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The Free Energy of Hot QCD
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The free energy of QCD is a most fundamental quantity, studied intensively with a
variety of approaches. Lattice data is available up to a few times the critical temperature
T,. Perturbation theory, even at very high temperatures, has serious convergence prob-
lems. Using a combined analytical and 3d numerical method, we show that it is possible
to compute the QCD free energy from about 27, to infinity in a well-defined framework.

1. Introduction

The properties of QCD matter are expected to change above the critical temperature of
the order of 200 MeV. While the low-temperature phase is governed by bound states, such
as mesons, the high-temperature phase should, due to asymptotic freedom, look more like
a gas of free quarks and gluons. Any observable witnessing this change is therefore a
potential candidate to consider for measurements in heavy-ion collision experiments.

One such observable clearly is the free energy density of the system. The rough picture is
that it is, according to the Stefan-Boltzmann law, proportional to the number of effective
degrees of freedom (in reality the Stefan-Boltzmann law, which describes the ideal-gas
limit, gets modified due to interactions). For vanishing baryon density p, = 0 and at
temperature T', the free energy density of QCD is simply given by the functional integral

)- (1)

Note that, in the thermodynamic limit of infinite volume V, the pressure p of the plasma
is given directly by p = —f. Below, we will choose to display results for the pressure.
The most direct way to evaluate this integral would now be to measure it numerically
on the lattice. In fact, this has been done by a number of groups. While the results for
Ny == 0 are rather complete, they are rapidly developing for a finite number of fermion
flavours Ny [1,2]. The general picture emerging from these lattice simulations is the
following: Normalizing the pressure to zero below T (in practice, one can only measure
derivatives of the free energy, leaving an integration constant to be fixed), it rises sharply
in the interval (1~2)T, to level off at a few times T;. At the highest temperatures used in
the simulations, typically {4 — 5)T;, the deviation to the Stefan-Boltzmann limit is of the
order of 15%. This general picture is surprisingly stable with respect to different values
of Ny. At even higher temperatures, the pressure is then expected to asymptotically
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approach the ideal-gas limit po(T) = (72T /45)(N2—1 + (7/4)N.N;), where N, denotes
the number of colours.

It turns out that this deviation of 15% is too big to be understood in terms of ordinary
perturbation theory. In a series of impressive works, the expansion has been driven to 5th
order in the gauge coupling g [3], which required the evaluation of a set of 3-loop vacuum
diagrams in the framework of finite-temperature perturbation theory, i.e. including the
so-called hard thermal loop effects which lead to a series nonanalytic in g%

p(T)
po(T)
While the coefficients are known analytically, convergence properties are extremely poor,
cf. Fig. (1a), at least at all physically relevant temperatures.

Facing the poor convergence of the perturbative series, in the past few years a lot of
effort has gone into refined and/or alternative approaches, in order to gain an analytic
understanding of the high-temperature behaviour of the pressure. The spectrum ranging
from Padé-Borel resummations over using effective masses to employing selfconsistent
approximations [4], a general feature of these works is the suppression of infrared (long-
distance) effects. While this suppression does not seem to be crucial in the computation
of the pressure (which appears to be a short-distance dominated observable)?, the aim
of the remaining part of this paper is to outline a new approach (5], which sets up a
framework to resum the long-distance contributions to the pressure to all orders.

= 1+4c9° +cag®+ (chlng + cy)g* + esg® + O(¢bIng, ¢°) (2)

2. New approach

A way to understand the poor convergence of the ordinary perturbative expansion is the
observation that at small gauge coupling g, the system undergoes dimensional reduction
(see e.g. [6] and references therein). The crucial point is that there is the scale hierarchy
gT « =T, which allows to perturbatively construct an effective theory for the “soft”
modes (momenta o« gT') by integrating out the “hard” modes (o< T'). In the case of QCD
(and actually for a much wider class of theories), this effective theory is a 3d SU(N,) +
adjoint Higgs model:
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While the last term represents higher-order operators, which we do not take into account
here, the parameters of the first terms (g3, m%, A4) are related to the physical parameters
of the full 4d theory (T, Ayg). Using “fastest apparent convergence” optimized next-to-
leading order perturbation theory [7] (let us introduce dimensionless parameters® z, y and
set Ny =0, N, = 3 here), they read:
g2 8m?/11 A 3/11 m3 3 9
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Two comments are now in order. First, L34 can be used to reproduce Eq. (2) in a
technically much simpler way (6], namely by evaluating a set of 3-loop QCD diagrams in

