 2Nsp
setors for eah

family. Eah integral of a spei� setor with Nd propagators has to have positive indies ri for
these propagators with

r ≡
Nd
∑

i=1

ri ≥ Nd. (5.10)

All the other Nsp−Nd propagators appearing in the integrals have to have powers −si ≤ 0 with

s ≡
Nsp−Nd
∑

i=1

si ≥ 0. (5.11)

A orner integral of a setor is de�ned as the integral with r = Nd and s = 0. Consider for
example the integral family eq.(5.8). The integrals I(1, 0), I(0, 1) and I(1, 1) are the orner

integrals of the setors with ID 1, 2 and 3 respetively.

Eah propagator of a family arries a di�erent linear ombinations of the momenta {ki} and

{pi}. But the value of the integrals an be invariant under a shift transformation [39℄

ki →
Nk
∑

i=1

Mijkj +

Np
∑

j=1

Nijpj , det(M) = 1. (5.12)

The appliation of this shift to the orner integral of some setor S yields a new set of propa-

gators. If these new propagators form another setor S′
, then this shift is alled setor relation.

Then with help of the setor relations it is possible to express all integrals of setor S in terms

of integrals of the setor S′
and subsetors of S′

, so that the setors S is eliminated [39℄.

Considering the integral in eq.(5.8) the shift relation k → −k + p applied to I(0, 1) yields the
integral I(1, 0).
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A setor symmetry is a shift whih maps a setor S to itself. For example The setor with

ID = 3 is invariant under the above shift, but individual integrals are not neessarily invariant.

For example I(1, 2) 6= I(2, 1), if the masses in eah propagator wouldn't be the same. In the

ase where both masses are equal, the integral has the permutation symmetry I(1, 2) = I(2, 1)
in the indies.

5.1.4. Integration-by-parts

The integration-by-parts (IBP) method was �rst proposed by Chetyrkin and Tkahov [43℄ in 1981

and turned out to be a very useful tehnique whih an be applied algorithmially for arbitrary

Feynman integrals. The method is as simple as the name suggests. The integral over the total

derivative of a funtion that vanishes at the boundary is zero. Applied to an Nk-loop Feynman

integral with Np-independent external momenta, one an onstrut Nk(Nk +Np) equations [36℄

0 =

(

Nk
∏

n=1

ˆ

[ddkn]

)

∂

∂kµj

(

kµi V
′
niαβ

)

(5.13)

0 =

(

Nk
∏

n=1

ˆ

[ddkn]

)

∂

∂kµj

(

pµi V
′
niαβ

)

(5.14)

for eah integrand V ′
niαβ de�ned in eq.(5.4).

Example 1: The best way to understand this method is to start with a simple example. Consider

the one-loop tadpole integral (.f. eq.(2.28))

J(x, d,m) =

ˆ

[ddk]
1

(k2 +m)x
(5.15)

and apply the �rst relation

0 =

ˆ

[ddk]∂kµ
kµ

(k2 +m2)x
. (5.16)

The appliation of the derivative leads to a sum of integrals

0 =

ˆ

[ddk]

(

d

(k2 +m2)x
− 2xk2

(k2 +m2)x+1

)

, (5.17)

with a reduible salar produt k2 in the numerator. After anellation one ends up with an

in�nite system of equations

(
d

2
− x)J(x, d,m) + xm2J(x+ 1, d,m) = 0, ∀x > 0. (5.18)
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The important observations is that these equations an be applied iteratively, so that for any

value x the integral J(x, d,m) an be expressed simply in terms of a single integral J(1, d,m)
with

2

J(x+ 1, d,m) =
(d2 − x) · ... · (d2 − 1)

(m2)x Γ(x+ 1)
J(1, d,m). (5.19)

The reursion stops at J(1, d,m) beause there is a 1
0 in the reursion for x = 0.

Considering integrals with higher powers x as more di�ult than integrals with lower pow-

ers, a master-integral is the simplest integral that remains after the repeated appliation of an

integration-by-parts relation. In general the aim is to express a lass of integrals in terms of a

small set of simpler master-integrals. There are two possible ways to ahieve this. One way is to

�nd a general solution of the in�nite system of integration-by-parts relations. A general solution

is a set of ombined IBP's that an be applied reursively, so that in eah reursion step the sum

of indies of denominators gets lowered [36℄. This idea relies basially on an ordering priniple

that will be disussed in the next setion in more detail.

Example 2: To see how a solution an be found in a more advaned example onsider the most

general one-loop two-point integral

I(s1, s2,m1,m2) =

ˆ

[ddk1]
1

(k21 +m2
1)

s1((k1 − p)2 +m2
2)

s2
, s1, s2 > 0 (5.20)

with p not neessarily on-shell. The �rst IBP relation

0 =

ˆ

[ddk1]
∂

∂kµ1

kµ1
(k21 +m2

1)
s1((k1 − p)2 +m2

2)
s2

(5.21)

leads to the equation

0 = (d− 2s1 − s2)I(s1, s2,m1,m2) + 2s1m
2
1I(s1 + 1, s2,m1,m2)

−s2I(s1 − 1, s2 + 1,m1,m2) + (m2
1 +m2

2 + p2)s2I(s1, s2 + 1,m1,m2), (5.22)

and the seond relation

0 =

ˆ

[ddk1]
∂

∂kµ1

pµ

(k21 +m2
1)

s1((k1 − p)2 +m2
2)

s2
, (5.23)

leads to the equation

2

In this ase this relation is not a surprise sine the solution of I(x) given in (2.28) is known to be a ratio of

Gamma funtions. The equation (5.18) rewritten to

I(x+ 1) =
1

m2

(x− d
2
)

x
I(x),

is indeed the funtional equation of a ratio of Gamma funtions.
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0 = (s2 − s1)I(s1, s2,m1,m2) + s1I(s1 + 1, s2 − 1,m1,m2)− s2I(s1 − 1, s2 + 1,m1,m2)

+ s1(m
2
1 −m2

2 − p2)I(s1 + 1, s2,m1,m2) + s2(m
2
1 −m2

2 + p2)I(s1, s2 + 1,m1,m2), (5.24)

where in the alulation in between all salar produts appearing due the di�erentiation have

been aneled. In order to �nd a general solution for this system of equations it is useful to

write these relations as operator equations by de�ning raising an lowering operators 1
±
and 2

±

so that for example 1
+
2
−I(s1, s2,m1,m2) = I(s1 + 1, s2 − 1,m1,m2). Then just subtrat both

equations and solve one of them to I(s1, s2 + 1,m1,m2) to get the equation

2s2m
2
12

+I(s1, s2) =
(

s11
+
2
− − s1(p

2 +m2
2 +m2

1)1
+ − (d− 2s2 − s1)

)

I(s1, s2), (5.25)

whih relates an integral with a sum of indies s1 + s2 + 1 to integrals with a sum of indies

s1 + s2 + 1 or s1 + s2. Plugging this equation into eq.(5.22) leads then to the relation

s1(m
2
1 − 2m1m2 +m2

2 + p2)(m2
1 + 2m1m2 +m2

2 + p2)1+I(s1, s2,m1,m2) =

+
(

−2s2m
2
21

−
2
+ + s1(p

2 +m2
2 +m2

1)1
+
2
−) I(s1, s2,m1,m2)

+
(

d(−p2 +m2
1 −m2

1) + 2s2(p
2 +m2

1) + s1(p
2 − 3m2

2 +m2
1)
)

I(s1, s2,m1,m2), (5.26)

whih also relates an integral with a sum of indies s1 + s2 +1 to integrals with a sum of indies

s1 + s2. The ombination of eq.(5.25) and eq.(5.26) an therefore be onsidered as a omplete

solution of the system. With an iterative appliation of these identity one an express any integral

I(s1, s2,m1,m2) in terms of I(1, 1,m1,m2) and the known tadpole integrals I(s1, 0,m1,m2) and
I(0, s2,m1,m2). This is visualized in Fig. 5.1 for the integral I(3, 2). The iteration stops, when

we set the ondition for the indies si to be non-negative.
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Figure 5.1.: Appliation of the reurrene relation to the integral I(3, 2). (a)=eq.(5.25) and

(b)=eq.(5.26). The integral I(1, 3) obtained from I(3, 2) annot be further simpli�ed
with eq.(5.26) without getting negative indies. Therefore one has to apply eq.(5.25)

to it.

In general it an beome rather ompliated to �nd a omplete solution for the in�nite system of

equations derived from eq.(5.13) and eq.(5.14), beause the number of relations and the number

of indies grow rapidly with inreasing number of loops and legs.

However for two-loop self-energy integrals there has been found a solution for the general

system of equations obtained from IBP for arbitrary masses by Tarasov [30℄. There is also

a Mathematia [31℄appliation alled TARCER [32℄, where this solution has been implemented.

Furthermore there are general solutions for three-loop massless two-point integrals found by

Chetyrkin and Tkahov [43℄ and for three-loop massive two-point integrals found by Broadhurst

[34℄ realized in the FORM pakages MINCER [33℄ and MATAD [35℄ respetively.

For all other ases where it is too di�ult to �nd suh a general solution it is good to �nd

only a su�iently large �nite solution of the system of integration-by-parts identities. This an

be done with the Laporta algorithm, whih will be desribed below.

5.1.5. Laporta algorithm

The idea of the Laporta algorithm is to onstrut a �nite system of integration-by-parts identities,

su�iently large to express all desired integrals in terms ofmaster-integrals. Let us �rst introdue

some further notation following [36℄. Consider the integral of the type V ′
inαβ de�ned in eq.(5.4).

They an be lassi�ed by the number of denominators n and by the numbers Mp and Md de�ned
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by

3

Mp ≡
Nsp−n
∑

j=1

βj , Md ≡
n
∑

j=1

(αj − 1). (5.27)

Let furthermore

[

n;
Mp

Md

]

be the set of all integrands V ′
inαβ with n denominators and powers

α = (α1, ..., αn) and β = (β1, ..., βNsp−n) satisfying eq.(5.27) and let

[

n;
0...ai
0...bi

]

be the set of

all integrands with 0 ≤ Mp ≤ ai and 0 ≤ Md ≤ bi. The index i at ai and bi is related to the

index set i = {i1, ..., in} and is therefore a label for the setors.

In order to redue an integral V ′
iNdαβ

belonging to a setor with Nd propagators one gener-

ates systematially all IBP relations for all integrals belonging to su�iently large hosen sets

[

n;
0...ai
0...bi

]

for all setors with n ≤ Nd propagators. This yields a �nite system of equations

whih an be solved in a Gauss algorithmi way. Eah equation is solved to the most di�ult

integral appearing in eah relation and is then plugged into the other equations in order to

eliminate all di�ult integrals. The di�ulty of an integral is determined by an order of prior-

ity de�ned below. Finally the system of IBP relations has been brought to a form, where all

equations relate di�ult integrals in terms of remaining less di�ult integral. These remaining

integrals are the master-integrals.

The algorithms to onstrut and solve the �nite system of equations reads expliitly:

3

Note that earlier in the ontext of integral families the values r in eq.(5.10) and s in eq.(5.11) have been

introdued. In fat r = Md − n and s = Mp. Here we keep the notation of Laporta in order to formulate his

algorithm in the original form. It is good to know both notations, beause some programs use the �rst and

some programs the seond one.
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Algorithm 5.1 The Laporta algorithm

for( n = Nk, ..., Nd)

for( all ombinations of n denominators {Di1 , ...,Din} ⊆ {D1, ...,DNd
})

for( Md = 0, ..., bi)
for( Mp = 0, ..., ai)

for(all W (n, i, α, β) ∈
[

n;
Mp

Md

]

)

for(x=1,...,Nk(Nk +Np))
do

1. Generate xth identity for W (n, i, α, β)

2. Let

(

∏Nk
l=1

´

[dkl]
)

∑

j cjWj = 0 be this identity

3. Plug in all already known integrals from earlier steps into this identity to get a new

identity

(

∏Nk
l=1

´

[dkl]
)

∑

j c
′
jW

′
j = 0.

if(new identity linearly independent to generated system): Solve it to the most

di�ult integral W ′
l (n

′, i′, α′, β′) ∈
[

n′;
M ′

p

M ′
d

]

aording to an order of priority (see

below), then add and substitute the equation for W ′
l to the system.

