
Difference Equations for 5-loop Massive
Vacuum Integrals Using Syzygies

Master’s thesis

submitted to the

Faculty of Physics,

Bielefeld University

by

Thomas Luthe

Supervisor & 1st Assessor: Prof. Dr. York Schröder
2nd Assessor: Dr. Cedric Studerus

Bielefeld, November 19th, 2012

Abstract

In many precision calculations within the Standard Model of particle physics so-called
Feynman integrals over loop momenta need to be calculated. Of these integrals, I consider
the subclass of fully massive vacuum integrals with a single mass scale up to 5 loops. I have
implemented in C++ a recently developed novel approach [1] to the well known integration
by parts relations, which I use to generate linear equations in these integrals that do not
exhibit so-called raised exponents. The resulting system of equations is subjected to a
Laporta algorithm to obtain difference equations for a basis of master integrals. Many of
the difference equations at the 5-loop level have been generated in this way, some of which
were previously unknown. Furthermore, I am able to for the first time present a full set of
orders for the difference equations of the 5-loop master integrals in the class of integrals
considered.

CONTENTS 1

Contents
1 Introduction and motivation 2

1.1 The β-function of QCD . 3
1.2 Divergences and vacuum integrals . 5

2 Conventions and notations 7
2.1 Integrals and sectors . 7
2.2 Vacuum tadpoles . 8
2.3 Sector shifts and symmetries . 9
2.4 Example: A2 . 11

3 Reduction and difference equations 13
3.1 Generating equations . 15
3.2 Solving the system of equations . 19

4 Syzygy algorithm 21
4.1 Syzygies via linear algebra . 24
4.2 Example . 28
4.3 Symmetry and zero integral extensions . 29

4.3.1 Symmetry extension: A simple example 29
4.3.2 Generalisation to more complex symmetries 31
4.3.3 Zero integral extension . 33

5 Implementation: SPADES 35
5.1 The syzygy algorithm in practice . 35
5.2 Finding difference equations . 41

6 Application to massive vacuum integrals 48
6.1 Topologies and master integrals . 48
6.2 Results . 51
6.3 Runtimes and limitations . 56

7 Possible improvements 60

8 Conclusion and outlook 64

A Appendix 65

1 INTRODUCTION AND MOTIVATION 2

1 Introduction and motivation

In many areas of physics advances in experimental procedures create a need for constant
improvement of theoretical predictions to match the increasing precision. A common ap-
proach in Quantum Field Theory (QFT) for the calculation of observables is the expansion
in a small coupling parameter. Within this framework, higher precision is achieved by in-
creasing the order of the coupling parameter up to which the expansion is performed.
Higher-order terms require the calculation of so-called Feynman integrals with a larger
number of loop momenta which need to be integrated. One of the major problems that
this perturbative approach faces is that the number and complexity of integrals increase
significantly with the number of loops. This creates a need for automation of calculations,
which in turn requires algorithms that are general enough to apply to a wide range of
integrals. One such algorithm will be the cornerstone of this thesis.

The first step in a higher-loop order calculation is usually to identify and classify all
Feynman integrals that will appear. The typically very large number of integrals one
encounters is then reduced by expressing all integrals in terms of comparatively few master
integrals. There are already several computer programs published [2–4] which accomplish
this task via Laporta’s algorithm [5]. As a final step, the remaining master integrals need
to be evaluated, either analytically or numerically. One approach to this last step is the
use of so-called difference equations [5], which roughly can be thought of as a discrete
version of differential equations for the master integrals. In this thesis, I will focus on the
generation of such difference equations for a specific class of integrals using a new method
building on the ideas of Gluza, Kajda and Kosower [1] as well as Schabinger [6]. The
class of integrals I consider is that of fully massive vacuum integrals with a single mass
scale, also called tadpoles, which appear in several calculations in perturbative QFT (see
e.g. [7–9]). These integrals are already known up to 4 loops [5, 10, 11], while work on the
5-loop level has recently begun [12]. I will continue this work by attempting to generate
the difference equations at 5 loops.

The thesis is structured as follows: I will first give some motivation as to why massive
vacuum integrals are worthwhile studying at high loop levels by showing how they emerge
from the calculation of the beta-function of Quantum Chromodynamics. Sections 2 and 3
cover the classification of integrals and the fundamentals of a reduction to master integrals
as well as difference equations. In section 4, I will present in detail the ideas of Gluza,
Kajda, Kosower and Schabinger along with my own modifications and extensions of the
algorithm. The particulars of the implementation of the algorithm in C++ will be discussed
in section 5. Section 6 will then cover the application to the massive vacuum integrals
including results as well as some runtimes of the code and current limitations. Some of
the latter will be addressed in section 7, where I list potential future improvements of the
code and algorithm before making some final remarks in section 8.

1 INTRODUCTION AND MOTIVATION 3

1.1 The β-function of QCD

There are many precision calculations in particle physics from which massive vacuum
Feynman integrals emerge, one of the most famous of which is the β-function of Quantum
Chromodynamics (QCD). In the following I will show some of the steps needed to arrive
at the vacuum integrals for this particular example.

Within the Standard Model of Particle Physics (SM) the strong interactions are described
by Yang-Mills theory [13], which is a non-Abelian gauge theory with the symmetry group
SU(Nc) (Nc = 3 for QCD). The QCD Lagrangian is thus given by

LQCD =
Nf∑
f=1

Nc∑
i,j=1

Ψ̄f,i [iγµDµ −mf]ij Ψf,j −
1
4F

a
µνF

aµν . (1.1)

The field strength tensor F aµν reads

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν , (1.2)

and Dµ is the covariant derivative:

[Dµ]ij = δij∂µ − igAaµT aij . (1.3)

The quarks are represented by the spinors Ψf,j , where f is the flavour index and j =
1, . . . , Nc the colour index, while gluons are denoted as Aaµ where a = 1, . . . , N2

c − 1.
g is the coupling constant of the strong interaction and the matrices T a represent the
generators of SU(Nc) and fulfil [

T a, T b
]

= ifabcT c, (1.4)

where the fabc are called structure constants. After introducing a gauge fixing term via
the Faddeev-Popov method [14] the Lagrangian reads

LQCD,GF = LQCD −
1
2ξ
(
∂µAaµ

)2
− c̄a∂µ

(
gfabcAbµ + δac∂µ

)
cb, (1.5)

where ξ is the gauge parameter and one has at the same time introduced the unphysical
ghost fields ca via the Faddeev-Popov determinant. If one starts to calculate amplitudes
to some loop level n at this point, one will encounter ultraviolet (UV) divergences that
need to first be regularised and then removed via renormalisation. In the following, I
will assume that dimensional regularisation [15] is chosen, although other regularisation
schemes such as momentum cutoffs are also possible. In dimensional regularisation the
space-time dimension is (typically) chosen as d = 4 − 2ε and the UV divergences then
appear as 1

ε poles. Since QCD is a renormalisable theory [16], it is then always possible
to remove these divergences perturbatively up to n loops by rescaling the quantities that
appear in the Lagrangian:

ΦB =
√
ZΦΦR, Φ ∈ {Ψ, A, c},

ΦB = ZΦΦR, Φ ∈ {m, ξ},
gB = ZggRµ

ε.

(1.6)

1 INTRODUCTION AND MOTIVATION 4

Here the subscript B denotes bare quantities as they appear in Eq. (1.5) and R denotes the
renormalised quantities. One introduces the arbitrary mass scale µ, because in dimensional
regularisation gB has the mass dimension ε and one would like a dimensionless coupling
parameter gR to expand terms in. The ZΦ are called renormalisation constants (RCs) and
are typically expressed as

ZΦ = 1 + δZΦ. (1.7)

The Lagrangian can then be split into

L = LR + LCT , (1.8)

where LR is of the same form as Eq. (1.5) and LCT consists of all so-called counterterms
containing the δZΦ. If all UV divergences up to n loops are to be removed, the δZΦ need
to be of the form

δZΦ =
n∑
l=1

l∑
k=1

ZΦ,lk
hl

εk
, (1.9)

where h = g2
R

16π2 . One then has to require that the UV divergences up to n loops are
cancelled from all amplitudes. This fixes the values for all ZΦ,lk in terms of the divergent
parts of the amplitudes only. This means that the RCs are independent of the finite parts
of the respective Feynman integrals, which will become important later on. In principle,
one can also add to the RCs finite terms of the form ZΦ,l0h

l. These can be chosen freely
and in this section I will consider the minimal subtraction scheme (MS) where ZΦ,l0 = 0.

The beta-function is then defined as

β(h) = µ2 ∂h

∂µ2 (1.10)

and describes the running of the coupling with the mass scale. Rewriting the last formula
in Eq. (1.6) in terms of h and Zh ≡ Z2

g as

hB = hµ2εZh, (1.11)

applying the operator (µ2−2ε/Zh) ∂
∂µ2 and using the fact that the bare coupling does not

depend on µ one finds:

0 = β(h) + εh+ h

Zh
µ2∂Zh
∂µ2

= β(h) + εh+ h

Zh


(
µ2 ∂h

∂µ2

)
∂Zh
∂h

+
(
µ2 ∂ξ

∂µ2

)
∂Zh
∂ξ︸ ︷︷ ︸
=0


= β(h) + εh+ hβ(h)∂ ln(Zh)

∂h
.

(1.12)

1 INTRODUCTION AND MOTIVATION 5

Solving for the beta-function and expanding in h one obtains:

β(h) = −εh
1 + h∂ ln(Zh)

∂h

= −εh
∞∑
i=0

(−1)i
h ∂

∂h

∞∑
j=1

(−1)j+1

j
[δZh]j

i

= −εh
∞∑
i=0

(−1)i
h ∂

∂h

∞∑
j=1

(−1)j+1

j

[∞∑
l=1

l∑
k=1

Zh,lk
hl

εk

]ji .

(1.13)

Taking ε→ 0 and demanding that the limit exists fixes all Zh,lk in terms of the coefficients
Zh,l1 of the 1/ε poles and from the above expression only the terms with i = j = k = 1
remain, therefore

β(h) = h2 ∂

∂h

∞∑
l=1

Zh,l1h
l =

∞∑
l=0

hl+2(l + 1)Zh,(l−1)1 ≡ −
∞∑
l=0

βlh
l+2. (1.14)

The β-function of QCD played an important role in establishing the acceptance of Yang-
Mills theory as a description of the strong interaction, since its first order correctly pre-
dicted asymptotic freedom [17]. Since then, 2-loop [18,19], 3-loop [20,21] and 4-loop [22,23]
corrections have been calculated. As described above, this requires determining the RCs
ZΦ such that all UV divergences are cancelled. To fix the ZΦ one needs to calculate several
(but not all) of the self-energies and vertices of the theory to the desired loop level, which
is where Feynman integrals come into play. Unlike the vacuum diagrams considered in
this thesis, these integrals still contain external momenta. One can however use the fact
that the ZΦ only depend on the UV-divergent parts of these integrals and extract these
parts in terms of vacuum diagrams via an appropriate expansion, as I will show in section
1.2.

1.2 Divergences and vacuum integrals

As the example of the QCD β-function in section 1.1 shows, it is sometimes sufficient to
calculate the UV-divergent part of certain integrals. There are several ways in which the
UV divergences can be extracted from the integrals in terms of rewriting them as massive
vacuum integrals (see e.g. [24, 25]). I will portray in the following the one given in [7]. It
relies on the fact that for mass-independent renormalisation schemes, such as MS or the
modified minimal subtraction scheme MS, all UV counterterms are simply polynomial in
both momenta and masses [26]. I will further assume that all subdivergences have already
been removed and a Euclidean metric is used. One can then expand an integrand via the
exact propagator decomposition

1
(k + p)2 +M2 = 1

k2 +m2 −
2k · p+ p2 +M2 −m2

k2 +m2
1

(k + p)2 +M2 . (1.15)

Here k and p are linear combinations of loop and external momenta respectively. M is the
particle mass for the propagator and m is an artificial mass introduced to avoid spurious

1 INTRODUCTION AND MOTIVATION 6

infrared (IR) divergences the decomposition would otherwise cause. The same m is chosen
for all propagators expanded in this way. The right hand side of Eq. (1.15) consists
of one part which is independent of all external momenta as well as masses except the
artificial one and another part which leads to a lower degree of divergence than the original
propagator. Since the latter is again contained in the second part of the decomposition,
one can repeatedly apply Eq. (1.15) until the last term does not contribute to the UV
divergences one is interested in any more and can thus be dropped. All powers of external
momenta in the numerators can be factored out using e.g. tensor integral projection
methods (see e.g. [27]). In the end one is left with fully massive scalar integrals depending
only on loop momenta and a single mass scale m, which is exactly the class of integrals
considered in this thesis. Since the use of a mass-independent regularisation scheme ensures
that the UV counterterms are polynomial in all masses, the artificial mass m can safely
be set to zero at that point (but not before the integrals have been evaluated).

