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The static potential is evaluated perturbatively for massless QCD at one loop. In
2+1 dimensions the emerging linear part of the potential is compared with recent
lattice calculations.

The static potential in a gauge theory is a fundamental concept. In QCD
it is the interaction energy of an infinitely massive quark—antiquark system
and constitutes the non—Abelian analogue of the Coulomb potential of electro-
dynamics.

In the 341 dimensional theory, the ¢qq potential was first discussed by
Susskind ! in connection with asymptotic freedom in Yang—Mills theories.
Two-loop corrections were calculated by Fischler 2. Billoire ? included the
effect of fermion loops on the one-loop level, while the two—loop fermion con-
tribution was calculated only recently by Peter .

In this letter, we will investigate the static potential in 2+1 dimensions.
Understanding the spectrum of the 3D theory is a problem which arises in hot
field theory, because of dimensional reduction ®. In particular, the quest to
analytically understand massive states seen on the lattice ® has led to bound
state models ”, for which the knowledge of the static potential is an important
ingredient.

Since in 3D the gauge coupling g? acquires the dimension of a mass, one
expects the perturbative expansion of the potential to be of the form Vp3£t(r) =
c19%In(g?r)+cag*r+ ..., where the ¢; denote pure numbers. This is in contrast
to the behaviour in 4D, where V22 (r) = cog?/r * (1 + c19” In(rp) + ...) leads
to the well-known effective (running) coupling.

The static potential is defined in a manifestly gauge invariant way via the
vacuum expectation value of a Wilson loop 1° (in fundamental representa-

tion),
1
V(r)= lim—ln<tr77exp<g?§dx/1)>. 1
(1= Jim = ) s, 1)

Here, ' is taken as a rectangular path with time extension 7' and spatial
extension r.

In the limit of large time extension 7', the spatial components of the gauge
fields A;(r,+£7/2) reduce to pure gauge terms. Hence, since in the perturbative
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approach we restrict ourselves to the zero instanton sector of the theory, they
can be gauged away. The definition (1) reduces to?

Voert(7) = Tlirgo % In <tr’T exp <—/ J;‘AZ)> , (2)

where 7 means time ordering and the static sources separated by a distance
r = |r —r'| are given by
Ja(x)=g60T" [6(x—7)—6(x—1")] . (3)

T are the generators of the fundamental representation. In the case of QCD we
have SU(3), of course, but we will do the calculation for an arbitrary compact
semi-simple Lie group with structure constants defined by the Lie algebra
[T, T%] = if2*°T°. The Casimir operators of the fundamental and adjoint
representation are 72T = Cp and facd fed = C,8%. tp(TT?) = Ty6% is
the trace normalization, while ny denotes the number of massless quarks.

Expanding the expression in Eq. (2) perturbatively, one encounters (in
addition to the usual Feynman rules) the source-gluon vertex ¢6,07"*, which
gets an additional sign for the antisource. Furthermore, the time—ordering
presciption generates step functions, which can be viewed as source propagators
and provide an analogy to heavy-quark effective theory (HQET) 1. After
working out the color traces, one obtains

<> = 1+g2CF e+g4CF [CF ©+ (CF — %)@— % @+ @:| “+....

Our diagrammatic notation is that of Susskind !. The outer loop stands for
the source, while the inner lines are gluons, ghosts and (light) quarks. The
blob in the last diagram denotes a (one-loop) self-energy insertion. Diagrams
are conveniently collected in topological classes, from which the actual 2—2
amplitudes are generated by cutting the source loop twice. Note that the 4—
gluon vertex does not yet contribute. After expanding the logarithm and using
the relation @—}— @ = @2/2 (which can most easily be checked in position
space due to the trivial identity 6(¢) + 6(—¢) = 1), only the non—Abelian parts
of the diagrams remain:

n(...)=g’Cr O+ g*Cr [—%(@-}- D)+ @] T (4)

“Note that in Abelian gauge theories all gauge transformations are continuously connected
with the identity, so that the definition remains an exact one.
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Figure 1: Exchange diagrams contributing to the static potential through 1-loop. Double,
wiggly, dotted and solid lines denote source, gluon, ghost and quark propagators, respectively.
Diagrams b and ¢ include those obtained by a 180 degree rotation.