The order of priority The order of priority hosen for the three-loop self-energy omputation

is

1. the greatest n′

2. the greatest M ′
p

3. the greatest M ′
d

4. the greatest i′1,..., the greatest i
′
n

5. the greatest α′
1,..., the greatest α

′
n

6. the greatest β′
1,..., the greatest β

′
n.

This ordering determines the set of master-integrals, whih remain after the redution. A dif-

ferent ordering leads to di�erent master-integrals. We have modi�ed this ordering in Reduze in

order to get integrals without negative exponents. In Laporta's paper [36℄ the seond and the

third lines are swithed.

As explained above the numbers a and b determine the size of the onstruted system. The

values a and b have to be arefully hosen, so that the system is large enough to redue all
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integrals to master-integrals. There is no general rule for the hoie of a and b, but there is a
golden rule given by Laporta. The set [36℄

Gab =

Nd
⋃

n=Nk

[

n :
0...a
0...b

]

(5.28)

is the set of seed-integrals, integrals whih are used to generate identities for setors with Nd

propagators. Laporta's golden rule

4

is that all integrals belonging to Gab an be redued to

master-integrals using the identities generated from Gab. The number of seed-integrals for the

set Gab is [36℄

N
seeds

(Gab) =

Nd
∑

n=Nk

(

Nd

n

)(

Nsp − n+ a
a

)(

n+ b
b

)

. (5.29)

The number of equations onstruted from Gab is [36℄

Nide(Gab) = Nk(Nk +Np)Nseeds

(Gab). (5.30)

These numbers will help to understand the di�ulties that an arise in higher loops omputations.

This algorithm has been realized in several programs like AIR [38℄, FIRE [41℄, Reduze [39℄ and

LiteRed [42℄. For the redution of the self-energy integrals in this work we have used Reduze.

5.1.6. Calulation of master-integrals with di�erene equations

When all integrals have been redued to master-integrals one de�nitely likes to �nd a solution of

these integrals as well. In priniple it would be nie to �nd a general d-dependent result for the
integrals, but this is too ompliated in most ases. In pratie one is atually only interested

in the numerial oe�ients in the ε expansion for some spei� spae time dimension d. In the

best ase one an �nd these oe�ients analytially in terms of numbers like π, ζ(n) or any other
funtion that an be alulated to an arbitrary preision. But in priniple it is su�ient to �nd

these oe�ients numerially to a very high preision. The expansion in ε and the omputation of
the numerial oe�ients an be done by means of di�erene equations, whih will be explained

below. This setion relies basially on hapters 4-6 from [36℄ .

5.1.6.1. Di�erene equations and master-integrals

A di�erene equation of order R is an equation for a funtion U(x) of the form [36℄

R
∑

j=0

pj(x)U(x+ j) = F (x), (5.31)

4

In some few ases it an happen that this golden rule is not su�ient. Raising the values for a and/or b by 1

should in the most ases be enough to redue all integrals to master-integrals.
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where F (x) is a known funtion and pj are polynomials depending on x, d and eventually on

some mass sales. Suppose this equation an be found by means of IBP relations

5

of a Feynman

integral

U(x) =

NL
∏

j=1

(
ˆ

[ddkj ]

)

1

Dx
1D2...DNd

, (5.32)

with one propagator raised by an index x. If it is possible to �nd a solution for eq.(5.31), then

one has found a solution for the Feynman integral in eq.(5.32). In general it is not possible to

�nd an exat solution for suh a di�erene equation. But a numerial solution an be found by

means of a fatorial series ansatz. A fatorial series is of the form [36℄

U(x) = µx
∞
∑

s=0

as
Γ(x+ 1)

Γ(x+ 1−K + s)
, (5.33)

with onstants µ and K whih have to be determined for a spei� solution. Like in the theory of

ordinary di�erential equation the general solution U(x) of an inhomogeneous di�erene equations
is a sum

U(x) = UHO(x) + U IH(x) (5.34)

of a partiular solution U IH
of the inhomogeneous equation and the general solution UHO(x) of

the homogeneous equation

R
∑

j=0

pj(x)U(x+ j) = 0. (5.35)

The homogeneous solution an be written as a linear ombination

UHO(x) =
R
∑

i=1

ωi(x)U
HO
i (x) (5.36)

of independent solution UHO
i and periodi funtion ωj(x) = ωj(x+1). Thus w(x) is onstant for

integer x and we will write w(x) = η in this ase. The fatorial series ansatz will lead to R di�erent

solutions aording to R di�erent pairs (µi,Kj) for the homogeneous equation. The values µIH

and KIH for the inhomogeneous solution are determined by the inhomogeneity F (x). In the

following we will give an appliation oriented explanation, how to obtain a numerial solution

for di�erene equations and how to get the numerial ε-expansion for the master-integrals. The

following steps summarize what has to be done in priniple:

5

There is an algorithm given in Laporta's paper [36℄ in setion 3.2 for the onstrution of a system of di�erene

equations from IBP. This algorithm is basially a modi�ed version of the Laporta algorithm presented in

this work. One important modi�ation is, that one index in the IBP's is a symbol x and that there are two

additional onditions in the order of priority. We won't go into detail here, beause this is not part of this

work.
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1. Find reurrene relations for the oe�ients a
(i,j)
s for R di�erent pairs (µi,Kj) aording the

homogeneous solutions and for aIHs for pairs (µIH ,KIH) belonging to the inhomogeneous

solution.

2. Compute the large x-behavior of the integral in eq.(5.32) (see setion 5.1.6.3). This will

lead to a fatorial series with some spei� µ0 and K0. For this series the �rst oe�ients
a0, a1, ... an be omputed with a Taylor expansion. Finally the omparison of this fatorial
series with the general solution U(x) =

∑R
i=1 ηiU

HO
i +U IH

of the di�erene equation (for

integer x) leads to the determination of the unknown onstants ηi in the linear ombination.

3. For a di�erene equation of order R ompute the oe�ients a
(i,j)
s and aIHs iteratively for R

di�erent values xmax, ..., (xmax −R) > K. For values x ≤ K the series diverges. In general

one annot �nd a losed solution for the reurrene relations. Thus one has to stop the

omputation at some asmax with su�ient high smax. The oe�ients will be d-dependent.
In order to �nish the omputation in a reasonable amount of time it is neessary to expand

the reurrene relation in ε in every iteration step.

4. Sum up the fatorial series for the values xmax, ..., (xmax − R) to obtain the solutions

U(xmax), ...U(xmax −R).

5. Plug the solutions U(xmax), ..., U(xmax − R) into the di�erene equation and solve the

equation to U(1) iteratively. Here it is also advisable to do an ε expansion in every iteration
step. This part of the alulation is alled push down.

Some omments:

� Step 2 works only for integrals, where external momenta are Eulidean and their salar

produts pi · pj form a semide�nite non-negative matrix and the masses are not zero.

Sine fully massive vauum bubbles have no external momenta this method works very

well for them. For the self-energy integrals in the Eulidean 3d Yang-Mills SU(N) model
this ondition is not ful�lled sine p2 = −1. Therefore one has to apply another method

proposed by Laporta [36℄ in setion 5.2 and 5.3. We have not yet applied this method for

the three-loop master-integrals beause it is rather di�ult to automatize. Instead we will

present the appliation of this method to a tadpole integral lass as example here.

� The numerial result is very sensitive to the hoie of xmax and smax. The series onverges
very well for large xmax so that only a omparably small smax is needed to get a lot of

digits for U(xmax). But there are some pratial problems. Firstly the oe�ients as an

beome very huge (∼ 101000) for large s, whereas the fator

Γ(x+1)
Γ(x+1−K+s) in the fatorial

series beomes very small (∼ 10−(1000)(1+ε)). This an lead to very bad numerial problems

due to round-o� errors. It is therefore advisable to solve the reurrene relation for bs =
as/Γ(x+ 1−K + s) and to sum up the fatorial series Γ(x+ 1)

∑smax
s=0 bs instead.

� The good onvergene behavior of the series for large xmax is spoiled by round-o� er-

rors leading to huge loss of digits during the push down. The higher xmax the more

digits get lost during the pushdown. It is therefore important to ompute the values
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U(xmax), ..., U(xmax − R) to a very high preision by hoosing a high enough smax. One
has to play with these parameters in order to get an optimal result. In the omputation

in this work values of the order xmax ∼ 102 and smax ∼ 103 turned out to be good. For

details see the example omputation in the end of this setion.

5.1.6.2. Step 1: How to obtain the reurrene relations

The derivation of the reurrene relation an be done in an automatized way by using operators

π and ρ.

Operators π and ρ The operators π and ρ are de�ned by [36℄

ρ
mU(x) ≡ Γ(x+ 1)

Γ(x−m+ 1)
U(x−m), ρm1 ≡ ρ

m ≡ Γ(x+ 1)

Γ(x−m+ 1)
, (5.37)

and

πU(x) = x(U(x)− U(x− 1)). (5.38)

It is easy to show that the operators have the properties

ρ
m
ρ
nU(x) = ρ

m+nU(x), (5.39)

[π,ρ]U(x) = ρU(x) (5.40)

xU(x) = (ρ+ π)U(x). (5.41)

Homogeneous solution The homogeneous solution an be obtained by applying the following

steps to the di�erene equation [36℄:

1. Write down the homogeneous di�erene equation

R
∑

j=0

pj(x)U
HO(x+ j) = 0. (5.42)

2. Shift the variable x → x−R

R
∑

j=0

qj(x)U
HO(x− j) = 0, (5.43)

with new polynomials qR−i(x) = pi(x−R), so that their highest argument is x.
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3. Make the substitution UHO(x) = µxV HO(x) and divide the µ′
s so that the lowest power

in µ is 0. This yields

R
∑

j=0

qj(x)µ
R−jV HO(x− j) = 0. (5.44)

4. Multiply the equation with

∏R−1
k=0 (x−k) and use eq.(5.37), rewritten as

(

∏N
j=0(x− j)

)

V (x−
N − 1) = ρ

N+1V (x), to obtain an operator equation

(

R
∑

l=0

φl(x, µ)ρ
l

)

V HO(x) = 0, (5.45)

where φl(x, µ) is a polynomial obtained from sorting the equation by powers in ρ.

5. Now substitute x → π + ρ aording to eq.(5.41) and ommute all π operators to the left

of ρ using eq.(5.40). This yields the �rst anonial form

(

m+1
∑

l=0

fl(π, µ)ρ
l

)

V HO(x) = 0, (5.46)

where m ≥ R− 1 is any integer depending on the x-dependene of the di�erene equation.
It turns out that the polynomial fm+1 is always π-independent.

6. Solve the harateristi equation

fm+1(µ) = 0 (5.47)

leading to λ ≤ R distint nonzero solutions µi=1,...,λ. Choose any of these solutions and

plug it into eq.(5.46).

7. Make the fatorial series ansatz

V HO(x) =
∞
∑

s=0

asρ
K−s, (5.48)

apply the ommutator in eq.(5.40) to bring all π
′s to the right and use the fat that π

ating on a onstant is zero. This is e�etively equal to the substitution πρs → sρs
. Finally

this leads to a reurrene relations for the oe�ients as
m
∑

n=0

a
(i)
s−nfm−n(K +m− s, µi) = 0 ∀ s ≥ m. (5.49)

8. Solve the indiial equation

fm(K +m,µi) = 0 (5.50)

with solutions Ki1,...,Kiνi where νi is the multipliity of µi, so that there are

∑λ
i=1 νi = R

solutions. Choose one Kij and plug it into eq.(5.49) to obtain a reurrene relation for

oe�ients a
(i,j)
s for a spei� pair (µi,Kij).