2 CONVENTIONS AND NOTATIONS 7

2 Conventions and notations

Most of the conventions in this thesis will be chosen such that they match those of J.
Möller’s dissertation [12], since he focusses on the same set of difference equations, albeit
using a very different strategy in obtaining them.

2.1 Integrals and sectors

Throughout this thesis I will assume a Euclidean metric for all momentum vectors unless
otherwise stated. Integrals that are expressed using the Minkowski metric will have to be
Wick-rotated [28] for comparison of results. The integration measure for loop momentum
integrations will be written as∫

k1,...,kn
≡
∫ ddk1

(2π)d
. . .

∫ ddkn
(2π)d

. (2.1)

Using these conventions, a generic scalar n-loop Feynman integral in d dimensions with
loop momenta ki and ne external momenta pi can be written in the form

F (p1, . . . , pne , {mi}, d) ≡
∫
k1,...,kn

N

Da1
1 . . . Dat

t

, (2.2)

where the Di = d2
i +m2

i are the denominators of the propagators raised to some powers ai,
which are typically small integers. The di are linear combinations of loop (and external)
momenta with possible coefficients −1, 0 or 1. The numerator N can contain a product of
scalar products of momenta including at least one loop momentum. Any Lorentz structure
an integral might have can always be projected out to arrive at scalar integrals (see e.g.
[27]). In the following, the Di will be referred to as propagators rather than the more
accurate inverse propagators to improve readability.

Analytic solutions are known only for a few of the easier Feynman integrals, such as the
one-loop massive vacuum integral with an arbitrary propagator exponent z:

I(z) ≡
∫
k

1
(k2 +m2)z = md−2z

∫ ddk
(2π)d

1
(k2 + 1)z

= md−2z 1
(2π)d

2π
d
2

Γ
(
d
2

) ∫ ∞
0

d|k| |k|
d−1

(|k|2 + 1)z︸ ︷︷ ︸
= Γ(d/2)Γ(z−d/2)

2Γ(z)

= md−2z
Γ
(
z − d

2

)
2dπ

d
2 Γ (z)

(2.3)

More complicated integrals often need to be evaluated numerically (see e.g. [29,30]). With
higher loop orders the integrals not only grow more complex, but the number of different
integrals that appear in calculations also rises significantly. It is thus essential to have a
unified classification of all integrals one might encounter in a calculation. For this thesis I
will consider the set of all fully massive n-loop vacuum integrals with n ≤ 5 and a single
mass scale m.

2 CONVENTIONS AND NOTATIONS 8

2.2 Vacuum tadpoles

In physical applications only integrals that can be drawn as a graph will appear. Since
the maximum number of new lines that can be added to a graph by increasing its number
of loops by one is 3, it is straightforward to see that for a single vacuum integral the
maximum number t(n)

max of different propagators is given by

t(n)
max =

{
1 , n = 1,
3 · (n− 1) , n ≥ 2,

(2.4)

while the number N (n)
s of possible scalar products of loop momenta reads

N (n)
s = n · (n+ 1)

2 . (2.5)

While for n = 1, 2, 3 we have t(n)
max = N

(n)
s , starting at 4 loops the number of possible

scalar products exceeds the maximum number of propagators for a given integral. Since
different graphs clearly need different choices of propagators to be represented, the number
of propagators one needs to be able to construct integrals for all possible graphs is at least
N

(n)
s . In this thesis, I will therefore use so-called auxiliary topologies An with m ≡ N

(n)
s

propagators Di, out of which all possible n-loop diagrams can be constructed. The specific
choices are given in Table 6.1 in section 6.1. Since I only consider vacuum integrals in this
thesis, all scalar products of momenta can be expressed as linear combinations of the Di

and masses, which means the numerator N in Eq. (2.2) can be assumed to be 1. Once an
auxiliary topology is chosen, any integral can be uniquely represented by its propagator
exponents ai:

I (a1, . . . , am) ≡
∫
k1,...,kn

1
Da1

1 . . . Dam
m

(2.6)

Since ai ∈ Z, each integral corresponds to a point in the space Zm and vice versa. To
further classify integrals, I will introduce some definitions:

t ≡ Number of positive ai,
r ≡ Sum of positive ai,
s ≡ Sum of the absolute values of negative ai,

ID ≡
m∑
i=1

2m−i−1 ·Θ (ai) , with Θ (x) ≡
{

1 , x > 0
0 , x ≤ 0

.

(2.7)

Each ID has an infinite number of integrals associated with it, the set of which is called
a sector. With an auxiliary topology of m propagators one can form

(m
t

)
sectors with t

different propagators, yielding
m∑
t=0

(
m

t

)
= 2m (2.8)

sectors in total. As can already be seen from t
(n)
max < N

(n)
s for n ≥ 4, not all of these

sectors will appear in calculations. It is therefore useful to classify the sectors further. A
sector will be called

2 CONVENTIONS AND NOTATIONS 9

• a physical sector, if a graph can be drawn with the respective momenta and the
sector contains non-vanishing integrals,

• a trivial zero sector, if its number of propagators t is smaller than the number of
loops n, since all integrals of that form vanish in dimensional regularisation,

• a non-trivial zero sector, if t ≥ n, but all integrals of the sector are zero anyway in
dimensional regularisation,

• a trivial antisector, if t > tmax, since no graph can be drawn for such a sector,

• a non-trivial antisector, if t ≤ tmax, but nevertheless no graph can be drawn for the
respective momenta.

Only the physical sectors have to be taken into account for the calculation of difference
equations. If one is interested in integrals containing external momenta instead of vacuum
integrals, the same classification as described in this section can be used, if one introduces
additional (auxiliary) propagators to deal with the higher number of scalar products of
momenta that may appear in such integrals (see e.g. [12]).

2.3 Sector shifts and symmetries

It is possible to reduce the number of relevant sectors even further by considering momen-
tum transformations of the form

kj →
n∑
i=1

Rjiki , det (R) 6= 0. (2.9)

The propagators of the auxiliary topology An will be transformed accordingly, with two
possible results:

Di
(2.9)−−−→

{
D′i = Dj ∈ An
D′i =

∑m
a=1 ca ·Da + c ·m2 /∈ An

(2.10)

For a sector ID where the propagators with positive exponents ai are given by the set
PID = {Di1 , . . . , Dit}, only those transformations which fulfil

D′ij ∈ An for j = 1, . . . , t (2.11)

will be considered, since all other transformations lead to integrals with sums of prop-
agators in the denominator. The former can then be subdivided into two classes: A
transformation of the form given in Eq. (2.9) for a sector ID with PID as above is called

• a sector symmetry, if D′ij ∈ PID ∀ j. Note that this is always a one-to-one mapping
Dij → Dij′ , since det (R) 6= 0 means that the transformation is reversible.

• a sector shift, if ∃ j with Dij → Da ∈ An \ PID. The resulting integral(s) in this
case will belong to a different sector ID′.

2 CONVENTIONS AND NOTATIONS 10

In either case the remaining Di in the numerator (those with negative ai) may be shifted
to a sum of elements of An and masses according to Eq. (2.10). To be able to keep up the
notation introduced in Eq. (2.6), one then has to expand the product of all such sums and
split the integral into a sum of integrals. It is possible that some of the resulting integrals
have a lower number t′ < t of different propagators in the denominator than the original
integral due to cancellations. The corresponding sectors are then subsectors of the sector
ID in case of a sector symmetry or ID′ in case of a sector shift. More precisely, a sector
IDsub is called a subsector of sector ID, if PIDsub (PID. I will also use the term for all
sectors the subsectors can be mapped to using sector shifts. In terms of the corresponding
graphs, removing an element of PID can be thought of as contracting and removing the
line representing that element, effectively merging the two vertices at its end into one.

In general, the number of physical sectors is greater than the number of different graphs
one can draw, since different sectors can describe the same graph. I will call the complete
set of sectors which describes one graph a topology. All sectors in a topology are connected
via sector shifts, which means it is sufficient to choose one representative sector for the
topology and use the sector shifts to map all other sectors to the chosen one. Doing so
effectively reduces the number of sectors that need to be considered during the calculations
from the set of all physical sectors to the comparatively small set of representatives. In
this thesis, I will always choose as the representative sector of a topology the one with the
highest ID.

It should be noted that for all sector symmetries and most sector shifts the momentum
transformation matrix R fulfils |det(R)| = 1. Starting at 4 loops there are also some sector
shifts with |det(R)| 6= 1. For the choice of the auxiliary topology A4 which is given in
Table 6.1, there is only a single example of this. The sector shift relating the sector with
ID = 537 to sector 960 is given by

R = 1
2


2 0 0 0
1 1 −1 −1
1 −1 1 −1
1 −1 −1 −1

 , |det(R)| = 1
2 . (2.12)

In this case the transformation introduces an additional factor 2−d, which is not present
if |detR| = 1:

I(a1, 0, 0, 0, 0, a6, a7, 0, 0, a10)︸ ︷︷ ︸
ID=537

= 2−d I(a1, a6, a7, a10, 0, 0, 0, 0, 0, 0)︸ ︷︷ ︸
ID=960

(2.13)

In practice one does not have to worry about these factors for appropriately chosen auxil-
iary topologies, because all physical sectors which are related to the representative sectors
via a sector shift with |det(R)| 6= 1 turn out to appear only as subsectors of antisectors,
which are not present in the calculations to begin with.

2 CONVENTIONS AND NOTATIONS 11

2.4 Example: A2

ID = 6 ID = 7

Figure 2.1: 2-loop graphs and representative sectors.

The conventions and notations are best illustrated by looking at the massive vacuum 2-
loop integrals, where we have t(2)

max = N
(2)
s = 3. There are two independent graphs, the

trivial one with two disconnected 1-loop parts and the so-called sunset topology, which
are given in Fig. 2.1. The auxiliary topology will be chosen as

A2 =
{
k2

1 +m2, k2
2 +m2, (k1 − k2)2 +m2

}
, (2.14)

so that any integral can be written in the form

I (a1, a2, a3) ≡
∫
k1,k2

1(
k2

1 +m2)a1 (k2
2 +m2)a2

(
(k1 − k2)2 +m2

)a3 . (2.15)

The auxiliary topology thus has 23 = 8 sectors in total. Of these, the sectors with IDs 0, 1,
2 and 4 are trivial zero sectors, since they have at most one propagator in the denominator.
Sectors 3 and 5 with t = 2 can be shifted to sector 6 via

k1 → k1 + k2 ⇒ D3 → D1

and k2 → k1 + k2 ⇒ D3 → D2

respectively. The only remaining sectors for which difference equations have to be calcu-
lated are thus sectors 6 and 7. A complete set of the relations between the sectors is given
in Fig. 2.2.

As can be seen from Fig. 2.1, both sector 6 and 7 are fully symmetric under any permuta-
tion of their propagator exponents. The explicit symmetry transformations including the
identity transformation are listed in Tables 2.1 and 2.2.

Sector 6

R
(

1 0
0 1

) (
1 0
0 −1

) (
0 1
1 0

) (
0 1
−1 0

)
D1 → D1 D1 D2 D2
D2 → D2 D2 D1 D1
D3 → D3 2D1 + 2D2 −D3 − 3m2 D3 2D1 + 2D2 −D3 − 3m2

Table 2.1: The 4 sector symmetry transformations of sector 6.

2 CONVENTIONS AND NOTATIONS 12

Sector 7

R
(

1 0
0 1

) (
0 1
1 0

) (
0 1
−1 1

) (
1 −1
1 0

) (
1 0
1 −1

) (
1 −1
0 −1

)
D1 → D1 D2 D2 D3 D1 D3
D2 → D2 D1 D3 D1 D3 D2
D3 → D3 D3 D1 D2 D2 D1

Table 2.2: The 6 sector symmetry transformations of sector 7.

7

6

4

0

3

1

5

2

t = 2

t = 3

t = 1

t = 0

k1 → k1 + k2 k2 → k1 + k2

k1 → k1 + k2k2 → k1

6D3 6D26D1

6D2

6D1

6D3 6D26D3

6D2

6D16D2 6D3

Figure 2.2: Overview of 2-loop vacuum integral sectors. Solid boxes represent physical
sectors, dashed boxes zero sectors. Solid arrows signify sector shifts via the
specified momentum transformations and dashed arrows point to subsectors
arrived at by cancelling the specified propagator.

3 REDUCTION AND DIFFERENCE EQUATIONS 13

3 Reduction and difference equations

Even after applying the sector shifts and symmetries introduced in section 2.3, the number
of integrals that can appear in calculations is still very large. This is due to the fact
that each sector still contains an infinite number of possible r and s values and different
distributions of the respective positive and negative powers. It is therefore highly desirable
to find additional relations between the remaining integrals, thus reducing the number of
integrals that in the end need to be explicitly evaluated either analytically or numerically.
As it turns out, the integrals in a sector can be reduced to a basis of very few so-called
master integrals plus the master integrals of the corresponding subsectors. For standard
Feynman integrals this basis has been proven to be finite in general [31]. The master
integrals are typically chosen such that s = 0 (meaning no propagators in the numerator)
and r is minimal.