By definition, only pure exchange diagrams have to be considered in the calcu-
lation of Vpers(r), since the others (self-energy corrections of the sources) are
independent of r. Hence, the set of diagrams to be considered for the one-loop
correction is reduced to the diagrams @ —¢ in Fig. 1.

The calculation can be performed keeping the number of dimensions (D)
arbitrary. Here, we work in Euclidean space and general covariant gauges.

It can be shown that the diagrams a—e form a gauge-invariant and IR~
finite set, while f and g are gauge—invariant and IR—finite individually. While
gauge—invariance was expected from the very definition of the static potential
via a Wilson loop, 1t is more interesting to see how the exact cancellation of in-
frared divergencies takes place. We have constructed IR finite sets of diagrams
first and then calculated the integrals in dimensional regularisation. In our
opinion this is the cleanest way to prove IR finiteness, since cancellations take
place already on an algebraic level and before specifying a (UV-) regularization
scheme.

The result reads Vipers(r) = fq exp(igr)V(q?) , with

V(g*) = —”:fF { 1+ ¢°[(4D—5)Ca —4Tyn;] p*
@ () (B)
(167)D2_1 T <%) + } . (5)

One clearly sees that the dimensionally regularized potential is perfectly finite
in D = 3 dimensions.

As a check, one can evaluate (5) at D = 4 — 2e. Adding the counterterms
arising from gluon-wavefunction and coupling constant renormalization ®, one

"Writing A = Z2/% Ag and g = 7, Z;*/* R, one gets Vi, = — 92ti {26 (71)75) — 673},

as easily read off from (4).



recovers the known results 23, Setting D = 3, no renormalization is needed

and one obtains the new result

Van(gt) = ~LOF {1+ T (1C, —4Tymy) + } (6)
q’) = —"—— ——(7C4 — n e
7 320q] ™

In two (spatial) dimensions the Fourier transforms, which we need, read
—27/q* — In(r/rq) and —27/|q|*> — r . They can be derived from Fourier
transform in the sense of a distribution, since the potential is understood as
an operator acting on wavefunctions which fall off fast enough. The scale rg
introduced in the above is purely arbitrary. Since the potential is defined only
up to a constant, a change in rg is irrelevant. Hence, let us choose the only

natural scale at hand, ro = 1/¢?, to obtain for the potential in coordinate
space
2
9°Cr
VpSe?t(r) = B IH(QQT) +or+ O(g47°2) ) (7)
4
with ¢ = QGETF (TCx — 4Tyny) . (8)

The first term constitutes the well-known Coulomb potential in two space—
dimensions, while the linear part is the new information added by this inves-
tigation.

The ”string tension” ¢ can be compared with lattice results ®. There,
/o /g? is measured in the 3D pure SU(N.) theory for N, = 2,3,4 using
smeared Polyakov loops. Specializing our result (8) to this case (1y = 1/2,
CrCs = (N2—-1)/2,n; =0), it reads

- 2 _
pure SU(N,) : NI /‘(]1]'37871) ~0.132¢/N2—-1. 9)

The comparison (see Table 1) shows qualitative agreement, especially concern-
ing N.—dependence.

Ne | \/E/g2|lat | \/E/g2|perf | lat /pert

2 .34 23 1.47
3 .55 37 1.48
4 .76 bl 1.48

Table 1: Comparison of lattice and analytical results

The lattice results are, at least in the range of the parameter N, covered,
larger by a factor of 3/2. The outcome of this calculation suggests that the
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perturbative part of the potential may constitute a sizeable part of the full
potential.

To summarize, we have demonstrated gauge invariance and especially in-
frared finiteness of the perturbative static potential at one—loop level in arbi-
trary dimensions. While our D-dimensional formula (5) reproduces the long
known terms in D = 4, setting I? = 3 gives a new analytic result. In coor-
dinate space, it consists of the leading logarithmic (coulombic) plus a linear
term, the latter of which is compared with lattice simulations. It would be
interesting to have information on the next (quadratic) term in the expansion,
which bears information on the range of validity of the perturbative potential.
An investigation is currently in progress.
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