9. Repeat steps 6-8 for all other possible pairs (µ,K) to get all the other reurrene relations
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Inhomogeneous solution The reurrene relation for the inhomogeneous di�erene equation

an be obtained very similarly [36℄. There are only some slight modi�ations. For the equation

R
∑

j=0

pj(x)U(x+ j) = F (x), (5.51)

apply steps 1 - 5 and assume that the funtion F ′(x) = F (x − R) has a known µ and K-

dependene due to known fatorial series expansion

6 F ′(x) = µx
IH

∑

s csρ
KIH−s

with known cs.
This is true beause the inhomogeneity is given as the solution of another di�erene equation

whih has already been solved

7

. After applying step 7 the parameters µ and K on the the left

hand side oming from the ansatz U IH = µx
∑

s asρ
s−K

have to be equal to µIH and KIH . This

leads to the reurrene relations

m
∑

n=0

as−nfm−n(KIH − s, µIH) = cs, s ≥ m. (5.52)

with known cS .

5.1.6.3. Step 2: Determination of arbitrary oe�ients from large x-behavior

Still following [36℄ start from an Nk-loop integral

U(x) =

ˆ

[ddk1]
1

(

k21 +m2
1

)x g(k1), (5.53)

where g is an (Nk − 1)-loop integral of the type

g(k1) =

(

Nk
∏

l=2

[ddkl]

)
∏Nsp−Nd

j=1 (p · k irred)j
D2D3...DNd

, (5.54)

with a semide�nite non-negative matrix pi · pj and non-vanishing masses in eah propagator.

Lets assume here that [ddk1] =
ddk1
2πd/2 . Like the one-loop tadpole integral in eq.(2.28), U(x) an

be written in d-dimensional spherial oordinates

U(x) =
1

Γ(d/2)

ˆ ∞

0

dk21
(

k21
)d/2−1

(

k21 +m2
1

)x f(k21), (5.55)

with f(k21) = 1
Ωd

´

dΩd(k̂1)g(k1). Substitute k21 = m2
1

u
1−u and write f̃(u) = f(m2

1u/(1 − u)) to
obtain the integral

U(x) =
(m2

1)
d/2−x

Γ(d/2)

ˆ 1

0
duud/2−1(1− x)x−1−d/2f̃(u). (5.56)

6

In general it an be a sum F (x) =
∑

l µ
x
IH,lTl(x) with di�erent values µIH,l and KIH,l. But for simpliity and

aording to the examples presented here it is su�ient to onsider this ase only.

7

In general the di�erene equation is part of a triangular system of di�erene equations
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Due to the properties of the external momenta and masses, the large x-behavior of the integral
U(x) is dominated by the small k21 behavior of f [36℄. For small k21 (and so small u) the funtion
f̃ an be written as an expansion in u with

f̃(u) = uα(1− u)d/2+1
∞
∑

s=0

bsu
s, (5.57)

where α ≥ 0 vanishes in the ase of no salar produts in the numerator of U(x) and the fator

(1 − u)d/2+1
is hosen for onveniene. It is then possible to express the integral in eq.(5.53)

indeed in terms of an in�nite sum of Euler Beta funtions and therefore as a fatorial series

U(x) = µx
0

∞
∑

s=0

as
Γ(x+ 1)

Γ(x+ 1−K0 + s)
, (5.58)

with

µ0 =
1

m2
1

, K0 = −d/2 − α, as = bsm
d
1Γ(s+ d/2 + α)/Γ(d/2). (5.59)

The oe�ients as in eq.(5.58) are simply determined by bs in eq.(5.57), whih is the Taylor

expansion of f(u). Thus the large x−behavior of the integral U(x) and the resulting oe�ients

as are determined by the one loop less and one propagator less integrals g. In general the integral
g is itself a solution of a di�erene equation, whose large x-behavior has to be determined before.

Finally we an ompare the above expansion of U(x) with the fatorial series obtained by the

operator approah for di�erene equations. By equating both expansions

(

1

m2
1

)x ∞
∑

s=0

asρ
−D/2−α−s =

R
∑

j=1

ηjµ
x
j

∞
∑

s=0

âjsρ
Kj−s +

∑

l

(

µIH
l

)x
∞
∑

s=0

aIHls ρ
KIH

l −s, (5.60)

we obtain the unknown onstants ηj . By omparison it is lear that only solutions with µj =
1
m2

1

an ontribute to the whole solution. The numbers Kj of the homogeneous solution have to

satisfy the ondition [36℄

Kj + d/2 + α = integer≤0 (5.61)

and for the inhomogeneous solution they have to satisfy eq.(5.61) or [36℄

0 < Kj + d/2 + α = integer ≤ max
l

KIH
l + d/2 + α. (5.62)

5.1.6.4. Appliation: Massive sunset-type vauum integrals

Consider the fully massive n-loop sunset integrals

S(n, d, x) =

[
ˆ

ddp

(1 + p2)2

]−n




n
∏

j=1

ˆ

ddkj
1 + k2j





1

[1 + (k1 + ...+ kn)2]x
, (5.63)
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where S(1, d, x) = Γ(x+1− d/2)/Γ(x+1)/Γ(2− d/2) is the analyti solution of the well known

one-loop ase. In order to have measure independent results, the integral is normalized by the

one-loop tadpole integral with one index raised, so that S(1, d, 1) = 1.
In general one an derive with IBP's the di�erene equations of the kind (see appendix A)

rn
∑

j=0

pn,j(d, x)
Γ(x + j)

Γ(x + 1)
S(n, d, x+ j) = cnΓ(n+ 1)S(1, d, x). (5.64)

with polynomials pn,j(d, x) (see appendix A). The nie property of this lass is, that the homo-

geneity is always given by the one-loop tadpole integral. For the sunset integral lass one an

derive the large x-behavior very generally. For n ≥ 2 the one loop less integral an be written as

g(k1) = 2πd/2

[
ˆ

ddp

(1 + p2)2

]−n




n
∏

j=2

ˆ

ddkj
1 + k2j





1

1 + (k1 + k2 + ...+ kn)
2 . (5.65)

Let φ be the angle between k1 and q = k2 + ...+ kn. Working in spherial oordinates the |k1|2
expansion for n ≥ 2 is simply

g(k1) ≈ 2πd/2

[
ˆ

ddp

(1 + p2)2

]−n




n
∏

j=2

ˆ

ddkj
1 + k2j





[

1

q2 + 1
− 2q cosφ

(q2 + 1)2
|k1|

+

( −2

(q2 + 1)2
+

8q2 cos2 φ

(q2 + 1)3

)

|k1|2 +O(|k1|3)
]

. (5.66)

Integrating �rst over the angular part with

´

dΩd(k̂1) =
´

dΩd−1

´ π
0 dφ sind−2 φ and using

ˆ π

0
dφ sind−2 φ cosφ = 0,

Ωd−1

Ωd

ˆ π

0
dφ sind−2 φ cos2 φ = d (5.67)

yields

f(k21) ≈ 2πd/2

[
ˆ

ddp

(1 + p2)2

]−n




n
∏

j=2

ˆ

ddkj
1 + k2j





[

1

(q2 + 1)
+

(

4− d

d

1

(q2 + 1)2
− 4

d

1

(q2 + 1)3

)

k21

]

=
1

Γ(2− d/2)

[

S(n− 1, d, 1) +

(

4− d

d
S(n− 1, d, 2) − 4

d
S(n− 1, d, 3)

)

k21

]

(5.68)

so that for n ≥ 2

a0 =
1

Γ(2− d/2)
S(n− 1, d, 1) (5.69)

a1 =
1

Γ(2− d/2)

(

4− d

d
S(n − 1, d, 2) − 4

d
S(n− 1, d, 3)

)

. (5.70)
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The large x-behavior is indeed determined by the one loop less solution of the same sunset

integral lass. For the integrals up to four-loop a1 is not needed, but at �ve-loop a1 is not

determined by the inhomogeneous equation. In the one-loop ase g = 2πd/2
[

´ ddp
(1+p2)2

]−1
and

thus a0 = 1
Γ(2−d/2) . Furthermore from mass m = 1 and α = 0 (no salar produts in the

numerator) it is lear that µ0 = 1 and K0 = −d
2 .

Example: Derivation of the one-loop reurrene relation Although the analyti solution of

the one-loop tadpole integral is well known, it is useful to derive the numerial solution by means

of di�erene equations as well. Firstly the operator approah an be applied exemplary very well

and seondly the reurrene relation is needed for the inhomogeneous part of the the two-loop

alulation. The one-loop integral

S(1, d, x) =

[
ˆ

ddp

(1 + p2)2

]−1 ˆ
ddk1

(

1 + k21
)x+1 , (5.71)

has the homogeneous �rst order di�erene equation [37℄

(d− 2x− 2)S(1, d, x) + 2(x+ 1)S(1, d, x) = 0. (5.72)

Applying the �rst three steps of setion 5.1.6.2 with S(1, d, x) = µxV (x) yields

(d− 2x)V (x− 1) + 2xµV (x) = 0. (5.73)

The fourth step leads then to the operator equation

(

(d− 2x)ρ + 2x2µ
)

V (x) = 0. (5.74)

The �rst anonial form obtained by step 5 reads

(

2(µ − 1)ρ2 + (d− 2µ)ρ+ (−2 + 4µ)πρ+ 2µπ2
)

V (x) = 0. (5.75)

The solution of the harateristi equation 2µ−2 = 0 aording to step 6 is µ = 1. The anonial
form simpli�es then to

(

(d− 2)ρ+ 2πρ + 2π2
)

V (x) = 0. (5.76)

The fatorial series ansatz V (x) =
∑

s csρ
K−s

in step 8 leads then to the equation

cs−1(2− 4s+ 2s2 + 4K − 4Ks+ 2K2) + cs(−2s+ d+ 2K); (5.77)

For s = 0 the indiial equation yields K = −d
2 . Finally one ends up with the reurrene relation

0 = cs−1(−1 + d/2 + s)2 − scs. (5.78)
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Example: two-loop reurrene relations and exlusion priniple The two-loop di�erene equa-

tion reads [37℄

(−2+d−x)S(n, d, x)+(−3+d−2x)S(n, d, x+1)+3(x+1)S(n, d, x+2) = −2S(1, d, x). (5.79)

It is of seond order and inhomogeneous. Therefore there should be two homogeneous and one

inhomogeneous solutions. Using the operator approah for the homogeneous equations leads to

the harateristi equation −1− 2µ + 3µ2 = 0 with solutions

µ1 = 1, µ2 = −1

3
. (5.80)

The indiial equation is the same for for µ1 and µ2 and reads −2 + 2d+ 4K = 0 with solution

K1 = K2 =
1

2
− d

2
. (5.81)

From the exlusion priniple de�ned in eq.(5.61) with K0 = −d/2 and µ0 = 1 it is lear that

no homogeneous solution does ontribute. The operator approah yields the inhomogeneous

reurrene relation

0 = −as−2
3

8
(−4 + d+ 2s)(−2 + d+ 2s)2

+
1

4
as−1(−2 + d+ 2s)(−6 + 5d+ 14s) + as(−2− 4s) + 2cs. (5.82)

The oe�ients as are then ompletely determined by cs, whih are �xed by the large x-behavior
of the one-loop sunset integral.