In practice usually only a finite subset of integrals, where the propagator exponents ai are
small integers, is reduced to the master integrals, since one is only interested in integrals
appearing in actual calculations. A complete reduction of a sector would require the ai to
be kept as symbols throughout the whole reduction rather than substituting integer values,
which complicates matters greatly. Examples of complete reductions include results at the
2-loop level [32] as well as the 3-loop level [33], but so far there is no automatable approach
to this which is both fast and generic enough for a broad range of calculations.

While a completely symbolic reduction is quite difficult, keeping only a single exponent
as a symbol is much easier in comparison and can yield very useful results, so-called
difference equations for the master integrals. A difference equation for an integral I({ai})
in a propagator position x, where ax > 0, is defined as a linear equation of the form

R+j0∑
j=j0

cj (d, z, {mi}, {pi · pk}) I (a1, . . . , ax−1, z + j, ax+1, . . . , am) = S (d, z, {mi}, {pi · pk}) .

(3.1)

Here R is the order of the difference equation and the cj are rational functions of the
space-time dimension d, the symbolic propagator exponent z, the mass scales appearing in
the problem and scalar products of external momenta. On the right hand side S is a linear
combination of integrals similar to those on the left side, but from subsectors of I({ai}),
with coefficients of the same kind as the cj . The offset j0 can be absorbed by shifting z
and will therefore be assumed to be 0 from here on.

One example of a difference equation is easy to obtain by recalling the analytic result for
the massive one-loop vacuum integral in Eq. (2.3):

I(z) = md−2z
Γ
(
z − d

2

)
2dπ

d
2 Γ (z)

. (3.2)

From this one can see that

I(z + 1) = 2z − d
2zm2 I(z), (3.3)

3 REDUCTION AND DIFFERENCE EQUATIONS 14

which can be written in the form of Eq. (3.1) and thus is a difference equation of order 1.
In this simple case it also provides a prescription for a complete reduction of the sector,
since it can be used to write I(z) in terms of the master integral I(1) for all integer values
z > 1 1. In a more general setup, a difference equation could potentially be used to reduce
integrals by lowering a single exponent at position x to at most R, but only for a fixed set
of remaining exponents ai. This has very limited value for the reduction of a sector, since
it usually only covers a small part of the integrals one is interested in. It does however
provide a means to improve the numeric calculation of master integrals and can in some
cases even yield analytic results for the integrals [34].

The basis of master integrals is typically chosen such that s = 0 and r is minimal, meaning
the non-zero exponents ai have small integer values. These integrals can be difficult to
evaluate numerically, since the integrand converges slowly for large loop momenta. This
behaviour changes to a much more rapid convergence when one of the exponents is large,
which can be exploited using factorial series. The approach is described in detail in [34],
but the general idea is to calculate integrals with one large exponent numerically to the
required precision and then map the results down to the actual master integrals using
difference equations.

For a master integral with t different propagators one could in principle generate t differ-
ence equations by choosing all possible relevant positions x, each of which could be used to
evaluate the integral numerically via factorial series. In case the topology in question ex-
hibits sector symmetries, the number of independent difference equations is reduced, since
propagator positions, whose exponents can be interchanged via symmetries, can be thought
of as equivalent in regard to difference equations. While a single difference equation is suf-
ficient for numerical evaluation of one integral in sector ID, the difference equations for all
possible (non-equivalent) positions x might still be needed, since the respective integrals
with z at that position might appear in the right hand side S of Eq. (3.1) for sectors ID′
which have ID as a subsector. Additionally, difference equations for different positions x
may have different orders R. This is a relevant factor, since the difficulty of the numerical
evaluation rises significantly with the order of the difference equation [12].

It should be noted that difference equations for master integrals in general are not con-
strained to the form in Eq. (3.1). R.N. Lee proposed [36] to use the space-time dimension
d rather than a propagator exponent z as the variable of a difference equation. To gen-
erate these equations he makes use of the dimensional recurrence relations suggested by
O.V. Tarasov [35] (see section 3.1). In this thesis, I will however focus on the difference
equations defined in Eq. (3.1).

1In fact, if one solves Eq. (3.3) for I(z), one also finds that I(z) = 0 for all integers z ≤ 0.

3 REDUCTION AND DIFFERENCE EQUATIONS 15

3.1 Generating equations

There are several ways beyond the sector shifts and symmetries in which additional linear
equations between integrals can be generated:

• Integration By Parts (IBP) relations [37]
The most common approach to generate the necessary equations for the reduction
employs equations of the form

0 =
∫
k1,...,kn

∂

∂kµi

qµj
Da1

1 . . . Dam
m

, i = 1, . . . , n , qj ∈M,

M = {k1, . . . , kn, p1, . . . , pne} .
(3.4)

For the one-loop massive vacuum integral in Eq. (2.3) this yields

0 =
∫
k

∂

∂kµ
kµ

(k2 +m2)z = dI(z)− z
∫
k

k2

(k2 +m2)z+1

= dI(z)− 2zI(z) + 2zI(z + 1)

⇒ I(z + 1) = 2z − d
2zm2 I(z),

(3.5)

which is in full agreement with the result obtained earlier (Eq. (3.3)).

• Lorentz-invariance (LI) identities [38]:
Since the integral in Eq. (2.2) is a Lorentz scalar, it is invariant under an infinitesimal
Lorentz transformation of the external momenta

pµ → pµ + δpµ = pµ + δεµνp
ν , εµν = −ενµ. (3.6)

One therefore obtains

F (p1, . . . , pne) = F (p1 + δp1, . . . , pne + δpne)

= F (p1, . . . , pne) +
(
ne∑
i=1

δpµi
∂

∂pµi

)
F (p1, . . . , pne)

(3.7)

and subsequently

εµν

(
ne∑
i=1

pνi
∂

∂pµi

)
F (p1, . . . , pne) = 0. (3.8)

Since this is valid for all εµν = −ενµ, one can drop the εµν for an antisymmetrisation,
yielding (

ne∑
i=1

(
pνi

∂

∂pµi
− pµi

∂

∂pνi

))
F (p1, . . . , pne) = 0. (3.9)

Upon contraction with (pµapνb − pνap
µ
b) one obtains

pµap
ν
b

(
ne∑
i=1

pνi
∂

∂pµi

)
F (p1, . . . , pne) ≡ OLI

abF (p1, . . . , pne) = 0. (3.10)

3 REDUCTION AND DIFFERENCE EQUATIONS 16

If taken to act directly on the integrand, the operators OLI
ab can yield non-trivial

relations between integrals. In this thesis LI identities cannot be used, since I only
consider integrals with no external momenta. Furthermore, it can be shown [39] that
all LI identities can be expressed as linear combinations of IBP identities.

• Mass derivatives:
If one rewrites all masses that appear in an integral in terms of a single mass scale
such that Di = d2

i +xim
2 for all massive propagators, the integral can be written as

m raised to the mass dimension of the integral times a numerical factor:

I(a1, . . . , am) = m
nd−2

∑
i

ai
X. (3.11)

Applying ∂
∂m2 to both forms will result in the non-trivial equation

−
∑
i

aixiI(a1, . . . , ai + 1, . . . , am) =
(
nd

2 −
∑
i

ai

)
1
m2 I(a1, . . . , am). (3.12)

This is easily demonstrated for the one-loop massive vacuum case:∫
k

1
(k2 +m2)z ≡ I(z) ≡ md−2zX (3.13)

Since X is independent of m one obtains
∂

∂m2=⇒ −zI(z + 1) =
(
d

2 − z
)
md−2z−2X =

(
d

2 − z
) 1
m2 I(z) (3.14)

and thus the same result as in Eq. (3.3):

I(z + 1) = 2z − d
2zm2 I(z). (3.15)

I expect that the relations obtained by these mass derivatives are already contained
in the IBPs, but could not find a general proof of this in the literature.

• Space-time dimensional relations
These relations connect integrals with different values of the space-time dimension
d. They will find no application in this thesis and I will therefore only provide a
short sketch of the idea following the one given in [12]. For an in-depth discussion I
refer to the original paper [35].
Using the Schwinger parametrisation

1
(D + iε)a = i−a

Γ(a)

∫ ∞
0

dα αa−1eiα(D+iε) (3.16)

on all propagators of a d-dimensional integral G(d) turns the loop integrations into
Gaussian integrals which can be solved to yield

G(d) ({si}, {mi}) = in
(
π

i

)nd
2

Nd∏
j=1

i−aj

Γ (aj)

∫ ∞
0

dαj α
aj−1
j

(U(α))d/2
e
i

(
F({si},α)
U(α) +

Nd∑
l=1

αl(m2
l+iε)

)
.

(3.17)

3 REDUCTION AND DIFFERENCE EQUATIONS 17

Here Nd is the number of internal lines, {si} a set of scalar invariants formed from
external momenta and U and F are the so-called graph polynomials (see e.g. [40]) of
a diagram corresponding to G. Next, one constructs the differential operator U(∂)
by replacing αj → ∂

∂m2
j
in U(α) with the additional assumption that all masses mj

are different. The actual physical masses can be inserted into calculations once all
mass derivatives have been executed. Acting with U(∂) on Eq. (3.17) and using

U(∂)ei
∑

αlm
2
l = U(α)inei

∑
αlm

2
l (3.18)

one finds

G(d−2) ({si}, {mi}) = 1
πn
U(∂)G(d) ({si}, {mi}) . (3.19)

This method can also be extended to tensor integrals [12]. So far there are no cases
known where space-time dimensional relations yield any additional information over
the IBP relations for d-dimensional integrals, but they can be used to reduce the
number of indices needed for an integral reduction and thus e.g. simplify symmetri-
sation [12].

This thesis will focus entirely on IBP relations (IBPs) with the addition of sector shifts
and symmetries. The latter are actually contained in the IBPs [39], but are useful to
impose on the system from the beginning anyway, since they can dramatically decrease
the number of integrals that need to be considered and hence calculation time.

The integrals I(a1, . . . , am) to which equations (3.4) are applied will be called seed integrals.
For each seed integral n(n+ ne) equations can be generated. These will generally contain
integrals with so-called raised propagators with an exponent ai + 1 due to the derivative
hitting a propagator, as well as lowered propagators with exponent ai − 1, or both. To
relate a given integral to simpler2 integrals, it is therefore often necessary to apply the
equations (3.4) to multiple seed integrals and solve the linear system of equations. In
practice, all possible integrals of a sector with predefined maximum values of r and s
are used as seed integrals to reduce as many integrals as possible in the resulting system
of equations. There are several programs which automate this process, such as AIR [2],
FIRE [3] or Reduze (2) [4]. Automation becomes necessary, because for integrals more
complicated than the one-loop example above the number and complexity of equations
needed for a reduction rises significantly. In a sector with t propagators defined in an
auxiliary topology with m propagators, the number of integrals with set values (r, s) is
given by

N(m, t, r, s) =
(
r − 1
r − t

)
︸ ︷︷ ︸

distributions of
positive powers

·
(
m− t+ s− 1

s

)
︸ ︷︷ ︸
distributions of
negative powers

, (3.20)

with r ≥ t > 0, s ≡ 0 for t = m and
(−1

0
)

:= 1. With up to n(n+ne) equations per integral,
r and s thus have to be restricted to small values, since these combinatorics cause the size
of the system of equations to quickly exceed the limits of either software or hardware.

2A definition of the difficulty of an integral will be given in section 3.2. For now it is sufficient to know
that for any two non-identical integrals, one is considered simpler than the other.

3 REDUCTION AND DIFFERENCE EQUATIONS 18

There are however several ways to decrease the size of the system of equations without
discarding any information. The sector symmetries discussed in section 2.3 can be used
to effectively reduce N(m, t, r, s) by mapping many of the integrals to linear combinations
of others in the same sector or subsectors. Furthermore, the number of distinct integrals
in the system of equations grows approximately with the volume V of Zm-space the seed
integrals occupy, while the number of equations grows as n(n + ne)V . For large V this
means that the system of equations is vastly overdetermined. To reduce the number of
redundant equations per seed integral, closer inspection of the IBP operators

Oij = ∂

∂kµi
qµj (3.21)

is needed. They turn out to form an algebra with the commutation relation

[Oik, Ojl] = d (δilOjk − δjkOil) . (3.22)

R.N. Lee therefore proposes [39] to only use the subset

∂

∂ki
· ki+1, i = 1, . . . , n, kn+1 ≡ k1,

∂

∂k1
· pj , j = 1, . . . , ne

n∑
i=1

∂

∂ki
· ki,

(3.23)

which forms a multiplicative basis of the algebra, meaning all other operators can be
written as commutators of the basis elements. In a complete (symbolic) reduction of a
sector using only the above set of operators would reduce the number of equations per seed
integral to n + ne + 1. While still leading to an overdetermined system of equations, for
n ≥ 2 this would be a noticeable improvement over n(n+ ne) equations per seed integral.
When inserting integer values for the ai, the benefit turns out to be much smaller. If
an operator Oij can be expressed by a single commutator of two of the basis elements in
Eq. (3.23), to ensure that the information gained by acting with Oij upon a seed integral
I({ai}) is redundant would require acting both basis elements not only on I({ai}), but also
on all possible integrals I({a′i}) which may be contained in the IBPs resulting from acting
either basis element on I({ai}). Since an IBP can contain raised exponents ai, lowered
exponents or both, this includes integrals within the range (r′ ∈ {r, r± 1}, s′ ∈ {s, s± 1}),
where r and s are the sum of positive and negative exponents of I({ai}) respectively.
The values r − 1 and s− 1 would likely not pose a problem, since the corresponding seed
integrals would be considered simpler than I({ai}) (see section 3.2) and therefore already
be included in the system of equations. However, if r or s happen to already be the
respective maximum rmax or smax considered for the reduction, either the integrals with
r + 1 and/or s+ 1 would have to be added as seed integrals, which is undesirable due to
the combinatorics in Eq. (3.20), or the operator Oij has to be explicitly included for the
seed integrals at the (r, s) boundaries. This greatly diminishes the advantage of needing
less equations, since it is exactly the maximum values of (r, s) that provide the most seed
integrals.