2In fact, the last method mentioned connects to the lattice data available quite nicely from above.
3The 3d gauge coupling g2 has the dimension of a mass.
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a “naive” (i.e. no hard-thermal-loop treatment; using dimensional regulation to regulate
ultraviolet as well as infrared divergences) 4d calculation and adding the corresponding
3-loop set which includes the adjoint scalar, computed in 3d. This shows that the bad
convergence is due precisely to the soft degrees of freedom, and it provides a clearer
understanding of the contributions from separate physical scales.

Second, the effective theory is confining, hence non-perturbative [8]. This fact directly
leads us to the conclusion that the only way to systematically include the long-distance
contributions to the pressure is to treat L34 on the lattice?.

To proceed, we rewrite the pressure, up to hard-scale g® contributions, as

HT) _ | S 45 (g% 2 (il +5)], 5)
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where § ~ 10™* and the dependence on the scale a4, which originates from an infrared
divergence of the 4d part, cancels against a similar ultraviolet term® in the dimensionless
3d free energy density Fyg(e, y),
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which should be measured on the lattice. This requires a measurement of the quadratic
as well as quartic adjoint Higgs field correlators (which determine the partial derivatives
under the integral), as well as a perturbative computation in lattice regularization, to
match to the MS scheme. Additionally, we choose to fix the integration constant pertur-
batively at extremely high temperatures (10''T,; T, is of the order of Ay, the coefficient
can be measured on the lattice), where one is assured that the expansion converges.

While the setup is straightforward, in practice all these steps are hampered by con-
siderable (but, as we think, surmountable) difficulties. The actual measurement of the
correlators in the continuum- and infinite-volume limits as well as the numerical back-
integration are quite involved (though simpler than the full 4d case), and on the pertur-
bative side one would have to tackle up to 4-loop vacuum diagrams (ultimately even in
lattice regularization), just to name a few of these difficulties.

3. Discussion

As a first result obtained along the strategy outlined above, Fig. (1b) shows the nor-
malized pressure. The integration constant has been fixed perturbatively on the 3-loop
level, allowing for an additional constant eo, which represents an (up to now) unknown g$
contribution. In principle, this constant can be determined in a setup equivalent to the
above, after splitting off its perturbative part (starting at 4-loop): A further reduction
step relates eg to the free energy of 3d pure gauge theory, which is at the core of the fa-
mous non-perturbative g® term, but can nevertheless be determined on the lattice. On the
lattice side, we have only included the quadratic scalar condensate, while at temperatures
closer to T, the quartic one will become important also.

4Note that simulating a 3d theory has great advantages over the full 4d computation, not only in terms
of memory and runtime, but also because the effect of fermions is absorbed into the coefficients now.
5This is precisely the way the effective theory is set up: dependence on a matching scale has to cancel.
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Figure 1. (a) Comparison of the perturbative pressure and lattice data from 1] (Ny = 0).
The notation is like in Eq. (5), corresponding to p up to g%, ¢°, ¢* and g®. (b) The pressure
after inclusion of the long-distance part according to Eq. (6). Statistical errors are shown
only for ey = 10.

While more work is required (and in progress), we wish to point out two important
trends seen in Fig. (1): First, the outcome is sensitive to the non-perturbative parameter
€9, which in principle can be determined by additional computations. Clearly, there exists
a range for that parameter (say, O(10))®, which leads to a sensible result.

Second, at T > 30Ayw the curves for ¢° (y%) and ey = 10 fall almost on top of
each other, signalling a cancellation of all higher-order terms (determined here by the
quadratic Higgs condensate) against the large non-perturbative g contribution. Hence,
in this temperature range the pressure is indeed dominated by short-distance effects.

While we have mostly presented results for QCD at Ny = 0 and zero baryon number,
inctusion of Ny fermion flavours as well as a baryon chemical potential y, pose no further
complications, and hence provide for a natural extension of this investigation.
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8This seems reasonable, since non-perturbative constants tend to be large, like e.g. in the Debye mass.