Results up to �ve-loop The di�erene equations and the orresponding values for K and µ an

be found in appendix A. For all di�erene equations from two- to �ve-loop it was possible to set

all oe�ients ηi = 0, although it was not fored by the exlusion priniple eq.(5.61) and eq.5.62.

Then only the inhomogeneous part ontributes to the solution, but with the �rst oe�ients

a0 and a1 in eq.(5.52) undetermined. For these oe�ients one an simply use eq.(5.69) and

eq.(5.70) to �x the solutions of the inhomogeneous reurrene relations.

Due to the normalization of the integration measure the �rst �nite part of the integrals at

n-loop is at εn. Here we present the ε expansion in ε = 4−d
2 and ε = 3−d

2 for the sunset lass up

to �ve-loop.

At two-loop we used xmax = 400 and smax = 3000 leading to more than 300 orret digits.

The �rst ten digits at two-loop are

S(2, 4− 2ε, 1) = −1.5000000000 − 4.5000000000ε − 6.9841391419ε2 − 18.0087816235ε3

− 27.9942235636ε4 − 72.0037865980ε5 +O(ε6) (5.83)

S(2, 3− 2ε, 1) = 1.0000000000ε−1 + 0.3781395675 − 0.1136827414ε

+ 0.1332134197ε2 − 0.1277903581ε3 + 0.1264142054ε4 (5.84)

− 0.1256874950ε5 +O(ε6). (5.85)
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At three-loop we used xmax = 230 and smax = 3000 yielding about 140 orret digits. The

�rst 10 digits are

S(3, 4 − 2ε, 1) = 2.0000000000 + 7.6666666667ε + 17.5000000000ε2

+ 22.9166666667ε3 + 21.2517910513ε4 − 184.2300051053ε5 +O(ε6) (5.86)

S(3, 3 − 2ε, 1) = −8.0000000000ε−1 − 41.8192902221 − 306.5667083612ε

− 1505.2007494737ε2 − 11039.3611000292ε3 − 54185.4445181265ε4 (5.87)

− 397417.9975979478ε5 +O(ε6) (5.88)

At four-loop we used xmax = 210 and smax = 3300 and obtained a result with about 80 orret

digits. The �rst 10 digits are

S(4, 4 − 2ε, 1) = −2.50000000000 − 11.666666667ε − 31.7013888889ε2

− 67.5289351852ε3 − 140.2205432875ε4 − 573.5347004607ε5 +O(ε6) (5.89)

S(4, 4 − 2ε, 1) = 45.0000000000ε−1 + 356.7418536252 + 3163.2279808546ε

+ 18912.3750509141ε2 + 138631.6834120886ε3 + 777993.9266004253ε4 (5.90)

+ 5.3868190464 · 106ε5 +O(ε6) (5.91)

At �ve-loop we used xmax =250 and smax=5000 leading to about 70 orret digits. The �rst

10 digits are

S(5, 4 − 2ε, 1) = +3.0000000000 + 16.5000000000ε + 51.9583333333ε2 + 125.6715277778ε3

+ 259.9875578704ε4 + 347.3551162195ε5 +O(ε6) (5.92)

S(5, 3 − 2ε, 1) = −224.0000000000ε−1 − 2265.0653101210 − 23860.0497548140ε

− 169712.3419671662ε2 − 1.4490646307 · 106ε3 − 9.6353063852 · 106ε4 (5.93)

− 8.5028112332 · 107ε5 +O(ε6) (5.94)

These results have been on�rmed by a omparison with the analyti prefators of the divergent

parts in 4 dimensions [45℄

S(2, 4 − 2ε, 1) = −3

2

[

1 + 3ε+O(ε2)
]

(5.95)

S(3, 4 − 2ε, 1) = +
4

2

[

1 +
23

2 · 3ε+
5 · 7
22

+O(ε3)

]

(5.96)

S(4, 4 − 2ε, 1) = −5

2

[

1 +
2 · 7
3

ε+
11 · 83
2332

ε2 +
7 · 1667
2433

ε3 +O(ε4)

]

(5.97)

S(5, 4 − 2ε, 1) = +
6

2

[

1 +
11

2
ε+

29 · 43
2332

ε2 +
37 · 67 · 73

25335
ε3 +

197 · 4561
2734

+O(ε5)

]

. (5.98)

The three-dimensional results up to four-loop agree with the results of [46℄
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Figure 5.2.: The work-�ow: From diagrams generated by QGRAF to salar-integrals

5.2. The omputation of ΠT : From diagrams to integrals

The disussions in setion 5.1 were related to salar integrals only. In this setion we will explain

how to attain Feynman integrals from Feynman diagrams. This will exemplary be done on the

basis of the self-energy ontributions to ΠT and its derivatives whih are needed for the three-loop

gap equation. The work �ow is summarized in Fig. 5.2.

5.2.1. QGRAF

The diagrams ontributing to the gauge boson's self-energy Πab
µν at a ertain loop order are

generated by QGRAF [20℄. In this program a physial theory an be spei�ed simply as a symboli

list of propagators and verties. For instane the three dimensional SU(N) Yang Mills theory

ontaining verties with (s)alar partiles, (gl)uons and (gh)osts, is simply implemented by

** ** 2pt-funtions

[gh,hg,-,notadpole℄

[gl,gl,+,notadpole℄

[s,s,+,notadpole℄

** 3pt-funtions

[hg,gl,gh℄

[hg,s,gh℄

[gl,gl,gl℄
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[gl,s,s℄

**and so on for higher verties

For example the output �le for a rossed ladder three-loop diagram looks like (.f. �rst diagram

in Fig. 5.3 )

(-1)*ext(gl(-1,kq),gl(-2,-kq))*

prop(gh(1,-k1),hg(2,k1))*

prop(gh(3,-k1+kq),hg(4,k1-kq))*

prop(s(5,-k2),s(6,k2))*

prop(s(7,k2+kq),s(8,-k2-kq))*

prop(gh(9,-k3),hg(10,k3))*

prop(gl(11,-k1+k3),gl(12,k1-k3))*

prop(gh(13,-k2-k3),hg(14,k2+k3))*

prop(s(15,k1-k2-k3-kq),s(16,-k1+k2+k3+kq))*

vrtx(hg(4,k1-kq),gl(-1,kq),gh(1,-k1))*

vrtx(gl(-2,-kq),s(5,-k2),s(7,k2+kq))*

vrtx(hg(2,k1),gl(11,-k1+k3),gh(9,-k3))*

vrtx(hg(14,k2+k3),s(15,k1-k2-k3-kq),gh(3,-k1+kq))*

vrtx(hg(10,k3),s(6,k2),gh(13,-k2-k3))*

vrtx(gl(12,k1-k3),s(8,-k2-kq),s(16,-k1+k2+k3+kq))

This is simply a symboli list of propagators and verties, with the right symmetry fators and

signs. The �elds in the propagators and verties are labeled with their momenta and with

some numbers. Negative numbers indiate external and positive numbers internal partiles.

Propagators are onneted to verties whih arry the same number. QGRAF does not provide

any Lorentz and olor struture. This has to be added separately in a FORM [29℄ program.

At one-loop there are four diagrams, at two-loop 38 diagrams and at three-loop there are 895

diagrams ontributing to Πab
µν . Two examples for three-loop diagrams an be found in Fig. 5.3.

Figure 5.3.: Two three-loop diagrams. The �rst diagram belongs to the rossed ladder topology.

Diagrams of this kind vanish due to the olor sum. The seond one is a typial

example for a ladder topology.

5.2.2. Momentum onvention for self-energies

There are Nk(Nk + 3)/2 salar produts for Nk-loop self-energies aording to setion 5.11.

Therefore a one-loop integral family has to have two di�erent propagators, a two-loop family has

to have �ve propagators and a three-loop family has to have nine propagators. The propagators

of the QGRAF output arry an arbitrary momentum assignment, so that momentum is onserved
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at every vertex. For further alulations it is useful to shift the momenta in all diagrams at a

ertain loop order to list of onveniently hosen momenta. Every momentum of this list an

then be assoiated to a line of a Feynman graph. For self-energies up to three-loop there are

four topologies whih exhaust all possible momentum assignments. Let MNk
be the set of hosen

momenta of a Nk-loop self-energy family. The nth entry of this set is de�ned to be the momentum

arried by the nth line of the assoiated graph.

At one-Loop there are at most two linearly independent momenta belonging to the set M1 in

Fig. 5.4.

1

2

M1 ={k1, k1 − kq}

Figure 5.4.: One-loop topology and the momenta

In the two-Loop ase there are �ve independent momenta belonging to the set M2 assoiated

to eah line in Fig. 5.5.

1 2

3 4

5

M2 = {k1, k2, k1 − kq, k2 − kq, k1 − k2}

Figure 5.5.: Two-loop topology and the momenta

At three-Loop things get a bit more ompliated. It is not possible to map all momenta onto

one single diagram. But there are at most nine momenta belonging to M3 appearing in an

integral. These an be mapped onto the two topologies in Fig. 5.6.
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M3 = {k1, k2, k3, k1 − kq, k2 − kq, k1 − k3, k2 − k3, k3 − kq, k1 − k2}

Figure 5.6.: Three-loop topologies and the momenta

The momentum list has always been hosen in suh a way, that there are at most two di�erent

momenta in eah linear ombination in the propagator. This makes it later easier to anel the

salar produts. The momentum shifts are done in a givenFORM setup.

5.2.3. Feynman Rules

After all diagrams got the right momentum shift one has to explain the omputer what the

symbols vrtx and prop atually mean in an expliit mathematial sense. So one has to plug in

the Feynman Rules. The Feynman rules are generated automatially by a given FORM program

and the symbols vrtx and prop get then replaed by these rules. For example the FORM output

for the 4-vertex with one gauge boson and three salar reads

al vrtx(gl(a1?,m1?,p1?),s(a2?,p2?),s(a3?,p3?),s(a4?,p4?))=

+tr(a1,a2,a3,a4)*(p3(m1))*(-si*sg^2*sM^-1)

+tr(a1,a2,a4,a3)*(p4(m1))*(-si*sg^2*sM^-1)

+tr(a1,a3,a2,a4)*(p2(m1))*(-si*sg^2*sM^-1)

+tr(a1,a3,a4,a2)*(p4(m1))*(-si*sg^2*sM^-1)

+tr(a1,a4,a2,a3)*(p2(m1))*(-si*sg^2*sM^-1)

+tr(a1,a4,a3,a2)*(p3(m1))*(-si*sg^2*sM^-1)

where tr(a1,a2,a3,a4)means Tr(T a1T a2T a3T a4) and p3(m1) is a momentum with Minkowski

index m1. The other symbols si,sg,sM are the imaginary unit, the ouping and the mass

respetively.

5.2.4. Lorentz and Color projetion

All self-energy diagrams in the three dimensional Eulidean Yang-Mills theory arry a lot of

Lorentz and olor struture. The omputer algebra language FORM is speialized to deal with

Lorentz and Dira struture. For example it knows the 4-vetor formalism and sum onvention

even in d dimensions. So one an simply apply the projetor

1
d−1PT ,µν de�ned in (4.18) to obtain

ΠT .

Sine FORM an deal with symboli manipulations very well, one an simply manipulate the

olor traes appearing in the Feynman rules with the ompleteness relation written in eq.(4.17).
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Finally only ΠT remains as a linear ombination of salar self-energy integrals of the type of

eq.(5.2) with rational funtions in d and ξ as oe�ients.

The olor and Lorentz projetion and the appliation of the ompleteness relation are done in

a given FORM program.

5.2.5. Self-energy salar integrals

In the ase of the self-energy integrals (Np = 1) it is very simple to write salar produts in terms
of a sum of squared momenta by means of the polarization identities

ki · kj =
1

2

(

k2i + k2j − (ki − kj)
2
)

(5.99)

ki · kq =
1

2

(

k2i + k2q − (ki − kq)
2
)

. (5.100)

These momenta belong to the list of linear ombinations in MNk
for the four topologies in Fig.