3 REDUCTION AND DIFFERENCE EQUATIONS 19

For greater numbers of loops n the advantages are reduced even further. Inspecting the
set of operators in Eq. (3.23) closely, one finds that the number of recursive commutators
needed to construct a specific operator Oij is given by

∂

∂ki
· kj : (n+ j − i− 1) mod n

∂

∂ki
· pj : (n− i+ 1) mod n.

(3.24)

This means that for some IBP operators the representations in the multiplicative basis
contain products of up to n basis elements. As a consequence, these operators can only
be safely cast aside for seed integrals with (r, s)-values up to (rmax − n+ 1, smax − n+ 1),
which for large values n is usually a negligible portion of the whole set of seed integrals.

3.2 Solving the system of equations

Once a sufficient number of linear equations has been generated using the methods de-
scribed in section 3.1, the resulting system of equations has to be brought into the desired
form. For a general reduction substituting all exponents with integers this means express-
ing as many integrals as possible via the master integrals. If a basis of master integrals is
not yet known, a minimal set of integrals with which to express all others should emerge in
the reduction to take on this role. When searching for a difference equation for a master
integral in sector ID, one aims to find a non-trivial equation of the form in Eq. (3.1),
which means eliminating all integrals in sector ID which differ in any exponent other than
the symbolic one from the master integral as well as all integrals from subsectors which
differ in non-symbolic exponents from their respective master integrals.

In either case, a common approach is the Laporta algorithm [34], which is essentially
a Gauss algorithm, but subject to additional considerations. Since one is interested in
finding the “simplest” master integral basis, a unique, deterministic ordering prescription
for the difficulty of integrals is needed. Experience shows that the runtime for the system
of equations is very sensitive to this choice of ordering. One possible choice could be, in
decreasing order of priority:

Out of a set of integrals, the integral which is considered to be the simplest is the one with

1. the least amount t of different propagators in the denominator,

2. the least sum r + s of absolute values of propagator exponents,

3. the lowest power a1. If there is more than one integral with the same lowest a1, pick
the one with the lowest a2, failing that go on to a3, a4, . . .

It is of course possible to give far more refined ordering prescriptions including criteria
like the maximum or minimum exponent, as long as the ordering stays unique. The
effectiveness of a prescription is difficult to predict and may vary with the set of integrals
considered. To solve the system of equations for difference equations, where the of sum
exponents still contains a symbol, I will use a different ordering prescription than the
above, which will be given in section 5.2.

3 REDUCTION AND DIFFERENCE EQUATIONS 20

Once an ordering of integrals is established, the equations in the system are considered
successively. For each new equation, all integrals which have already been reduced to
simpler integrals are replaced with the respective expressions. Since, as seen in section
3.1, the system of equations is usually vastly overdetermined, many equations will turn out
to be trivial at this point. If this is not the case, the equation is solved for the most difficult
integral remaining and can then be used to cancel this integral from further equations as
well as those already previously considered. The order in which equations are added to
the system in this way is a critical factor for determining the runtime of the algorithm.
A good approach is to start from the simplest equations (where difficulty is determined
by the most difficult integral according to the ordering prescription) and work towards
the more difficult ones, since this means that for the latter many integrals can already be
reduced to only a few simpler ones, thus reducing the complexity of equations. In case the
equations are not known before starting this algorithm, but instead generated (via IBPs)
as needed, a good indicator for the difficulty of an equation is the difficulty of the seed
integral.

For a general reduction to master integrals, one usually uses all equations up to chosen
values rmax and smax for the seed integrals. When trying to find a difference equation, it
can happen that one of order R will appear fairly early in the algorithm, in which case the
remaining equations do not necessarily need to be considered. It is however possible that
one would find a difference equation of lower order R′ < R later on in the algorithm, which
would simplify the numeric evaluation via factorial series. Additionally, it may be useful
to continue to reduce more integrals of the sector, in case they appear in calculations for
higher sectors.

4 SYZYGY ALGORITHM 21

4 Syzygy algorithm

The goal of a reduction as described in section 3 is to express integrals in terms of simpler
integrals, where simpler usually means lower values for the sum of positive integers r.
Besides leading to overdetermined systems of equations, the plain IBP approach described
in section 3.1 poses another problem in this regard. IBP relations often contain integrals
with one exponent ai raised by one with respect to the seed integral, which are caused by
the derivative acting on a propagator. These integrals are then typically rated as more
difficult than the seed integral by the ordering prescription. If one is not interested in
reducing these integrals as well, they then have to first be eliminated from the system of
equations to get to the results one is looking for, thus causing additional calculations.

In 2010, Gluza, Kajda and Kosower (GKK in the following) proposed an approach which
prohibits the occurrence of integrals with raised propagator exponents in the IBPs alto-
gether [1]. This is very appealing in the context of difference equations, since Eq. (3.1)
does not permit raised exponents (other than the symbolic one) with respect to the inte-
gral I({ai}). GKK also give further reasons to avoid raised exponents in a more general
context, such as the possible introduction of worse infrared divergences by the correspond-
ing integrals [1]. They enforce their objective that each raised propagator is immediately
cancelled by requiring

n∑
i=1

n+ne∑
j=1

αi,j
∂Dc

∂kµi
qµj ∝ Dc ∀ c ∈ C , (4.1)

thus constraining the coefficients αi,j . Furthermore, they allow these coefficients to have
a mass dimension and depend on scalar products of momenta as well as all masses of the
integral with the following constraints: The αi,j must be

1. polynomials in all scalar products which contain at least one loop momentum,

2. rational functions in all scalar products of external momenta and masses.

C is the set of indices of exponents one does not wish to be raised, e.g. the positive
exponents excluding the symbolic one for difference equations. Raising negative exponents
generally leads to simpler integrals and thus does not need to be prohibited. By requiring
Eq. (4.1), the effort of eliminating the integrals with raised propagators is shifted to finding
appropriate sets of coefficients αi,j by generalising the IBP operators to linear combinations
of derivatives with possibly dimensionful coefficients. The modified IBP relations, which
I will refer to in the following as GKK relations, then read

0 =
∫
k1,...,kn

n∑
i=1

n+ne∑
j=1

∂

∂kµi

αi,jq
µ
j

Da1
1 . . . Dam

m
. (4.2)

Finding a complete set of all possible sets {αi,j} turns out to be non-trivial. It is obvious
from Eq. (4.1) that there is an infinite number of possible sets of coefficients αi,j , since
every solution can simply be multiplied with an arbitrary scalar product and still remain
a solution. Because all scalar products can be expressed via the propagators Di, Eq. (4.2)
shows that this multiplication is equivalent to including seed integrals with lower propa-
gator exponents. An algorithm to find viable coefficients αi,j should therefore avoid such

4 SYZYGY ALGORITHM 22

factorisable solutions, since they carry no additional information. It is then sufficient to
obtain a basis for the sets αi,j . Here, a basis is defined as a minimal set B = {α(k)}, where
α(k) = (α(k)

0,0 , . . . , α
(k)
n,n+ne), with the property that each set α = (α0,0, . . . , αn,n+ne) allowed

by Eq. (4.1) can be written as a linear combination of the elements of the basis, where the
coefficients of those elements have the same constraints as the αi,j . Unlike the complete
set of all possible α, a basis defined in this way is finite [1]. In section 4.1, I will present a
possible algorithm to find such a basis, but first I want to address two important questions
that arise at this point:

(I) Can this approach be more efficient than generating equations via pure IBPs?

To answer this question definitely, one needs to look at algorithms for the generation of
the αi,j and their implementation. I will do so in sections 4.1 and 5 respectively. There
are however some general points to be made. The coefficients αi,j are not dependent on
the actual exponents of the seed integral, only the set C of indices whose exponents must
not be raised. They can therefore be used to generate equations without raised exponents
for all seed integrals which do not differ in the propagator positions in C. For unaltered
IBPs on the other hand, different seed integrals would lead to different integrals with
raised exponents, which would all have to be eliminated independently. This advantage
of the GKK approach is independent of the algorithm for finding the αi,j and grows with
the number of seed integrals required for the problem. Furthermore, expressions in the
calculation of the αi,j are easier to deal with than coefficients in the Laporta algorithm,
since the former depend neither on the space-time dimension d nor the symbolic exponent
z. As a possible drawback, it should be noted that, due to the GKK operators being
linear combinations of derivatives, the number of terms in the initial equations (4.2) can
be rather large compared to the plain IBP relations. To minimise this effect, it is important
to choose the basis elements α(k) with as few entries as possible.

(II) Does one lose information compared to the IBP approach when generating equations
in this way?

I will first consider a scenario where the following two assumptions hold true:

1. All seed integrals differ only in the non-positive exponents.

2. No further knowledge of integrals (such as symmetries) beyond acting with the
IBP/GKK operators on the seed integrals is added to the system.

If, in this scenario, one considers a pure IBP approach with the unaltered operators Oij
acting on the set of seed integrals, the system of equations can be solved and divided into
two parts: The first part consists of equations that have been solved for an integral with
one exponent raised, and the second part consists of the equations from which all integrals
with raised exponents have been eliminated by linear combinations. The information in
the former part is obviously not contained in the GKK approach by design, because one is
not interested in it. The latter part in this scenario however can be reproduced completely,
if one finds a basis of all possible sets αi,j and acts with them on the same set of seed
integrals. This can be seen as follows:

The only way to cancel an integral with a raised propagator at a position y ∈ C from the
IBP approach in this scenario is by linear combinations of the equations. The coefficients

4 SYZYGY ALGORITHM 23

in these linear combinations are at most rational functions of scalar products of external
momenta and masses, but do not depend on the space-time dimension d or the symbolic
exponent z. This is due to the fact that the dimension d only appears in terms where
the derivative hits qµj (hence no raised propagator) and z can only be found in coefficients
where the symbolic exponent at position x may be raised, but x /∈ C. The coefficients in
the linear combinations needed to cancel the integrals with raised propagators at positions
y ∈ C are therefore allowed as expressions for the αi,j . One can then conclude that a
complete basis of the sets {αi,j} reproduces all of these linear combinations and thus no
information is lost in this scenario except the information which is inseparably linked
to integrals with raised exponents. Furthermore, since the αi,j may also contain scalar
products of loop momenta which can be written as a sum of propagators Di, some of the
information in the GKK equations (4.2) would require the derivatives in the pure IBP
approach acting on additional seed integrals with lower exponents. For the same set of
seed integrals the GKK approach can therefore even contain additional information over
the system of equations generated by plain IBPs.

However, in practice the two above assumptions usually do not hold. In the IBP approach
the set of seed integrals typically contains integrals with different values for the sum of
positive exponents r. For the GKK operators this makes no sense, since it would introduce
the raised exponents one is trying to avoid already in the seed integrals. If one can find
an equation in the IBP approach which contains no raised propagators compared to an
integral I one is interested in, but can only be generated if seed integrals with raised
propagators compared to I are considered, the information that equation holds may be
lost to the GKK approach. It can be argued that not a large fraction of the overall
obtainable information is lost in this way, since most of the information can already be
generated from seed integrals without raised propagators. Additionally, since the equations
obtained from the IBP operators are vastly overdetermined (see section 3.1) and this also
translates to the GKK operators, the loss of some equations does not automatically imply
that all of their information is lost to the complete system of equations.

The second assumption, that one puts no further knowledge than the IBPs into the La-
porta algorithm, does not hold in general either, since the information one has about
symmetries and which sectors are zero sectors is typically added manually to the system
of equations. This presents us with two additional ways other than linear combinations in
which propagators with raised exponents can vanish from an equation. The corresponding
integrals may either vanish exactly in dimensional regularisation, or be transformed via
a sector symmetry into an integral with a different raised propagator, which might then
cancel another term with the same integral. Neither of these possibilities is covered by
the GKK approach as described in [1], since Eq. (4.1) prohibits any raised propagators
from the beginning and information about symmetries and zero sectors is only added to
the system after equations have been generated. Even though the sector symmetries are
always contained in the complete set of IBPs [39], there is no guarantee that they will
turn up in the system for a finite set of seed integrals. It should therefore be possible
to lose information when replacing IBP relations with the unmodified GKK ones for the
same seed integrals. In section 4.3, I will therefore propose a way of fixing this problem
(to some extent) by relaxing the constraints of Eq. (4.1) and introducing symmetry and
zero sector information already at that point.