5.4 - Fig. 5.6. Thus eah salar produt an be written as a sum of massless propagators with

negative power.

Parallel to the omputation of Π̂
(n)
00 (p2,m) we applied the mass and momentum derivatives

to getΠ
(n)
ab for a, b > 0, de�ned in eq.(4.52), whih are needed for the gap equation as well.

Afterwards we worked with on-shell external momentum p2 = −m2
and used dimensionless

quantities Π̂
(n)
ab (d, ξ,Nc) de�ned by [21℄

Π
(n)
ab =

(

m2
)1−a−b

[

g2NcJ(1, d,m)

m2(1− d)

]n

Π̂
(n)
ab (d, ξ,Nc), (5.101)

where J(1, d,m) is the one-loop tadpole integral de�ned in eq.(2.28). The resulting funtions

Π̂
(n)
ab (d, ξ,Nc) are then a sum of rational funtions in d and ξ times dimensionless on-shell integrals

Î(a1, ..., aNsp , sm1, ..., smNsp) ≡
(

1

J(1, d, 1)

)Nk
(

Nk
∏

n=1

ˆ

ddkn
(2π)d

)Nsp
∏

j=1

1

(q2j + smj)aj
|p2=−1,

(5.102)

where smi ∈ {0, 1, ξ},ai ∈ Z and qi ∈ MNk
. Propagators with negative indies aj always arry

mass smj = 0 and propagators with positive indies arry mass 1 or ξ. Later these integrals will
also be represented as Feynman graphs. A two-loop example for this graphial notation is given

by

= Î(1, 1, 1, 1, 1, ξ, 1, ξ, 1, ξ), (5.103)

where thin line arry sm = 1 and thik lines arry sm = ξ.
We apply the setor shifts to every integral, so that as muh integrals as possible of them

are replaed by integrals with a lower setor ID. Finally we are left with large number of salar

integrals of the type of eq.(5.102) with many ombination of positive and negative indies ai
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and masses smj . At three-loop we end up with around 30000 of these integrals and we used the

Laporta algorithm implemented in Reduze to redue this large set of integrals to master-integrals.

This is part of the next setion.

5.2.6. Three-loop redution with Reduze 2.0.9

Reduze 2 is a program written in C++ for distributed Feynman integral redution [39℄. It

supports MPI and omputer algebrai tools like GiNa [47℄ and Fermat [48℄. Let us brie�y disuss

the settings for this redution.

At �rst one has to speify the kinematis in a �le kinematis.yaml. This �le ontains the

external momenta and kinemati invariants like masses and Mandelstam variables [40℄. For

example for two-point integrals our �le reads

kinematis :

inoming_momenta: [p1℄

outgoing_momenta: [p2℄

momentum_onservation: [p1,p2℄

kinemati_invariants:

- [ xi, 0℄

salarprodut_rules:

- [ [ p1,p1 ℄, 1 ℄

Note that the external momentum in Reduze has to be set to 1 and not to -1. Reduze works

intrinsially Minkowskian. In the end of the redution eah integral an be multiplied with

(−1)r+s
by setting the option toggle_metri_onvention in order to get an Eulidean result.

The integral families have to be listed in a �le alled integralfamilies.yaml. The loop

momenta, propagators, and possible permutation symmetries in the indies, have to be spei�ed

in this �le [40℄. Aording to onventions for the self-energy integrals a typial de�nition of a

integral family may look like:

integralfamilies:

- name: fm222222010

loop_momenta: [k1,k2,k3℄

propagators:

- [ "k1", "xi" ℄

- [ "k2", "xi" ℄

- [ "k3", "xi" ℄

- [ "k1-q1", "xi" ℄

- [ "k2-q1", "xi" ℄

- [ "k1-k3", "xi" ℄

- [ "k2-k3", 0 ℄

- [ "k3-q1", 1 ℄

- [ "k1-k2", 0 ℄
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permutation_symmetries:

- [ [ 1, 4 ℄, [ 2, 5 ℄, [ 3, 8 ℄ ℄

- [ [ 1, 3 ℄, [ 4, 8 ℄, [ 7, 9 ℄ ℄

- [ [ 1, 8 ℄, [ 2, 5 ℄, [ 3, 4 ℄, [ 7, 9 ℄ ℄

The family name fm222222010 was hosen aording to the mass arrangement {ξ, ξ, ξ, ξ, ξ, ξ, 0, 1, 0},
where the 2 means ξ. Altogether there appear 390 di�erent mass assignments in the Π̂

(3)
00 al-

ulation. For eah of them an integral family has been de�ned in Reduze. Due to the fat that

zero mass propagators have always negative indies, some of these families ontain only integrals

that are atually subsetors of other families. But Reduze is able to identify these as subsetors,

so that no more redutions than neessary have to be done.

The integrals that shall be redued, are listed in a �le myintegrals with the format [40℄

familyname t ID r s E1 E2 ...E9,

where t is the number of denominators, ID is the setor identi�ation number, r is the sum of

all powers of the denominators, s is the sum of all powers of salar produts and E1,...,E9 are

the exponents of the propagators. For example an integral ould look like

fm211002100 5 103 6 2 1 1 2 0 -1 1 1 0 -1 .

The redution has to be organized in a job �le. The �le job_redution.yaml ould look like

[40℄

max_parallel_jobs: 4

jobs:

- setup_setor_mappings:

onditional: true

- redue_setors:

onditional: false

setor_seletion:

selet_reursively: [ [ fm100011100, 113 ℄, [ fm121200000, 15 ℄ ℄

alternative_input_diretory:

"redutions_r8_s4"

identities:

ibp:

- { r: [t, 8℄, s: [0, 6℄ }

lorentz: # may help to redue ertain integrals at border of seed range

- { r: [t, 8℄, s: [0, 6℄ }

setor_symmetries: # sometimes important, doesn't harm

- { r: [t, t℄, s: [0, 1℄ }

- selet_redutions:
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input_file: "myintegrals"

output_file: "myintegrals.tmp"

- redue_files:

equation_files: ["myintegrals.tmp"℄

output_file: "myintegrals.sol"

- export:

input_file: "myintegrals.sol"

output_file: "myintegrals.sol.in"

output_format: "form"

toggle_metri_onvention: "yes"

The job setup_setor_mappings applies the setors shifts disussed in setion 5.1.3. With

selet_reursively one an speify the families and their setors whih will be onsidered for

the redution. In the example above the setor 113 of the family fm100011100 and the setor

15 of the family fm121200000 will be redued. These are already the largest setors, whih an

appear in these families, due to the fat that zero masses have negative propagators.

The job redue_setors produes all identities for all seed-integral with spei�ed values r
and s. In the above example all identities are generated for r ∈ [t, 8] and s ∈ [0, 6].
Reduze provides integration-by-parts identities, Lorentz identities and setor symmetries. For

an integral with external momenta p1, ..., INp , Lorentz identities [44℄ an be derived from the

antisymmetri matrix

Np
∑

n=1

(

pn,ν
∂

∂pµn
− pn,µ

∂

∂pνn

)

I(p1, ..., pNp) = 0, (5.104)

with Np(Np − 1)/2 independent omponents, by ontrating eq.(5.104) with pi,νpj,ν. In the ase

for two-point funtion, where only one external momentum exists, these identities are trivial

though.

Let us analyze the omplexity of the three-loop redution. In table 6.1 there are some extreme

integrals with the highest values for r and s appearing in the alulation. Aording to Laporta's
golden rule we listed the number of integration-by-parts identities Nide and the number of seeds,

whih would be needed for the redution of eah integral.

60



5. Computational methods in perturbation theory

Integral family Nd r a = s b = r −Nd N
seeds

Nide

Î(1, 1, 1, 1, 1, 1, 1,−3, 1) fm111111101 8 8 3 0 11 228 134 736

Î(1, 1,−1, 1, 1, 1, 1,−2, 1) fm110111101 7 7 3 0 5 785 69 420

Î(1, 1, 1, 1, 1,−2,−2, 1,−1, ) fm222220010 6 6 5 0 13 832 165 984

Î(1, 1,−1,−1,−2, 1, 1, 1,−2) fm220002220 5 5 6 0 11 760 141 120

Î(3, 1, 1, 1, 0, 1, 0,−2,−1) fm121101000 5 7 3 2 13 335 160 020

Î(2, 1, 0,−4, 0, 1, 0, 1,−2) fm210002020 4 5 6 1 17 094 205 128

Î(2, 1, 1, 2, 0, 0, 0,−2,−1) fm111100000 4 6 3 2 8 652 103 824

Î(1, 1, 1, 0, 0, 0,−2,−1,−2) fm221000000 3 3 4 0 210 2 520

Î(2, 2, 1, 0,−2,−1, 0, 0, 0) fm111000000 3 5 3 2 840 10 080

Table 5.1.: Some integrals with extreme values for r and s. The values b is mostly very low

and does never exeed b = 2, whereas the value a beomes even 6. The notation

is Î(s1, ...s9) = Î(s1, ..., s9, sm1, ..., sm9) (ompare eq.(5.102)), so that masses are

omitted in the integrals argument.

The maximal values that appear are r = 8 and s = 6. The simplest setup for the redution

would be to list all 390 families in selet_reursively and to produe all identities for seeds

with r ≤ 8 and s ≤ 6 for all these families. In table 6.2 is listed how many seeds and identities

have to be generated for this setup for a setor with Nd propagators.

Nd b = 8−Nd N
seed

Nide

8 0 98 427 1 181 124

7 1 241 010 2 892 120

6 2 317 562 3 810 744

5 3 277 410 3 328 920

4 4 161 700 1 940 400

3 5 51 744 620 928

Table 5.2.: Number of seeds and identities for r = 8 and s = 6 �xed for all setors for a single

family

Comparing table 5.1 and 5.2 it beomes lear, that in suh a setup muh more identities have

to be generated. And in fat it is very time and memory onsuming to generate all identities for

all 390 families and their subsetors for the maximum values r = 8 and s = 6. Espeially the

negative exponents are problemati, beause they lead to large terms in the numerator. In many

ases the generation of identities is rather fast (≤ 6000 seonds CPU-time), but for many t = 5
and t = 6 setors it takes around 50 000 seonds CPU-time

8

. The redution an then even take

more than 1 million seonds CPU-time for t = 5 and t = 6 setors. Furthermore 48 GB ram are

not enough for this setup, whih leads to a lot of rashes during the redution.

On the other hand it turned out to be a rather fast and muh less memory onsuming method

8

We worked on a system with Intel® Xeon® proessors (2.8 GHz and 12MB ahe) with 48 GB RAM.
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to treat every integral family separately. For every family determine the highest values for r
and s and generate the orresponding seeds and identities. Using suh a setup it takes at most

24 hours to redue a omplete integral family to master-integrals. In most ases it took about

two hours to redue an integral family. Altogether it took 2 weeks to redue all families to

master-integral using this alternative setup. The disadvantage of this setup is that Reduze does

not hose the same master-integral basis for all redution. After all redutions had been plugged

into Π̂
(3)
00 it was neessary to redue all appearing master-integrals to the same basis. But suh a

redution (r ≤ 8 and s = 0) is very fast. The resulting three-loop master-integral an be found

in appendix B.

As a hek the redution was additionally done in another setup, where all identities are

generated for all 390 families for seed integrals with r ≤ 8 and s ≤ 5. After the redution has

been �nished, the remaining integrals with s = 6 have been redued separately and brought to

the same basis with the s ≤ 5 redution. This method yielded a di�erent result and it is not yet

lear why. This seond result has muh larger polynomials and also some further master-integrals

(also listed in appendix B). One ould argue, that this redution lead only to an disadvantageous

basis and ould further be simpli�ed. As a hek the remaining master-integrals have been

further redued with r ≤ 9 and s ≤ 1 leading to no signi�ant di�erene.

As long as the reason for the di�erene between both results is not found there is no reliable

result for Π̂
(3)
00 .

Reduze is atually optimized for two-loop alulations and indeed the redutions for the one and

two-loop self-energies and their derivatives were suessful. To be spei� we applied Reduze for

Π̂
(1)
00 , Π̂

(1)
01 , Π̂

(1)
02 , Π̂

(1)
03 , Π̂

(1)
10 , Π̂

(1)
11 , Π̂

(1)
12 , Π̂

(2)
00 and Π̂

(2)
01 and heked them by using the dimensional

relation eq.(4.46). For the results see appendix B. The ability to manage three-loop redutions

as well has to be seen as an additional feature, with some restritions though.

There are some very important options whih are useful for very ompliated omputations.

� When the option onditional is set to true, then the orresponding job will be skipped,

if it has already been done. This will also happen if the job has been done for some other

settings. This option is useful if the program has rashed for some reason.

� The option alternative_input_diretory an be used to use some old redution. This

may improve the redution speed.

� The option max_parallel_jobs restrits the number of redutions at the same time. This

may be useful to avoid memory problems.
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dependene

The main fous of this setion is to analyze the gauge dependene of the gap equation and to

give a review of the one- and two-loop results. The individual results of the Π
(n)
ab in terms of

master-integrals and the solutions of the one- and two-loop master-integrals an be found in

appendix B. In the following integrals are represented as Feynman graphs. Normal lines arry

mass 1 and thik lines arry mass ξ (.f. eq.(5.103)).

6.1. One-loop gap equation and solutions

Let's reall the one-loop gap equation (.f. eq.(4.47))

0 = m2
{

1 + g2A
}

, (6.1)

where A =
[

NcJ(1,d,m)
m2(1−d)

]

Π̂
(1)
00 . In terms of master-integrals eq.(B.1) this equation reads

0 = m2

(

1 +

[

g2NcJ(1, d,m)

m(1− d)

]

(

9

8
(4d− 5) +

1

4
(2d− 3)(2d − 5)

))

. (6.2)

Using the ε expansion (appendix B.1.2) for d = 3− 2ε leads to the equation

0 = m2

(

1− g2Nc

8πm

(

+
63

16
ln 3− 3

4

))

, (6.3)

whih yields a trivial solution m = 0 and a nontrivial solution

m1−loop

=
g2Nc

8π

(

+
63

16
ln 3− 3

4

)

≈ 0.142276g2Nc. (6.4)

This manifestly gauge invariant result was �rst derived by [19℄ for a SU(2) theory and later

on�rmed in [22℄ for this generalized SU(N) model.

6.2. Two-loop gap equation and solutions

Let's reall the two-loop gap equation (.f. eq.(4.48))

0 = m2

{

1 + g2
4− d

2
A+ g4

(

2− d

2
A2 +B

)}

. (6.5)
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The g4 part of this equation onsists of the ξ-independent part A and the part

B =
(

NJ(1,d,m)
m2(1−d)

)2 (

Π̂
(2)
00 + Π̂00Π̂

(1)
01

)

(.f. eq.(4.54)). If the gap equation is gauge invariant, B

has to be invariant as well. The result

Π̂
(2)
00 + Π̂00Π̂

(1)
01 = −(−2 + d)(−3 + 2d)(301 − 665d + 538d2 − 188d3 + 24d4)

32(−4 + 3d)
( )2

−9(−2 + d)(−165 + 258d − 114d2 + 8d3)

32

+
3(−295 + 797d − 616d2 + 144d3)

128
( )2

−(61752 − 166654d + 165227d2 − 70632d3 + 10800d4)

192(−4 + 3d)

−3(−2 + d)(−405 + 656d − 312d2 + 32d3)

64

−3(−760 + 1241d − 712d2 + 144d3)

64

+
3(d− 1)(−245 + 176d)

64
(6.6)

in terms of master-integrals is indeed manifestly gauge invariant. Using the three dimensional ε
expansion for the master-integrals from appendix B.1.2 and B.2.2 yields the divergent result

Π̂
(2)
00 + Π̂

(1)
00 Π̂

(1)
01 =

3

20ε
− 4.25206 +O(ε).

Using eq.(B.30), leads to the renormalization sale and sheme dependent gap equation

0 =m2 +m

(

g2Nc

8π

)

1

2

(

3

4
− 63

16
ln(3)

)

+

(

g2Nc

8π

)2(
3

20ε
− 4.25206 +

9

2560

(

−176− 840 ln(3) + 2205 ln(3)2
)

+
3

10
ln

(

µ̄2

4m2

))

.

(6.7)

Working in the MS renormalization sheme, setting m = Kg2Nc and hoosing

µ̄
g2NC

= 0.1 leads

to the two solutions

K1 = 0.1692 (6.8)

K2 = 4.4 · 10−9, (6.9)
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in agreement with [22℄. Furthermore setting the renormalization sale µ2 = m2 = K2g4N2
c yields

the polynomial equation

0 = K2 − 0.071138K − 0.0151659 (6.10)

with a positive solution

K1 = 0.1634 (6.11)

and an unphysial negative solution

K2 = −0.0926, (6.12)

also in agreement with [22℄. The sale dependene of m is very weak, for details see [22℄.

The two-loop alulation for the magneti mass was also performed for Nc = 2 by [23℄ with a

gauge dependent result due to some missing ounter-terms. Furthermore it is in good agreement

with lattie simulations performed by Karsh et al. for an SU(2) theory with a result m
lattie

=
0.35(1)g2 [49℄

6.3. Three-loop gap equation and gauge dependene in higher

orders

When we ontinue the gauge invariane argument for the gap equation in higher orders

1

, it is

easy to see that the term C =
[

NcJ(1,d,m)
m2(1−d)

] (

(d− 4)Π̂
(1)
01 − Π̂

(1)
02

)

in the g2 of the three-loop gap

equation (.f. eq.(4.49)) has to be gauge invariant as well. Unfortunately the result

(d− 4)Π̂
(1)
01 − Π̂

(1)
02 =

1

4
(28− 57d+ 39d2 − 11d3 + d4 + 2ξ)

+
1

2
(−1 + d− ξ)

+
1

4
(−43 + 62d− 29d2 + 4d3)

+
1

2
(4− 4d+ 4ξ − ξ2)

+
1

4
(−1 + d) (6.13)

is manifestly ξ-dependent. Not only the polynomial prefators of the master-integrals are gauge

dependent, but also the master-integrals themselves. Furthermore there is no hane to �nd any

gauge invariant linear ombination of Π̂01 and Π̂02 using ξ-independent oe�ients, beause the

1

The following disussion is partly from [51℄
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ξ-dependent integral appears in Π̂
(1)
02 but not in Π̂

(1)
01 .

Additionally one ould try to �nd a linear ombination of mass and momentum derivatives

α1Π̂
(1)
11 + α2Π̂

(1)
02 + α3Π̂

(1)
10 + α4Π̂

(1)
01 + α5Π̂

(1)
00 (6.14)

where the ξ-independent oe�ients α1,...,α5 have to be determined. Using a generalized dimen-

sional relation in eq.(4.46) for the one-loop ontribution

Π̂
(1)
1,n−1 = Π̂

(1)
0n +

2n− d

2
Π̂

(1)
0,n−1 (6.15)

leads to

(α1 + α2)Π̂
(1)
02 +

(

α1
4− d

2
+ α3 + α4

)

Π̂
(1)
01 +

(

α3
2− d

2
+ α5

)

Π̂
(1)
00 . (6.16)

This expression an only be ξ-independent if α1 = −a2 holds, suh that the ξ-dependent master-

integral is aneled. However this is not given by the gap equation. This problem

ontinues in higher orders inluding higher derivatives. Assuming the g2 part of the four-loop

gap equation (.f. eq.(4.51)) to be gauge invariant leads to the onlusion that E − 6C must

be gauge invariant. Sine both Π̂02 and Π̂03 ontain the integral there should be a

ombination

Π̂02(β1d+ β2) + Π̂03, (6.17)

so that anels out. But it is not possible to keep β1 and β2 ξ-independent then. So there

an't be any gauge invariant ombinations inluding Π̂02 and Π̂03. The possibility to express the

gap equation in terms of massive derivatives only and the inevitable appearane of Π̂02 and Π̂03

in the gap equation in higher orders implies the gap equation an't be gauge invariant. In order

to make sure that the derivatives have been alulated orretly the dimensional relations in

eq.(6.15) have been heked for all Π
(1)
0n 's up to n = 3.

The gauge parameter dependene beomes also unavoidable in the g6 part of the three-loop

gap equation. Many three-loop master-integrals

2

for Π̂
(3)
00 (see appendix B) ontain the gauge

parameter ξ. For example

I(1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 2, 1, 0, 0) = .

There is obviously no possibility for suh integrals to be aneled by other integrals oming from

Π̂
(n≤2)
ab .

2

As stated in the last hapter the three-loop redution is not yet reliable. But both redution ontain suh

gauge parameter dependent integrals. It is therefore expetable that these integrals are really part of the true

redution.
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7. Conlusion

The one- and two-loop omputations have suessfully been repeated and the redutions for

Π̂
(1)
03 , Π̂

(1)
12 and Π̂

(2)
01 lead to reliable new results. The gauge dependene of the three-loop gap

equation is an unsolved issue. One possible reason ould be, that the pole of the transverse gauge

boson propagator is atually not a gauge invariant quantity and therefore unphysial. Maybe

a di�erent de�nition for the gauge boson mass has to be used. The dimensional relation hek

(see eq.(6.15)) indiates no error in the omputation and the fat that proedure A and B lead

to the same result at one- and two-loop on�rm that the omputation is orret.

The three-loop master-integrals for the three-loop self-energy in both redutions are themselves

gauge-invariant. It would be an interesting hek whether or not these integrals appear also in

proedure A of [22℄, where the self-energies are omputed in a resummed theory with ounter

terms ∝ l. But at �rst it is important to �nd a reliable redution for the three-loop self-energy.

Thus an important future projet is to �nd a bug in the three-loop omputation.

Another future projet ould be to analyze the gauge invariane of this theory by omputing

the pressure p, whih should be gauge invariant.

The gauge dependent two-loop result in [23℄ showed only a weak ξ-dependene and has also

given a reasonable numerial result. After all three-loop master-integrals have been evaluated,

one ould hek whether or not the three-loop result is also weakly dependent on the gauge pa-

rameter. Then it ould be possible to get further estimates of the onvergene of the perturbative

expansion.

The method to solve master-integrals by di�erene equation has suessfully applied to sunset

vauum bubbles. In the future it should be appliable in an automatized way also for the three-

loop self-energy integrals.
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A. Details to the solution of sunsets

integrals

We used the r-th order di�erene equations for the S(n, d, x)

rn
∑

j=0

pn,j(d, x)
Γ(x + j)

Γ(x + 1)
S(n, d, x + j) = cnΓ(n+ 1)S(1, d, x) (A.1)

with polynomials p and onstants c, whih read [37℄

n = 1 : r1 = 1, p1,0 = x(−2 + d− 2x), p1,1 = 2(x+ 1), c1 = 0.

n = 2 : r2 = 2, p2,0 = x(−2 + d− x), p2,1 = −3 + d− 2x, p2,2 = 3, c2 = −2.

n = 3 : r3 = 2, p3,0 = x(−6 + 3d− 2x)(−2 + d− x),

p3,1 = 2(24 − 17d+ 3d2 + 27x− 10dx+ 7x2), p3,2 = 16(−3 + d− x), c3 = 12.

n = 4 : r4 = 4, p4,0 = x(4− 2d+ x)(2− d+ x)(6− 3d+ 2x),

p4,1 = 360 − 399d + 147d2 − 18d3 + 526x − 405dx + 78d2x+ 234x2 − 93dx2 + 32x3,

p4,2 = −144 + 129d − 27d2 − 2x+ 21dx + 20x2, p4,3 = 9(−42 + 9d− 16x), p4,4 = 90, c4 = 2.

n = 5 : r5 = 4, p5,0 = x(−6 + 3d− 2x)(−10 + 5d− 2x)(−2 + d− x)(−4 + 2d− x),

p5,1 = 2(24 − 17d+ 3d2 + 24x− 10dx+ 4x2)(120 − 98d+ 20d2 + 87x− 36dx+ 15x2),

p5,2 = −4(−1248+932d− 196d2 +8d3− 2130x+1180dx− 148d2x− 975x2 +294dx2 − 129x3),

p5,3 = −128(150 − 83d + 11d2 + 85x− 26dx + 11x2), p5,4 = −768(−6 + 2d− x), c5 = 4.