4 SYZYGY ALGORITHM 24

4.1 Syzygies via linear algebra

To find the coefficients αi,j , it is convenient to rewrite Eq. (4.1) as

0 =
n∑
i=1

n+ne∑
j=1

αi,j
∂Dc

∂kµi
qµj + βcDc ∀ c ∈ C , (4.3)

which can then be expressed as a matrix equation

α · E = 0. (4.4)

Here α and E are given by

α =
(
α1,1, . . . , α1,n+ne , . . . , αn,1, . . . , αn,n+ne , βc1 , . . . , βcγ

)
,

E =



∂Dc1
∂kµ1

qµ1 · · · ∂Dcγ
∂kµ1

qµ1
...

∂Dc1
∂kµ1

qµn+ne · · ·
∂Dcγ
∂kµ1

qµn+ne
...

...
∂Dc1
∂kµn

qµ1 · · · ∂Dcγ
∂kµn

qµ1
...

∂Dc1
∂kµn

qµn+ne · · ·
∂Dcγ
∂kµn

qµn+ne
Dc1 0 0

0 . . . 0
0 0 Dcγ



,
(4.5)

where γ ≡ |C| and the number of rows in E will be called ρ = n(n + ne) + γ. The
entries of E are all polynomials of scalar products of momenta and squared masses and
thus have homogeneous mass dimension 2. This means that the solutions α, which in
mathematics are also known as syzygies, also have homogeneous mass dimension. GKK
already suggested several algorithms for finding a complete basis of these syzygies in their
paper [1]. All of them require the use of Gröbner bases, which are usually difficult to
compute [41]. A different algorithm was therefore proposed by Schabinger [6], who is
building on the work of Cabarcas and Ding [42]. The algorithm is based entirely on basic
linear algebra and thus completely avoids Gröbner bases. I have implemented a modified
version of this algorithm in a C++ program, which I will discuss in section 5. In this
section, I will outline the algorithm proposed by Schabinger, albeit with slight alterations,
and in section 4.3 suggest modifications that will solve most of the problem of possible loss
of information in the GKK approach due to the missing information about symmetries
and zero sectors.

Schabinger starts by choosing a basis

X = {x1, . . . , xξ} (4.6)

which contains all scalar products that include at least one loop momentum. Addition-
ally, one mass scale m2 is added to the basis. All other kinematic invariants wi of mass

4 SYZYGY ALGORITHM 25

dimension 2 can then be expressed as the dimensionless ratios χi = wi/m
2 times m2. In

the following, I will call the degree ∆ of an expression its mass dimension divided by 2,
which is simply the sum of powers of xi it contains.

The basic idea of the algorithm is then to find solutions α incrementally in their degree
∆, starting at either ∆ = 0 or ∆ = 1 and working up to a predefined ∆max. The elements
of α are homogeneous polynomials in the xi, where the coefficients are rational functions
of the χi. After finding the solutions for degree ∆, they are “mapped” to degree ∆ + 1
by multiplying them with all xi in turn, so that the algorithm may avoid finding those
factorisable syzygies anew at the higher degree. Choosing the initial value of ∆ as either 0
or 1 only makes a difference where syzygies of degree 0 can be found, which is only the case
for a few very simple integrals. For the cutoff ∆max Schabinger points out [6] that there is
no known way of determining from mathematics alone whether there will be any further
non-factorisable new syzygies beyond a given degree, but that physics can provide a cutoff
by considering the allowed mass dimensions in the numerator of an integral. In the case
of difference equations this does not hold however, since all integrals contain a symbolic
propagator exponent which makes the numeric value of the mass dimension of the integral
indeterminable. ∆max therefore has to be chosen manually with regard to the difficulty
of the master integral considered and computational limits. The highest value required
in this thesis was ∆max = 4 (for details see section 6). Since there is no guarantee that
the basis for the syzygies does not contain elements beyond the chosen cutoff, one should
note at this point that using the Schabinger algorithm may therefore result in a loss of
information that would be contained in a complete basis for the syzygies generated e.g. via
Gröbner bases. In practice, this was not an issue so far, since one is primarily interested in
finding a difference equation and any information beyond that is not necessarily required.

To write out the algorithm in detail, I first have to introduce some further definitions. For
each degree ∆ one constructs the set

M∆ =
{
X

(∆)
1 , . . . , X

(∆)
(∆+ξ−1)!
∆!(ξ−1)!

}
(4.7)

of all possible monomials of that degree built from the basis elements inX. This means that
M0 = {1},M1 = X,M2 = {x2

1, x1x2, . . . , x
2
ξ}, . . . It can be seen from basic combinatorics

that there are (∆+ξ−1)!
∆!(ξ−1)! such monomials. Schabinger then introduces a set of dummy

variables

T = {t1, . . . , tγ} (4.8)

which fulfil titj = 0 for i 6= j and will only serve to distinguish which propagator an
expression is related to in the following. It is not necessary to implement these, but they
simplify the task of illustrating the algorithm. One can use them to define the vector

P0 = E · t (4.9)

which holds the same information as the matrix E, but with the column index of an element
now represented by the ti. Building on this, Schabinger then defines further vectors P∆
as the outer product of P0 with M∆:

P∆ =
(
P0,1X

(∆)
1 , . . . , P0,1X

(∆)
(∆+ξ−1)!
∆!(ξ−1)!

, . . . , P0,ρX
(∆)
1 , . . . , P0,ρX

(∆)
(∆+ξ−1)!
∆!(ξ−1)!

)
. (4.10)

4 SYZYGY ALGORITHM 26

Since P0 has ρ elements, P∆ will have

|P∆| ≡ ρ
(∆ + ξ − 1)!
∆!(ξ − 1)! (4.11)

elements. The P∆ have the advantage that a syzygy α of degree ∆, which has to fulfil

α · P0 = 0, (4.12)

can now be expressed instead as a vector σ(α) of degree 0 which fulfils

σ(α) · P∆ = 0. (4.13)

In the following, I will distinguish α from σ(α) by calling the former a syzygy and the
latter a syzygy vector, even though both are technically vectors. The information about
which monomial in X a single term in an element of α carried is now encoded in the
indices of the syzygy vector σ(α). To reconstruct α from σ(α), one has to first partition
σ(α) into vectors zi of length (∆+ξ−1)!

∆!(ξ−1)! : σ(α) = (z1, . . . , zρ). Each zi then corresponds to
one element of α:

α = (z1 ·M∆, . . . , zρ ·M∆). (4.14)

Internally, the algorithm will work with the σ(α). This is beneficial because for most
operations it takes the variables xi completely out of the picture in favour of indices
(which are simpler to deal with), but comes at the cost of significantly increasing the sizes
of vectors and matrices. As a result, many matrix quantities will also be sparse, which
should be taken into account in an implementation (see section 5.1).

One last important quantity that will appear in the algorithm remains to be defined. The
set B∆ will hold all independent syzygy vectors σ(α) found at degree ∆ as well as those
found at lower degrees mapped to degree ∆. Now that the stage is set, Fig. 4.1 will give
an overview of the algorithm as proposed by Schabinger [6].

It should be noted that Fig. 4.1 is primarily designed to illustrate the basic idea of the
algorithm and by no means portrays an optimised solution. The implementation I will
describe in section 5.1 will differ in several aspects. Some of the steps shown also warrant
further discussion:

• Subroutine 1 maps syzygies to higher degrees. This can be understood as multiplying
a syzygy α with each element of the basis X in turn. The results will be syzygies
with their degree raised by one. Since all of them are by construction factorisable
syzygies which hold no additional information over α, they are only used to prevent
the algorithm from finding linear combinations of them again. For efficiency reasons
the mapping is not an actual multiplication of the syzygy α with xi, but rather the
equivalent mapping of indices for the syzygy vector σ(α).

• Subroutine 2 is where the syzygies, or more precisely the syzygy vectors σ(α), are
actually found. The positions of the pivot columns of factorisable syzygies in B∆
mapped up from lower degrees are set to zero in the vectors y to prevent the same
syzygies being found again by this subroutine. In the dot product y · P∆ the coeffi-
cients of each distinct monomial in the xi and ti have to vanish individually, resulting
in a number of constraints which can be expressed as a matrix equation Q · y = 0.
The result D is then a basis for the null space of Q.

4 SYZYGY ALGORITHM 27

∆ ≤ ∆max?

Define an empty
integer set Z.
Have syzygies
been found at

previous degrees?
(|B∆−1| 6= 0?)

Subroutine 1 :
Map known

syzygies in B∆−1
to degree ∆. Call
the result B∆.

Regard B∆ as a
matrix (one row
per syzygy) and
bring it into row
echelon form.

Remove trivial rows.

Insert all indices
i that correspond
to pivot columns
of B∆ into Z.

Subroutine 2 :
Find a basis of all
X-independent
vectors y with
y · P∆ = 0 and
yi = 0 ∀i ∈ Z.
Call the result D.

Subroutine 3 :
Translate the

syzygy vectors y
in D to syzygies
of degree ∆.

Add the vectors y
in D as additional

rows to B∆.
Set ∆ = ∆ + 1.

Start
∆ = 0 or ∆ = 1End

yes yes

no

no

Figure 4.1: Flow chart of Schabinger’s syzygy algorithm [6].

4 SYZYGY ALGORITHM 28

• Subsection 3 produces the final results of the algorithm by mapping the syzygy vec-
tors y to syzygies α of degree ∆ as described in Eq. (4.14). Under some circumstances
(see section 5.1) it can be useful to omit this step and generate the GKK relations
for integrals directly from the syzygy vectors y.

4.2 Example

I will demonstrate the steps of Schabingers algorithm using a simple example, where I
choose

P0 = (x1 + x2, x1, x1 − x2), (4.15)

X = {x1, x2} and ∆max = 1. A P0 defined as in Eq. (4.9) would also contain a variable
ti in each term, but this is not needed for illustration purposes. Starting at ∆ = 0 the
algorithm jumps directly into subroutine 2, since no syzygies could have been found yet.
Requiring that y · P0 = 0 where y = (y1, y2, y3) yields

0 = y1 + y2 + y3

∧ 0 = y1 − y3
(4.16)

and thus only one independent syzygy vector which I will choose as y = (1,−2, 1). The
work of subroutine 3 in this case is trivial since for ∆ = 0 the syzygy vector y is identical to
the corresponding syzygy α. Continuing at ∆ = 1 leads to the first pass through the right
branch of Fig. 4.1, because B0 now contains the syzygy vector already found. Subroutine
1 then maps that vector to ∆ = 1, resulting in

B1 = {(1, 0,−2, 0, 1, 0), (0, 1, 0,−2, 0, 1)}. (4.17)

These vectors correspond to the factorisable syzygies (x1,−2x1, x1) and (x2,−2x2, x2).
Since B1 written as a matrix is already in row echelon form, one can directly read of
the pivot columns as 1 and 2, which will be needed as input in subroutine 2. P1 can be
generated as the outer product of P0 and M1 = (x1, x2):

P1 = (x2
1 + x1x2, x1x2 + x2

2, x
2
1, x1x2, x

2
1 − x1x2, x1x2 − x2

2). (4.18)

Subroutine 2 then searches for vectors y with y · P1 = 0 where y = (0, 0, y3, y4, y5, y6).
Setting elements 1 and 2 to zero prevents the algorithm from finding the solutions in B1
again. One gets the constraints

0 = y3 + y5

∧ 0 = y4 − y5 + y6

∧ 0 = y6,

(4.19)

which again allows one independent solution, chosen as y = (0, 0, 1,−1,−1, 0). This vector
is then added to B1 and subroutine 3 uses it to construct the corresponding syzygy α =
(0, x1 − x2,−x1).

4 SYZYGY ALGORITHM 29

4.3 Symmetry and zero integral extensions

As already mentioned at the beginning of section 4, it might be possible to lose information
when using the GKK syzygy approach, because the information about symmetries and
zero sectors only enters the system after equations have been generated. The algorithm
of Schabinger (section 4.1) offers an easily accessible way of solving this problem. In this
section, I will first propose an extension to this algorithm, which introduces to it the
symmetry information, and then a similar extension for the zero sectors. A discussion of
the usefulness of these extensions can be found in section 6.2.

4.3.1 Symmetry extension: A simple example

To start with I will consider the 2-loop massive vacuum sector with ID = 7. This sector
is already known from section 2.4 and its integrals are expressed as

I(a1, a2, a3), (4.20)

where all 3 exponents are positive and the integrals are symmetric under any permutation
of the ai. If one is looking for a difference equation for the master integral I(1, 1, 1) at
position x = 1, the symmetry effectively reduces to a2 ↔ a3, since one wants the symbolic
exponent to stay in place. The matrix E (Eq. (4.5)) in the GKK approach then reads

E =



∂D2
∂kµ1

kµ1
∂D3
∂kµ1

kµ1
∂D2
∂kµ1

kµ2
∂D3
∂kµ1

kµ2
∂D2
∂kµ2

kµ1
∂D3
∂kµ2

kµ1
∂D2
∂kµ2

kµ2
∂D3
∂kµ2

kµ2
D2 0
0 D3


. (4.21)

Note that D1 does not appear because a raised symbolic exponent at position 1 is perfectly
acceptable in a difference equation. To introduce the information about the symmetry
a2 ↔ a3, one can add additional rows to E in the form

Esym =
(
s1 0
0 s1

)
, (4.22)

where s1 is a dummy variable of mass dimension 0. This effectively replaces the GKK
constraint for the αi,j (Eq. (4.1)) with the less restrictive

n∑
i=1

n+ne∑
j=1

αi,j
∂Dc

∂kµi
qµj = ξcDc + Sc, c = 2, 3 (4.23)

For Sc 6∝ Dc (in fact, Sc may not depend on Dc at all, see below) the second term on the
right hand side of Eq. (4.23) will produce integrals with a raised exponent ac. To ensure
that such integrals cancel in the complete relation, one has to also enforce

S2 + S3 = 0. (4.24)

4 SYZYGY ALGORITHM 30

This is sufficient because the integrals will then only differ in the position of the raised
exponents and are thus identical upon application of the symmetry. It is assumed here
and in the following that the exponents involved in the symmetry are identical in the
seed integral. The constraint in Eq. (4.24) can be implemented in subroutine 2 of the
Schabinger algorithm. Where in section 4.1 for the dot product y · P∆ the coefficient
of each monomial in the xi and ti had to vanish, there will now be two constraints.
The coefficients for each such monomial still have to vanish individually, but only after
substituting the dummy variable(s) si to 1, since one does not want the solutions to depend
on it/them. Additionally, the coefficients of all different monomials in the xi and si have
to vanish upon substituting ti = 1, thus enforcing Eq. (4.24) by connecting the coefficients
for different propagators.

There are several complications that I skipped over in this brief summary of the symmetry
extension. I already mentioned that the Sc may not depend on the propagator Dc. If
there was any term in S2 (and therefore also in S3) that contained D2 but not D3, that
term would cause an integral with raised exponent a3, but the raised exponent a2 would
be cancelled immediately by the factor D2. As a result, the two integrals would not be
identical upon application of the symmetries and therefore cannot cancel each other. One
would be left with one integral with raised exponent a3. This could in theory be avoided
by having the term depend on D2 and D3 in the same way, but such solutions would be
identical to ones already found with the original algorithm, since they do not contain any
raised propagators to begin with. The conclusion one should draw is therefore to restrict
the Sc from depending on Dc right from the start. Since all quantities with a mass dimen-
sion are expressed using the basis elements xi ∈ X and the scalar products Schabinger
chose as the xi depend on the Di as linear combinations, imposing this restriction does
not seem to be straightforward. The most natural solution is to change the basis X such
that the xi are chosen as the propagators rather than scalar products:

Xsym = {D1, . . . , Dm,m
2}. (4.25)

One can then customise this basis for each index position p in P0 that corresponds to a
row of the symmetry extension part of E. In the example above this leads to

Xsym,p = {D1, D2, D3,m
2}, p = 1, . . . 6,

Xsym,7 = {D1, D3,m
2},

Xsym,8 = {D1, D2,m
2}.

(4.26)

In this simple example one could also remove D3 from Xsym,7 and D2 from Xsym,8, since S2
and S3 can only contain the same kinds of terms anyway, but for more complex symmetries
this is not allowed (see below). As a consequence of having different bases Xsym,p, one
then also has to introduce separate M∆,p for the indices p which are based on the Xsym,p

and the definition of the P∆ changes from being the outer product of P0 and M∆ to

P∆ =
(
P0,1M∆,1, . . . , P0,ρM∆,ρ, P0,ρ+1M∆+1,ρ+1, . . . , P0,ρsymM∆+1,ρsym

)
, (4.27)

where P∆ is to be understood as a flattened vector and ρsym is the original number ρ of
rows in E plus the number of rows in Esym. For the symmetry extension positions one
has to choose M∆+1,p with the degree raised by one compared to the original algorithm,

4 SYZYGY ALGORITHM 31

because Esym has degree 0 instead of 1. With the above definition of P∆ and the additional
constraints in subroutine 2 one can ensure that the Sc cannot depend on the respective
propagators Dc and fulfil

∑
c Sc = 0.

Another potential problem when dealing with a sector symmetry of a sector ID is the
occurrence of propagators Di /∈ PID. As seen in section 2.3, a sector symmetry is a
one-to-one mapping PID → PID for the propagators with positive exponents, but any
propagators with negative exponents may also be transformed by the symmetry. If this
is the case, the integrals with raised exponents that arise from the symmetry extension
might no longer be identical after applying the symmetry. This can be demonstrated
on the 2-loop massive vacuum sector ID 6 which contains integrals of the form I(a1 >
0, a2 > 0, a3 ≤ 0) and has a sector symmetry which translates to a1 ↔ a2. Using the
syzygy algorithm with the symmetry extension as described above on the seed integral
I(1, 1,−1), one might encounter the integrals I(2, 1,−1) and I(1, 2,−1). By applying a
symmetry transformation, the first two exponents can be made identical in both integrals
so that they cancel each other. In this simple case this works, because D3 is left unchanged
by the symmetry. If D3 would transform to anything else upon applying the symmetry,
the resulting integrals with raised exponents would not be identical and therefore remain
in the equation. For each symmetry one thus has to determine which of the Di /∈ PID
remain unchanged by the symmetry transformation and prevent all others from occurring
in the integrals. This means removing the unwanted propagators from the bases Xsym,p

corresponding to the rows of Esym, but also rejecting seed integrals that contain them for
all syzygies that have non-zero elements at the symmetry extension positions. It should
be noted that in some cases these constraints may lead to a loss of information, since it
is possible that e.g. two propagators D3 and D4 with the same negative exponent would
be mapped as D3 ↔ D4 by the symmetry transformation, in which case the symmetry
extension would theoretically still work, even though the above prescription prohibits this
scenario.

One last complication of the symmetry extension concerns subroutine 1. Usually this
would map the previously found syzygies by multiplying them with each element of the
basis X in turn, but with the symmetry extension one introduces different bases Xsym,p

for each position p in P0. Subroutine 1 therefore has to check for each such multiplication
whether it is allowed by the choice of basis at each position p in the range [ρ+ 1, ρsym]. If
a syzygy has a non-zero entry at that position, it may only be multiplied by elements of
Xsym,p.

4.3.2 Generalisation to more complex symmetries

The discussion of the symmetry extension so far has been limited to the case where an
integral is symmetric under the exchange of 2 propagator exponents. I will now give some
examples that show how it can be generalised to work with more complex symmetries.

• Case 1 : The integral exhibits more than one symmetry.
I will assume for now that there are exactly two symmetries of the kind already
shown above. If the integral is symmetric under a1 ↔ a2 as well as under a3 ↔ a4
independently, one can simply add the necessary rows for both symmetries to the

4 SYZYGY ALGORITHM 32

matrix E:

Esym =


s1 0 0 0 · · · 0
0 s1 0 0 0
0 0 s2 0 0
0 0 0 s2 · · · 0

 , (4.28)

where the columns to the right correspond to any further propagator positions in
C. The bases Xsym,p already have to be chosen depending on the position p in P0,
so it is no problem to remove Di from the position corresponding to the i-th line
in Esym for i = 1, 2, 3, 4. The only further change is that subroutine 2 will now
gain two extra sets of constraints instead of one, since S1 + S2 and S3 + S4 have
to vanish independently. This method can be trivially generalised to any number of
symmetries and works in the same way for the more complex symmetries discussed
below.

• Case 2 : The integral is symmetric under any permutation of 3 or more propagator
exponents.
Without loss of generality, I will assume a symmetry in exactly 3 exponents, a1, a2
and a3. There are two possible approaches to this kind of symmetry. One could
think of it as the combination of three separate symmetries a1 ↔ a2, a1 ↔ a3 and
a2 ↔ a3 and implement these as seen in case 1. However, there might be syzygies
where

S1 + S2 + S3 = 0 (4.29)

and none of the Si can be made to vanish by linear combinations. Such syzygies
would then be missed by this approach. Furthermore, the number of additional lines
in Esym would grow very quickly with the amount of propagators involved in the
symmetry, which would increase the vector and matrix sizes of the calculation and
thus the runtime of the algorithm. It is therefore sensible to instead consider an
extension

Esym =

 s1 0 0 · · · 0
0 s1 0 0
0 0 s1 · · · 0

 , (4.30)

and enforce only Eq. (4.29) in subroutine 2. The bases Xsym,p would then be chosen
as

Xsym,ρ+1 = {D2, D3, . . . },
Xsym,ρ+2 = {D1, D3, . . . },
Xsym,ρ+3 = {D1, D2, . . . }.

(4.31)

Here one can no longer remove e.g. D3 from all bases as in the simple example above,
since this would remove syzygies where S1 + S2 = 0 and S1, S2 depend on D3.

• Case 3 : The integral has a symmetry which requires the simultaneous exchange of
more than one pair of exponents, e.g.(

a1
a3

)
↔
(
a2
a4

)
. (4.32)

4 SYZYGY ALGORITHM 33

This scenario is similar to case 1 insofar as one has to ensure that S1 +S2 and S3 +S4
vanish independently. This can again be achieved by the same

Esym =


s1 0 0 0 · · · 0
0 s1 0 0 0
0 0 s2 0 0
0 0 0 s2 · · · 0

 . (4.33)

The difference is that upon shifting e.g. a raised exponent from a2 to a1, a3 and
a4 also swap positions. To ensure that the two resulting integrals are identical in
those exponents as well, one has to require that S1 be dependent on D3 in exactly
the same way as S2 depends on D4 and vice versa. This means that the above
mentioned constraint S1 + S2 = 0 is not quite correct and has to be replaced with
S1 + S2|D3↔D4 = 0. While it is possible to achieve this, it requires careful mapping
of the respective terms in subroutine 2. A somewhat simpler approach is the more
restrictive constraint that both S1 and S2 may only depend on the product D3D4,
which only requires removing any terms with different powers in those propagators
from M∆,ρ+1 and M∆,ρ+2. Because this would lead to S2|D3↔D4 = S2, no mapping
would be required in subroutine 2. The simplicity of this approach comes with
a possible loss of information by placing too strict a constraint on the syzygies.
Additionally, subroutine 1 would not be allowed to map syzygies found in this way
by multiplying them with either D3 or D4, but only with the product D3D4, which
means those syzygies could only be mapped in increments of two in their degree ∆.

The above cases can be combined without restrictions to cover all possible sector symme-
tries. An interesting example of this is the 5-loop massive vacuum sector with ID 30239,
which is symmetric under any permutation of

{

 a1
a6
a3

 ,
 a11

a2
a5

 ,
 a13
a15
a12

} (4.34)

as well as under  a1
a2
a13

↔
 a6
a11
a15

 (4.35)

and therefore exhibits a combination of all three cases discussed above.

4.3.3 Zero integral extension

The information about which integrals vanish in dimensional regularisation can be intro-
duced to the Schabinger algorithm in a way similar to the symmetry extension approach.
The constraints on the αi,j have to be relaxed to

n∑
i=1

n+ne∑
j=1

αi,j
∂Dc

∂kµi
qµj = ξcDc + Zc, c ∈ C, (4.36)

4 SYZYGY ALGORITHM 34

which is achieved by extending the matrix E with

E0 = 1|C|×|C| (4.37)

as additional rows. Zc must be chosen such that a seed integral vanishes if Zc is multiplied
to its integrand before integration. If one chooses the seed integral with the greatest
exponents for this constraint, it will also hold for all other seed integrals. As in the
symmetry extension, Zc may not depend on Dc, since such terms would not cause raised
exponents and therefore only lead to redundant syzygies. Consequently one has to also
choose theDi as the elements xi of the basisX. The limitations on Zc can then be enforced
by choosing the M∆,p not as the set of all possible monomials of the xi of degree ∆, but
only those which do not depend on Dc and will cause the resulting integral to vanish. Once
again the extension positions of the P∆ will have to be built using the M∆+1,p instead of
the M∆,p, since the degrees of E and E0 differ by one. Mapping syzygies to a higher
degree in subroutine 1 can be done by multiplying them with any of the xi (except those
which would cancel a raised propagator), since this cannot cause vanishing integrals to not
vanish any longer in dimensional regularisation.

The zero integral extension can be used in conjunction with the symmetry extension. It is
however possible that this will lead to redundant syzygies being found, since some integrals
with raised exponents might be cancelled after applying a symmetry as well as vanish in
dimensional regularisation. In this case, both extensions would allow those integrals, but
use different positions of the syzygies to do so.