For µ and K we obtained for the homogeneous equations

n = 1 : µ = 1, K = −d/2.

n = 2 : µ1 = 1, µ2 = −1/3, K1 = K2 = (1− d)/2.

n = 3 : µ1 = 1, µ2 = −1/8. K1 = −d/2, K2 = 1− d

n = 4 : µ1 = 1, µ2 = 1, µ3 = −1/3, µ4 = −1/15, K1 = −d/2, K2 = 1− d.

n = 5 : µ1 = 1, µ2 = 1, µ3 = −1/8, µ4 = −1/24, K1 = −d/2, K2 = (−2− d)/2.

The reurrene relations for the inhomogeneous part (using K = −d/2 and µ = 1)

n = 1 : +as−1(2− 4s+ 2s2 − 2d+ 2ds+ 1/2d2) + as(−2s) = 0.
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A. Details to the solution of sunsets integrals

n = 2 : +as−2(6− 15s+ 12s2 − 3s3 − 15/2d + 12ds − 9/2ds2 + 3d2 − 9/4d2s− 3/8d3)

+as−1(3− 10s+ 7s2 − 4d+ 6ds+ 5/4d2)

+as(−2− 4s)

+2cs = 0 (A.2)

n = 3 : −as−3 · 4 · ((−4 + d+ 2s)2(3d2 + d(−26 + 8s) + 4(12 − 7s + s2))

+as−2(41d
3 + d2(−438 + 238s) + 4d(384 − 404s + 103s2) + 8(−220 + 332s − 161s2 + 25s3))

+as−1(−80 + 144s − 52s2 + 45d− 55ds − 11/2d2)

+as(18s)

−12cs−1 = 0 (A.3)
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A. Details to the solution of sunsets integrals

n = 4 : +as−5(259200 − 613440s + 610920s2 − 331920s3 + 106290s4

−20070s5 + 2070s6 − 90s7 − 306720d + 610920ds − 497880ds2 + 212580ds3

−50175ds4 + 6210ds5 − 315ds6 + 152730d2 − 248940d2s+ 159435d2s2

−50175d2s3 + 15525/2d2s4 − 945/2d2s5 − 41490d3 + 53145d3s

−50175/2d3s2 + 5175d3s3 − 1575/4d3s+ 53145/8d4 − 50175/8d4s4

+15525/8d4s2 − 1575/8d4s3 − 10035/16d5 + 3105/8d5s− 945/16d5s2

+1035/32d6 − 315/32d6s− 45/64d7)

+as−4(2989152 − 7454736s + 7663448s2 − 4144332s3 + 1238660s4

−192996s5 + 12164s6 − 3951912d + 8405592ds − 7099386ds2

+2969728ds3 − 613634ds4 + 49956ds5 + 2117590d2 − 3687969d2s

+2394650d2s2 − 685530d2s3 + 72827d2s4 − 1175127/2d3

+787196d3s− 349313d3s2 + 51206d3s3 + 354941/4d4 − 326685/4d4s

+74439/4d4s2 − 55021/8d5 + 13153/4d5s+ 3389/16d6)

+as−3(463296 − 1223232s + 1286928s2 − 669456s3 + 170256s4

−16656s5 − 521128d + 1181424ds − 1003618ds2 + 375910ds3 − 51948ds4

+220740d2 − 411418d2s+ 254003d2s2 − 51514d2s3 − 85149/2d3

+121333/2d3s− 20881d3s2 + 13681/4d4 − 6269/2d4s− 60d5)

+as−2(33456 − 109632s + 134728s2 − 70896s3 + 12824s4 − 26716d

+81778ds − 84274ds2 + 26988ds3 + 6088d2 − 18736d2s+ 13699d2s2 − 213/2d3

+1275d3s− 261/4d4)

+as−1(−1840s + 9408s2 − 5264s3 − 306ds − 5604ds2 − 36d2s)

+a(s)(900s + 900s2)

−48cs−1 = 0. (A.4)
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A. Details to the solution of sunsets integrals

n = 5 : +as−6(132710400 − 246620160s + 197922816s2 − 89571840s3

+24994560s4 − 4402176s5 + 477696s6 − 29184s7 + 768s8 − 156487680d

+255430656ds − 176649984ds2 + 67095552ds3 − 15115776ds4

+2019840ds5 − 148224ds6 + 4608ds7 + 78234624d2 − 109471104d2s

+63151488d2s2 − 19226112d2s3 + 3258240d2s4 − 291456d2s5

+10752d2s6 − 21769536d3 + 25327104d3s− 11668224d3s2 + 2661120d3s3

−300480d3s4 + 13440d3s5 + 3700464d4 − 3430848d4s+ 1181280d4s2

−179040d4s3 + 10080d4s4 − 394464d5 + 272928d5s− 62352d5s2

+4704d5s3 + 25800d6 − 11832d6s+ 1344d6s2 − 948d7 + 216d7s+ 15d8)

+as−5(83681280 − 150030336s + 114100736s2 − 47682944s3 + 11816192s4

−1734656s5 + 139520s6 − 4736s7 − 91327488d + 141739520ds − 90905280ds2

+30829184ds3 − 5828736ds4 + 582272ds5 − 24000ds6 + 41330816d2

−53757600d2s+ 27769024d2s2 − 7119488d2s3 + 905728d2s4 − 45728d2s5

−10112848d3 + 10555232d3s− 4104448d3s2 + 704576d3s3 − 45040d3s4

+1450496d4 − 1137120d4s+ 295312d4s2 − 25400d4s3 − 122296d5

+63944d5s− 8308d5s2 + 5624d6 − 1470d6s− 109d7)

+as−4(23695488 − 41207232s + 29640824s2 − 11272212s3 + 2386100s4

−265980s5 + 12164s6 − 23090208d + 34217864ds − 20189934ds2 + 5923824ds3

−863414ds4 + 49956ds5 + 8958566d2 − 10825167d2s+ 4888202d2s2

−976838d2s3 + 72827d2s4 − 3550557/2d3 + 1639440d3s− 502931d3s2

+51206d3s3 + 756065/4d4 − 475563/4d4s

+74439/4d4s2 − 81327/8d5 + 13153/4d5s+ 3389/16d6)

+as−3(3829824 − 6569760s + 4483392s2 − 1517040s3 + 253536s4 − 16656s5

−3134028d + 4524182ds − 2443036ds2 + 583702ds3 − 51948ds4 + 937675d2

−1073966d2s+ 408545d2s2 − 51514d2s3 − 124122d3 + 204857/2d3s

−20881d3s2 + 26219/4d4 − 6269/2d4s− 60d5)

+as−2(361536 − 643072s + 424360s2 − 122192s3 + 12824s4 − 219756d

+331290ds − 165238ds2 + 26988ds3 + 38523d2

−46134d2s+ 13699d2s2 − 2763/2d3 + 1275d3s− 261/4d4)

+as−1(16512 − 36448s + 25200s2 − 5264s3 − 5298d

+10902ds − 5604ds2 + 36d2 − 36d2s)

+as(−900s + 900s2)

−480cs−2 = 0. (A.5)
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B. Results for the 3 dimensional SU (N)
theory

B.1 One-loop

B.1.1 One-loop redution

Reall that thik lines arry mass

√
ξ and thin lines arry mass 1. The One-loop self-energy and

its �rst derivatives with respet to the mass and to the momentum are

Π̂
(1)
00 = a1 + a2 , (B.1)

Π̂
(1)
10 = b1 + b2 + b3 + b4 (B.2)

Π̂
(1)
01 = b5 + b6 + b3 + b4 , (B.3)

These results have been alulated in [22℄ and on�rmed via a Reduze redution. The orre-

sponding d-dependent prefators reads

a1,2 = {9
8
(4d− 5),

1

4
(2d− 3)(2d − 5)} (B.4)

b1,2,3,4 = { 3

16
(d− 2)(4d − 5),

1

8
(12d2 − 31d+ 18),

1

4
(1− 4ξ),

1

2
(3− 2d)} (B.5)

b5,6 = {3
4
(d− 2)(4d − 5),

1

2
(d3 − 3d2 + 4d− 3)}. (B.6)

The gap equation for higher l expansions ontains also the higher mass and momentum deriva-

tives. Π̂
(1)
11 and Π̂

(1)
02 have been alulated in [21℄ . Π̂

(1)
03 and Π̂

(1)
12 are new results. The results

are
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B. Results for the 3 dimensional SU(N) theory

Π̂
(1)
11 = b7 + b8 + b9 + b10 + b11 (B.7)

Π̂
(1)
02 = b12 + b13 + b14 + b15 + b11 (B.8)

Π̂
(1)
03 = b16 + b17 + b18 + b19 + b20 (B.9)

Π̂
(1)
12 = b21 + b22 + b23 + b24 + b25 , (B.10)

with d and ξ-dependent prefators

b7,8,9,10,11 = {1
8
(4d3 − 29d2 + 62d− 34),

1

4
(d− 2)(4d2 − 15d + 8)− ξ/2,−1

8
(d+ 2)− ξ

2
(d− 4),

−1

4
(d− 2)(2d − 5) +

ξ

2
, 2(d− 1) +

ξ

2
(ξ − 4)} (B.11)

b12,13,14,15 = {1
4
(8d3 − 58d2 + 124d − 77),

1

4
(d4 − 3d3 − 7d2+19d−4)− ξ

2
,

−3

4
− ξ(d− 4),

1

2
(2d2 − 10d+ 11) +

ξ

2
} (B.12)
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B. Results for the 3 dimensional SU(N) theory

b16 =
1

6
(429 − 803d + 472d2 − 106d3 + 8d4) (B.13)

b17 =
1

24(−4 + ξ)
(−145d3(−4 + ξ)− 11d4(−4 + ξ) + 3d5(−4 + ξ) + d2(−3396 + 831ξ))

(B.14)

b18 = − 3

2(−1 + 4ξ)
(2 + (−19 + 3d)ξ + 2(−5 + d)2ξ2) (B.15)

b19 =
3

4ξ(−4 + ξ)(−1 + 4ξ)
(16 + 64ξ − 554ξ2 + 234ξ3 − 24ξ4 − d3ξ(−4 + ξ)(−1 + 4ξ))

+d2(8 + 8ξ − 163ξ2 + 42ξ3) + 4d(−6− 9ξ + 137ξ2 − 43ξ3 + 2ξ4) (B.16)

b20 =
3

2(−4 + ξ)
(−52 + 4d2(−3 + ξ)− 28ξ + 23ξ2 − 3ξ3 + d(64 − 8ξ − 7ξ2 + ξ3)) (B.17)

b21 =
1

24
(330 − 749d + 472d2 − 106d3 + 8d4) (B.18)

b22 =
1

4(−4 + ξ)
(−736− 89d3(−4 + ξ) + 8d4(−4 + ξ) + 22ξ + 36ξ2 + 36d2(−37 + 9ξ))

+d(1852 − 376ξ − 15ξ2) (B.19)

b23 =
1

8(−1 + 4ξ)
(−6 + 60ξ − 216ξ2 − 4d2ξ(1 + 2ξ) + d(−3 + 16ξ + 80ξ2)) (B.20)

b24 =
1

4(−4 + ξ)(−1 + 4ξ)
(−d3ξ(−4 + ξ)(−1 + 4ξ) + d2(24− 64ξ − 115ξ2 + 38ξ3)) (B.21)

b25 =
1

4(−4 + ξ)
(4d2(−14 + 5ξ)− 6(36 + 16ξ − 15ξ2 + 2ξ3) + d(272 − 36ξ − 34ξ2 + 5ξ3)).

(B.22)

As a nontrivial hek we veri�ed the generalized dimensional relation

Π̂
(1)
1,n−1 = Π̂

(1)
0n +

2n− d

2
Π̂

(1)
0,n−1, (B.23)

following from eq.(4.46) for this results. The oe�ients b16 ,...,b25 have partly poles in ξ = 0
ξ = 4 and ξ = 1

4 . This is not a problem, beause all ξ-dependent integrals with suh a value for

ξ get further redued to tadpole diagrams, so that the pole in the omplete result disappears.

B.1.2 Expansion of the one-loop master-integrals

Let's reall the de�nition of the dimensionless one-loop integrals

Î(a1, a2, sm1, sm2) ≡
1

J(x, d, 1)

ˆ

ddk1
(2π)d

2
∏

j=1

1

(q2j + smj)aj
|p2=−1, (B.24)

where (q1, q2) = (k1, k1 − p). The master-integrals for Π(1)
and its derivatives are [22℄
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B. Results for the 3 dimensional SU(N) theory

= Î(1, 1, 1, 1)
d=3−2ε
= − ln 3

2
+O(ε) (B.25)

= Î(1, 1, ξ, ξ)
d=3−2ε
= −1

2
ln

√
ξ + 1√
ξ − 1

+O(ε) (B.26)

= Î(1, 1, 1, ξ)
d=3−2ε
= −1

2
ln

√
ξ + 2√
ξ

+O(ε) (B.27)

= Î(1, 0, 1, 0)
d=3−2ε
= 1 (B.28)

= Î(1, 0, ξ, 0)
d=3−2ε
= ξ(d−2)/2

(B.29)

Furthermore the mass dependent one-loop integral has the ε-expansion [22℄

J(x, 3 − 2ε,m) = −m

4π

( µ̄

2m

)2ε

(1 + 2ε+O(ε2)). (B.30)

B.2 Two-loop

B.2.1 Two-loop redution

For the three-loop gap equation the �rst mass derivative of the two-loop self-energy is needed.

Reall that thik lines arry mass

√
ξ and thin lines arry mass 1. A line with blak dot has an

index raised. The two-loop self-energy in terms of master-integrals reads [22℄

Π̂
(2)
00 = c1 + c2 + c3 + c4 + c5( )2 + c6

+c7( )2 − a1b3 − a2b3 − a1b4

−a2b4 , (B.31)
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B. Results for the 3 dimensional SU(N) theory

with oe�ients

c1 =
3

64
(d− 1)(176d − 245) (B.32)

c2 = − 3

64
(144d3 − 712d2 + 1241d − 760) (B.33)

c3 = −10800d4 − 70632d3 + 165227d2 − 166654d + 61752

192(3d − 4)
(B.34)

c4 = − 3

64
(d− 2)(32d3 − 312d2 + 656d− 405) (B.35)

c5 =
3

128
(32d2 − 148d + 155) (B.36)

c6 = − 3

16
(16d4 − 188d3 + 668d2 − 940d + 465) (B.37)

c7 = − 1

32

2d− 3

3d− 4
(24d5 − 164d4 + 452d3 − 680d2 + 597d − 242) (B.38)

Our result for the �rst derivative reads

Π̂
(2)
01 = d1 + d2 + d3 + d4 + d5 + d6 + d7

+d8 + d9 + d10 + d11 + d12 + d13

+d14 + d15 + d16 + d17 + d18( )2 + d19

+d20 + d21 + d22 + d23( )2

+d24 + d25 + d26( )2 + d27

+d28 + d29 + d30( )2, (B.39)

This result is also onsistent with the dimensional relation (.f. eq.(4.46)). The omplete result

with all oe�ients dj has been uploaded at [50℄ .

B.2.2 Two-loop master-integrals

Let's reall the de�nition of the dimensionless two-loop integrals

Î(a1, ..., a5, sm1, ..., sm5) ≡
(

1

J(x, d, 1)

)2
(

2
∏

n=1

ˆ

ddkn
(2π)d

)

5
∏

j=1

1

(q2j + smj)aj
|p2=−1, (B.40)

where (q1, ..., q5) = (k1, k2, k1 − p, k2 − p, k1 − k2).
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B. Results for the 3 dimensional SU(N) theory

The gauge invariant two-loop master-integrals for Π
(2)
T are [22℄

= Î(1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
d=3−2ε
=

f(1/3) − f(7/9)√
2

+O(ε) (B.41)

= Î(1, 1, 1, 0, 1, 1, 1, 1, 0, 1)
d=3−2ε
=

1

8

[

ln2 3− π2

6
+ 6Li2(1/3) − 2Li2(1/9)

]

+O(ε)

(B.42)

= Î(0, 1, 1, 0, 1, 0, 1, 1, 0, 1)
d=3−2ε
=

1

4ε
+

(

1

2
− 2 ln 2

)

+O(ε) (B.43)

= Î(1, 1, 0, 0, 1, 1, 1, 0, 0, 1)
d=3−2ε
=

1

4ε

(

1

2
+ 2 ln

3

2

)

+O(ε), (B.44)

where f(x) = ℑLi2(x+ i
√
1− x2).

B.3 Three-loop

B.3.1 Three-loop redution

Let's reall the de�nition of the dimensionless three-loop integrals

Î(a1, ..., a9, sm1, ..., sm9) ≡
(

1

J(x, d, 1)

)3
(

3
∏

n=1

ˆ

ddkn
(2π)d

)

9
∏

j=1

1

(q2j + smj)aj
|p2=−1, (B.45)

where (q1, ..., q5) = (k1, k2, k3, k1 − p, k2 − p, k1 − k3, k2 − k3, k3 − p, k1 − k2). The redution

of Π̂
(3)
00 ontains the following gauge invariant master-integrals.

t=8, ID=255

Î(1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) =

t=8, ID=383

Î(1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0) =

t=7, ID=127

Î(1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0) =

Î(2, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0) =
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B. Results for the 3 dimensional SU(N) theory

t=7, ID=319

Î(1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1) =

t=7, ID=381

Î(1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1) =

Î(1, 0, 1, 2, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1) =

t=7, ID=379

Î(1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1) =

t=7, ID=367

Î(1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1) =

t=6, ID=380

Î(0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1) =

Î(0, 0, 1, 2, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1) =

t=6, ID=317

Î(1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1) =

t=6, ID=303

Î(1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1) =

t=6, ID=377

Î(1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1) =

t=6, ID=125
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Î(1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0) =

Î(1, 0, 1, 2, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0) =

t=6, ID=123

Î(1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0) =

Î(2, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0) =

t=6, ID=371

Î(1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1) =

t=5, ID=376

Î(0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1) =

t=5, ID=316

Î(0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1) =

t=5, ID=121

Î(1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0) =

t=5, ID=124

Î(0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0) =

t=4, ID=120

Î(0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0) =

t=4, ID=113

Î(1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0) =
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Î(2, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0) =

Î(3, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0) =

The seond redution ontains additionally the following gauge invariant master-integrals.

t=7, ID=239

Î(1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0) =

t=6, ID=238

Î(0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) =

t=6, ID=363

Î(1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1) =

t=6, ID=231

Î(1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0) =

t=5, ID=362

Î(0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1) =

Furthermore there are the following ξ-dependent master-integrals
t=5, ID=316

Î(0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 2, 2, 1, 2, 0, 0, 2)

Î(0, 0, 1, 2, 1, 1, 0, 0, 1, 0, 0, 2, 2, 1, 2, 0, 0, 2)

Î(0, 0, 2, 1, 1, 1, 0, 0, 1, 0, 0, 2, 2, 1, 2, 0, 0, 2)

t=5, ID=121
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Î(1, 0, 0, 1, 1, 1, 1, 0, 0, 2, 0, 0, 2, 1, 2, 2, 0, 0)

Î(1, 0, 0, 1, 2, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 2, 0, 0)

Î(1, 0, 0, 1, 2, 1, 1, 0, 0, 2, 0, 0, 2, 1, 2, 2, 0, 0)

Î(1, 0, 0, 2, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 2, 0, 0)

Î(1, 0, 0, 2, 1, 1, 1, 0, 0, 2, 0, 0, 2, 1, 2, 2, 0, 0)

Î(1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 2, 0, 0)

t=5, ID=124

Î(0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 2, 1, 1, 1, 0, 0, 1)

Î(0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 2, 1, 2, 1, 0, 0, 2)

Î(0, 0, 1, 1, 1, 2, 0, 0, 1, 0, 0, 2, 1, 1, 1, 0, 0, 1)

Î(0, 0, 1, 1, 1, 2, 0, 0, 1, 0, 0, 2, 1, 2, 1, 0, 0, 2)

Î(0, 0, 1, 2, 1, 1, 0, 0, 1, 0, 0, 2, 1, 1, 1, 0, 0, 1)

Î(0, 0, 1, 2, 1, 1, 0, 0, 1, 0, 0, 2, 1, 2, 1, 0, 0, 2)

Î(0, 0, 2, 1, 1, 1, 0, 0, 1, 0, 0, 2, 1, 1, 1, 0, 0, 1)

Î(0, 0, 2, 1, 1, 1, 0, 0, 1, 0, 0, 2, 1, 2, 1, 0, 0, 2)

t=4, ID=113

Î(1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 2, 1, 0, 0)

Î(1, 0, 0, 0, 1, 1, 2, 0, 0, 1, 0, 0, 0, 1, 2, 1, 0, 0)

Î(1, 0, 0, 0, 1, 2, 1, 0, 0, 1, 0, 0, 0, 1, 2, 1, 0, 0)

Î(1, 0, 0, 0, 2, 1, 1, 0, 0, 1, 0, 0, 0, 1, 2, 1, 0, 0)

Î(2, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 2, 1, 0, 0)

Î(1, 0, 0, 0, 1, 1, 1, 0, 0, 2, 0, 0, 0, 2, 1, 2, 0, 0)

Î(1, 0, 0, 0, 1, 1, 2, 0, 0, 2, 0, 0, 0, 2, 1, 2, 0, 0)

Î(1, 0, 0, 0, 1, 2, 1, 0, 0, 2, 0, 0, 0, 2, 1, 2, 0, 0)

Î(1, 0, 0, 0, 2, 1, 1, 0, 0, 2, 0, 0, 0, 2, 1, 2, 0, 0)

Î(2, 0, 0, 0, 1, 1, 1, 0, 0, 2, 0, 0, 0, 2, 1, 2, 0, 0)

t=4, ID=120
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Î(0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 2, 1, 0, 0)

Î(0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 2, 2, 2, 0, 0)

The seond redution ontains also the following additional gauge dependent integrals

t=4, ID=113

Î(1, 0, 0, 0, 1, 2, 1, 0, 0, 2, 0, 0, 0, 2, 2, 2, 0, 0)

Î(1, 0, 0, 0, 2, 1, 1, 0, 0, 2, 0, 0, 0, 2, 2, 2, 0, 0)
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