5 IMPLEMENTATION: SPADES 35

5 Implementation: SPADES

For this thesis I have written a C++ program called SPADES (Some Program to Automat-
ically find Difference Equations via Syzygies) which is designed to find difference equations
for Feynman integrals. Due to the time constraints of writing a master’s thesis, it is cur-
rently limited to vacuum integrals, but I plan to remove this limitation in the future. The
program can roughly be divided into two parts: The syzygy part implements the algorithm
described in section 4 including the symmetry and zero extensions. The resulting syzygies
are used by the difference equation part of the program to generate a system of linear
relations between integrals, which is then solved for a difference equation using a variation
of the Laporta algorithm. For most of the algebraic manipulations in the syzygy part I
make use of the library GiNaC [43], while the polynomial manipulations of the integral
coefficients in the Laporta algorithm, which usually take up the bulk of the program’s
runtime, are performed by the external program Fermat [44]. The part of the code that
is responsible for the communication with Fermat is an adaption from the equivalent part
from the source code of Reduze 2 [4] (c© 2012, A. von Manteuffel, C. Studerus). Since
the ideas of the syzygy algorithm and the Laporta algorithm have already been described
in sections 4 and 3.2 respectively, I will use this section to highlight some of the more
technical details in their implementations.

5.1 The syzygy algorithm in practice

To find the syzygies that can be used to generate a difference equation for a master integral
I with the symbolic exponent at position x, the user is required to provide the following
information:

• The auxiliary topology An,

• the positive exponents of I and the position x of the symbolic exponent,

• the maximum degree ∆max up to which syzygies are to be searched,

• whether the symmetry and/or zero integral extensions should be used,

• the sector symmetries, if the symmetry extension is enabled,

• a list of non-trivial zero-sectors, if the zero integral extension is enabled.

The program then starts the preparations for the actual algorithm by constructing the
matrix E. The set C of exponent positions that may not be raised is chosen as the set
of positions of positive exponents excluding the symbolic one. If the symmetry extension
is activated, the user-provided symmetries will be checked for viability before Esym is
constructed as described in section 4.3. This means removing or trimming symmetries
the symbolic exponent is involved in, as well as checking that exponents in the input are
identical where necessary. When the construction of E is completed, the scalar products
and masses it contains would need to be expressed via the xi ∈ X and the χi. However,
since I will consider only vacuum integrals with a single mass scale in this thesis, there are
no ratios χi between masses or external scalar products necessary. This means that all

5 IMPLEMENTATION: SPADES 36

coefficients of monomials in X will just be rational numbers, which simplifies calculations
by a great deal, because no polynomial algebra will be necessary.

For the basis X the program offers two options. The xi can either be chosen as the scalar
products of momenta or as the propagators Di. The mass scale m2 is included in either
case. Choosing to activate either the symmetry or zero integral extension will force the
basis to be built out of the propagators. Experience shows that the algorithm takes roughly
twice as long if the xi are propagators instead of scalar products. In most cases this is not
a severe problem, since usually the time spent on finding syzygies is small compared with
the duration of the Laporta algorithm. Details on runtimes will be discussed in section
6.3.

Once the matrix E is expressed via the xi and P0 is obtained as the dot product of
E with the dummy variables ti, the M∆,p need to be constructed for ∆ ≤ ∆max. For
positions p corresponding to either the standard or symmetry rows of E, these are simply
the lexicographically ordered set of all monomials of degree ∆ which can be built out of
the respective bases Xp for each position. For the positions of the zero integral extension
each such monomial is tested as to whether it will cause the integral with the user-defined
exponents to vanish when it is multiplied to the integrand, and only those monomials that
do will be inserted into the corresponding M∆,p. The P∆ are then determined from the
M∆,p as defined in section 4.1. At the same time the program creates a map for later
use by subroutine 1, which holds information about which position in a syzygy vector for
degree ∆ + 1 each element in a syzygy vector for degree ∆ is mapped to when multiplying
with any of the xi. This concludes the preparations and the program then moves on to
the main algorithm.

Since Schabinger’s algorithm is already described in Fig. 4.1, I will in the following not go
through the implementation of each of its steps, but rather focus on those where I have
made changes for efficiency as well as obstacles that come up in an implementation. As
Schabinger already mentions in his paper [6], the main problem one is faced with in the
algorithm is that the syzygy vectors σ(α) and the matrix quantities composed of them
(B∆, the matrix Q in subroutine 2) grow very large. The number of elements of one such
vector at degree ∆ for an n-loop calculation with ne independent external momenta, ξ
elements in the basis X and γ exponents that may not be raised, without activating either
of the extensions, is given by

(∆ + ξ − 1)!
∆! (ξ − 1)! (n (n+ ne) + γ) . (5.1)

For the 5-loop vacuum diagrams I will consider in section 6 at degree ∆ = 4 this is roughly
O(105). The situation worsens if one also activates the symmetry or zero extensions, since
they add additional rows to E and therefore increase the length of the syzygies. At the
same time the vectors are very sparse, typically less than 1% of the elements are not
zero. This has to be taken into account in the data structure of an implementation to
improve the efficiency of the algorithm. In SPADES all syzygy vectors σ(α) are expressed
via the class sparseLst, which is essentially a wrapper class for a sorted list of index-
element pairs (using std::map<unsigned int, GiNaC::ex>), in which only the non-zero
elements are stored. Added on top of that are algebraic capabilities such as vector addition.
While this structure is slightly less efficient for accessing or modifying only a specific

5 IMPLEMENTATION: SPADES 37

element than a static vector (logarithmic vs. constant time), storing only the < 1%
non-trivial elements saves a lot of memory and is very efficient for frequently required
index-independent operations such as multiplying the vector with a common factor. The
matrices B∆ and Q are stored as vectors of sparseLsts, where each sparseLst represents
one row. A different example where the sparseLst structure is useful is subroutine 1
(see Listing 5.1), which maps the syzygy vectors to a higher degree. Instead of having
to go through all elements to find the non-zero ones, it is sufficient to iterate over all the
elements of the sparseLst.

Listing 5.1: Subroutine 1� �
void syzygyModule : : subrout ine1 (const vector<sparseLst> & oldBd ,

vector<sparseLst> & bd , unsigned int de l t a) {
//Get s i z e o f syzygy ve c t o r s o f degree Delta
unsigned int vecS i z e = getVecSize (de l t a) ;

//Load mapping o f p o s i t i o n s . newIdx = m[oldIdx] [pos o f x_i]
// (newIdx = −1 i f map not a l lowed .)
const vector<vector<int> > & m = getVecMap (de l ta −1) ;

// ac tua l mapping
for (vector<sparseLst >: : c on s t_ i t e r a t o r syzV = oldBd . begin () ;

syzV != oldBd . end () ; ++syzV) {
// f o r each syzygy vec to r in oldBd = B_(Delta−1)
for (unsigned int xPos = 0 ; xPos < xs . s i z e () ; ++xPos) {

// f o r each x_i
bool allowedMap = true ;
spa r s eLs t mappedVec (vecS i z e) ;
for (map<unsigned int , ex >: : c on s t_ i t e r a t o r e l = (∗ syzV) .

elemsBegin () ; e l != (∗ syzV) . elemsEnd () ; ++e l) {
// f o r each element (∗ e l) = (index , va lue) o f syzV
i f (m[(∗ e l) . f i r s t] [xPos] < 0) {//map not a l lowed

allowedMap = fa l se ;
break ;

}
else {

mappedVec . s e t (m[(∗ e l) . f i r s t] [xPos] , (∗ e l) . second) ;
}

}// e l
i f (allowedMap) {

//add mapped syzygy vec to r to B_Delta
bd . push_back (mappedVec) ;

}
}//xPos

}//syzV
}
� �

5 IMPLEMENTATION: SPADES 38

The vectors resulting from subroutine 1 are always sparser than the original vectors, since
they have the same amount of non-zero elements but a greater size. Nevertheless, they
are not necessarily linearly independent. In fact, if a syzygy vector was found at degree
∆ and inserted into B∆, a linear dependence is guaranteed for all B∆′ with ∆′ ≥ ∆ + 2,
since all vectors are always mapped to the next degree using “multiplication” with all xi.
This means that for degrees that differ by at least 2, there are different orders of applying
the xi in which vectors might be mapped up with the same end result, all of which will be
realised. To avoid this would not be straightforward, since the intermediate matrix B∆+1
is transformed to a row echelon form (or a similar form, see below) by linear combinations
of its rows, making a simple identification of which vector has already been mapped up
using which xi impossible. However, it might be worth investigating in the future whether
a more sophisticated approach to the mapping in subroutine 1 will lead to less redundant
vectors in B∆′ .

Schabinger in his algorithm introduced a step where the matrix B∆ is brought into row
echelon form after subroutine 1 to remove redundant rows as well as find the pivot columns,
so that the corresponding positions could be set to zero while searching new syzygy vectors
at degree ∆. It turns out that this constraint is too strict for the task one is trying to
accomplish, since it requires finding the pivot columns from left to right, always choosing
the leftmost column possible. To remove the degrees of freedom in subroutine 2 that
would lead to the syzygy vectors that are already in B∆ being found anew, it is sufficient
to find any possible set of pivot columns, not necessarily the leftmost, and in an arbitrary
order. This freedom of choice and the sparseness of the B∆ can be used to replace the
row echelon form step in Schabinger’s algorithm with a faster algorithm for finding a set
of pivot columns and removing redundant rows. In SPADES this is implemented in the
method lSolveSparse.

In principle, lSolveSparse is just a Gauss algorithm, but with a considerable overhead of
operations to determine an optimised order of cancelling elements. I have found that the
runtime of the algorithm for the matrices one considers is extremely sensitive to this choice
of order, which for larger matrices can make a difference of several orders of magnitude.
This is due to the fact that unfortunate choices can result in very large fractions (with both
numerator and denominator of e.g. O(1050)) for the elements of the matrix in intermediate
steps. It is therefore worthwhile to invest a considerable amount of computation time into
avoiding such lengthy expressions. The best order I have found, which is implemented in
lSolveSparse, is:

1. Choose as pivot column the column with the least number (but > 0) of entries in
unfinished rows. If there is more than one, pick the leftmost.

2. Choose as pivot element in the pivot column the one in the unfinished row with the
least number of entries. If there is more than one, pick the first.

3. Divide the row of the pivot element by the pivot element and mark the row as
finished.

4. Remove all entries in the pivot column from unfinished rows by subtracting from the
rows the row of the pivot element with an appropriate factor.

5. If there are any non-trivial unfinished rows left, go back to step 1, otherwise finish.

5 IMPLEMENTATION: SPADES 39

Steps 1 and 2 can possibly be further improved by not simply picking the leftmost column
and first row with the least number of entries respectively, but applying additional analysis
of the columns and rows in question. While it is easy to keep track of the number of
elements in a row, as they are all saved in one sparseLst, accessing the same information
for the columns requires more work. lSolveSparse keeps track of this with an auxiliary
list for each column, which holds the indices of the rows with non-zero elements at that
position and is updated whenever rows are subtracted from each other. Table 5.1 shows
some runtimes for lSolveSparse as well Redrowech, which is the Fermat command for the
row echelon form of a sparse matrix. Runtimes for the latter also include the time needed
to transfer the matrix to and back from the Fermat-executable, but this is negligible
compared to the overall time for the calculation. It is obvious from these results that the
order of cancellations and the choice of pivot columns have a great effect on the runtime
of the problem and I believe it might be possible that an even more sophisticated order
may yield an improvement of another order of magnitude. Due to the time constraints of
a master’s thesis, I was unable to investigate this further, but for the calculations up to 5
loops discussed in section 6 the above described lSolveSparse was sufficiently fast.

n ∆ Rows Columns
Linearly

indep. rows
Non-zero
elements

lSolve-
Sparse

[sec]

Fermat:
Redrowech

[sec]
3 2 63 364 59 639 2.8% < 0.01 0.01
3 2 42 364 42 842 5.5% < 0.01 0.06
4 3 5.5 · 103 6.9 · 103 3.2 · 103 1.8 · 104 0.046% 0.03 0.5
3 3 539 1.1 · 103 324 5.9 · 103 1.0% 0.02 0.98
3 3 301 1.2 · 103 217 4.8 · 103 1.9% 0.03 3.5
4 2 594 1.5 · 103 523 7.6 · 103 0.88% 0.02 12
4 3 4.4 · 103 5.7 · 103 2.2 · 103 4.3 · 104 0.17% 0.11 624
4 3 5.8 · 103 6.0 · 103 2.8 · 103 6.6 · 104 0.19% 0.23 4905
5 3 2.5 · 104 2.2 · 104 1.1 · 104 3.3 · 105 0.059% 1.4 -
5 3 3.4 · 103 2.9 · 104 2.1 · 103 3.9 · 105 0.41% 3.5 -
4 4 6.7 · 103 2.7 · 104 3.5 · 103 1.5 · 106 0.83% 202 -
5 4 2.7 · 104 1.4 · 105 1.4 · 104 8.9 · 106 0.23% 1034 -

Table 5.1: Comparison of runtimes for lSolveSparse and the Redrowech command of
Fermat. The matrices are taken from actual calculations that will be discussed
in section 6.

The method lSolveSparse also allows the option to perform what in a standard Gauss
elimination would be the elimination of the upper right triangle. If the option is chosen,
the pivot elements are considered in reverse order of their selection and all other remaining
non-zero elements in the respective pivot column are eliminated using the row of the pivot
element. For the B∆ this is not required, but I have found that a partial elimination
can benefit the runtime of later steps in the algorithm, if it decreases the total number of
non-zero elements in the matrix. All such elimination steps for the “upper right triangle”
are therefore considered for all B∆ with ∆ � ∆max, but only applied if they decrease the
number of elements in the target line.

5 IMPLEMENTATION: SPADES 40

Subroutine 2 also makes use of the algorithm in lSolveSparse to find a basis of the
nullspace of the matrix Q, but with a maximal elimination of the “upper right triangle”.
All columns which were not chosen as pivot columns are then considered so-called pa-
rameter columns. The corresponding elements in the syzygy vectors y will be used as a
parametrisation of the nullspace. The basis for the nullspace is then chosen as the canoni-
cal basis in these parameters with the elements corresponding to the pivot columns defined
by the rows of the respective pivot elements. It follows then that in the set of solutions
for each parameter position there is exactly one syzygy vector with a non-zero entry at
that position, while for each pivot position there are as many such syzygy vectors as there
are entries in parameter columns in the row of the corresponding pivot element. If the
symmetry or zero integral extensions are activated, this distribution can make a significant
difference, since as seen in section 4.3 syzygy vectors with entries at extension positions
may generally not be mapped up to higher degrees in subroutine 1 by multiplication with
some of the xi. It is therefore sensible to minimise the number of syzygy vectors with
non-zero entries at these positions. This can be achieved by limiting the choice of pivot
columns to the non-extension positions. Experience shows that the performance loss due
to this constraint is small, since there are usually far more non-extension positions in the
syzygy vectors than extension ones.

Most of the work and time in Schabinger’s algorithm go into the application of lSolve-
Sparse to the B∆ and Q. Which of the two takes up more time depends entirely on the
integral in question. If many syzygies are found at low degrees, the B∆ will generally be
larger, which in turn leads to more pivot columns and thus more positions of the syzygy
vectors in subroutine 2 set to zero and as a consequence an easier matrix Q. In some cases
the B∆ therefore require up to 90% of the time needed for the whole algorithm, while
in others syzygies are found at higher degrees and subroutine 2 becomes the bottleneck.
This behaviour makes it difficult to predict the runtime of the algorithm for a given
integral. Further details about runtimes will be given in section 6.3. To prevent the
program from having to spend the time on finding the syzygies every time one starts the
Laporta algorithm part (e.g. with different sets of seed integrals), SPADES also contains
an export/import function for the syzygies. Additionally, if the xi are chosen as the Di,
it is convenient to skip subroutine 3 entirely and generate the relations between integrals
directly from the syzygy vectors y.

5 IMPLEMENTATION: SPADES 41

5.2 Finding difference equations

After the syzygies have been found, the next step is to determine the seed integrals they
will be applied to in order to generate the system of equations. In the following I will
assume that one is looking for a difference equation in propagator position x for a master
integral

J = I(a(J)
1 , . . . , a(J)

m), (5.2)

where

a
(J)
i > 0 for i ∈ PJ ⊆ {1, . . . ,m},

a
(J)
i = 0 for i ∈ P̄J ≡ {1, . . . ,m} \ PJ ,
x ∈ PJ ,
tJ = |PJ |.

(5.3)

It is useful at this point to make some changes to the way integrals are described in section
2, to account for the fact that there will always be one symbolic exponent. Instead of using
the sum r of all positive exponents I will define r′ as the sum of all positive exponents
except the symbolic one. Assuming that a(J)

x has already been replaced with z in J one
therefore obtains

r′J =
∑
i 6=x

a
(J)
i . (5.4)

I will further introduce the parameter σ of an integral I({ai}) as

σ =
{
s =

∑
i∈P̄J |ai| , if ai = a

(J)
i ∀i ∈ PJ

0 , otherwise,
(5.5)

which will be needed later on. The set of seed integrals that is used in SPADES can then
be written asI(a1, . . . , ax = z, . . . , am)

∣∣∣∣∣∣ai = a
(J)
i ∀i ∈ PJ \ {x}, ai ≤ 0 ∀i ∈ P̄J ,

∑
i∈P̄J

|ai| ≤ smax

 ,
(5.6)

where the maximum sum of negative exponents smax has to be chosen by the user. One
could in principle also consider seed integrals with a shifted symbolic exponent z+ δz, but
the same effect will be achieved later on by shifting z in the Laporta algorithm. There
are no seed integrals with r′ < r′J , since r′ is never raised by applying the syzygies and
most (ideally all) integrals with r′ < r′J that would result from such seeds are assumed to
already have been solved in previous calculations. In this context, I refer to an integral I
in sector ID as solved, if an equation is known which expresses I only in terms of integrals
which differ only in the symbolic exponent from the master integrals of sector ID and
the equivalent integrals of subsectors of ID. The term unsolved integrals will then be
used for integrals for which no such relation is known. During the Laporta algorithm the

5 IMPLEMENTATION: SPADES 42

program tries to solve as many integrals with r′ = r′J and s > 0 as possible to export
them for later use in calculations for sectors which have the current sector as a subsector.
Should any unsolved integrals with r′ < r′J remain in the system of equations, SPADES
attempts to solve and export them as well, but they are only considered a side-product of
the calculation.

For efficiency reasons the syzygies are not applied to all seed integrals individually, but
only to one generalised seed integral with symbolic ai for i ∈ P̄J . The resulting equations
are blueprints for the whole system of equations, which is then generated by substituting
all allowed values for the remaining ai. If the symmetry extension was enabled when
finding the syzygies, one has to take into account that some of the syzygies with non-zero
elements in the symmetry positions have the restriction that certain ai in the seed integrals
have to be zero, for reasons explained in section 4.3. It should be noted that for very large
systems of equations generating the whole system before starting the Laporta algorithm
might cause the memory requirements of the program to exceed acceptable limits. For all
calculations considered in this thesis (fully massive vacuum integrals up to 5-loop), this
was not a problem.

After the system of equations is generated, it is first checked whether any of the occurring
integrals are in trivial or non-trivial zero-sectors and can thus be removed from the sys-
tem. To minimise the number of the remaining integrals, the sector shifts and symmetries
described in section 2.3 are used to bring the integrals into a canonical form. In SPADES
this means that for each topology the sector with the highest possible ID is chosen and
within this sector the program tries to shift the symbolic exponent as far to the left (mean-
ing a lower propagator position) as possible. After that the highest numeric exponent(s)
is/are shifted to the leftmost possible position(s), then the second highest and so forth.
A database is created to avoid bringing an integral into canonical form twice. The exact
procedure to canonicalise an integral I is then given by:

1. Check whether the canonical expression of I is already known. If so, return that
expression, otherwise proceed with step 2.

2. Check whether I can be mapped by a sector shift to a sector with a higher ID than
the current one. If this is not the case, proceed with step 3. Otherwise perform
the shift to the sector with the highest possible ID. In the case that I contained
negative exponents, the result may be a sum of integrals. Bring all of those integrals
into canonical form first. Sum up coefficients of identical integrals in the resulting
expression, if necessary. Return the result and save it as the canonical form of I.

3. Consider the set of all possible symmetry transformations for this sector including
the identity transformation. Remove all transformations from the set except the
ones that shift the symbolic exponent to the leftmost possible position. If more than
one transformation is left in the set, build the weight vector for each of those trans-
formations. This is a vector of integers with the same number of elements as the set
of propagators, which is constructed as follows:
Start with each element of the weight vector initialised to zero. Add each positive
numeric exponent ai to the position it is shifted to by the symmetry transformation.
The propagators with negative exponents are in general shifted to a linear combina-
tion of propagators. From the propagator positions in that linear combination pick

5 IMPLEMENTATION: SPADES 43

the lowest possible position which is not occupied by a positive exponent in I and
add the negative exponent to that position in the weight vector. Repeat this for all
negative exponents in ai.
A weight vector A is considered greater than a weight vector B, if Av > Bv, where
v is the lowest position in which the two vectors differ. From the set of remaining
transformations then remove all but those with the greatest occurring weight vector.
If the identity transformation still remains in that set at this point, continue with
step 4. Otherwise, apply any one of the symmetry transformations remaining in the
set, as they will all result in the same expression once the result is fully canonicalised.
As in step 2, the result may be a sum of integrals and needs to be canonicalised first,
then saved as the canonical result of I and returned.

4. The integral I is already in canonical form. Add this information to the database
and return I.

The above procedure alone would still result in unnecessary work, since two integrals that
only differ in the symbolic exponent (at the same position), e.g. z and z − 1, would be
canonicalised independently in exactly the same way. This is prevented by shifting the
symbolic exponent to just z before the canonicalisation of an integral and applying the
reverse shift to the result.

For the Laporta algorithm one needs an ordering prescription for the difficulty of integrals
as discussed in section 3.2. In SPADES I have implemented the following: Of two non-
identical integrals I1 and I2, define as more difficult

• the one with the greater number t of positive exponents. If t1 = t2,

• the one with the greater sum r′ of positive numeric exponents. If r′1 = r′2,

• the one with the greater sum s of absolute values of negative exponents. If s1 = s2,

• the one with the greatest individual numeric exponent. If max(a(1)
i) = max(a(2)

i),

• the one with the lowest individual exponent. If min(a(1)
i) = min(a(2)

i),

• the one with the greater position x of the symbolic exponent. If x1 = x2,

• the one with greater exponent at the lowest (leftmost) position where the numeric
exponents differ. If the numeric exponents are identical at each position,

• the one with the greater symbolic exponent.

This ordering prescription is however not applied to the set of all integrals. I will classify
integrals into the following five types, which the prescription is then applied to individually:

• Type I: Integrals with r′ = r′J and s > 0.

• Type II: Unsolved integrals with r′ < r′J and s > 0.

• Type III: Integrals with r′ = r′J and s = 0.

• Type IV: Solved integrals with r′ < r′J and s > 0.

• Type V: Integrals with r′ < r′J and s = 0.

5 IMPLEMENTATION: SPADES 44

Types I and II are the integrals that one needs to eliminate from an equation for it to
become a difference equation, while type III needs to remain for it to be a difference
equation for J . Type V integrals build the right side of Eq. (3.1) and integrals of type
IV can be expressed as integrals of type V using results from previous calculations. This
substitution of the integrals of type IV can optionally be done either before or after the
Laporta algorithm. I have found that especially for sectors with many subsectors the
expressions via linear combinations of integrals of type V can be rather large and one may
be better of waiting with the substitutions until after the Laporta algorithm.

For each type, the program orders all integrals that may occur in the calculation using the
ordering prescription. This enables one to write all possible equations as rows of a matrix,
where each column represents one integral, sorted from left to right by type first and then
in order of decreasing difficulty. The matrix representation is chosen because it replaces
the integral objects in the equations with the much simpler integer indices. A further
simplification is the substitution of the mass scale m2 with 1 in the coefficients. This
is possible because the mass dimensions of the coefficients can be completely recovered
from the mass dimensions of the integrals and it reduces the number of variables in the
coefficients by one. The remaining variables in the case of the integrals considered in this
thesis are then only z and d. If the integrals would contain external momenta or more than
one mass scale, the coefficients would also depend on the ratios χi. For efficiency reasons,
the coefficients are saved from this point on only as strings, since all the polynomial
algebra in the Laporta algorithm is handled by the external program Fermat [44]. The
communication with Fermat is adapted from the one found in the source code of Reduze 2
[4] (c© 2012, A. von Manteuffel, C. Studerus). A pipe to a Fermat executable is established
before the Laporta algorithm starts and single expressions are sent to this pipe as a string.
Fermat then simplifies the terms, brings them into a canonical form and writes the results
to the pipe, from which they are read again by SPADES as strings. A row of a matrix is
then stored using a class similar to sparseLst with std::string instead of GiNaC::ex as
the basic object for expressions. The matrix for the whole system of equations is actually
stored internally as five separate matrices, one for each type, for reasons discussed below.

While each equation in the Laporta algorithm will be stored in the same rows of the five
matrices throughout the calculation, equations will be grouped into five pools and may be
in more than one pool at a time. All equations start out in Pool A, which contains the
equations which have not yet been used. Pool B will hold the equations that are currently
under consideration, while Pool C is a temporary pool which contains equations that will
be shifted via z → z + 1. Pool D holds all equations that have been solved for the most
difficult integral with s > 0, while Pool E stores all difference equations found.

The user can define two additional parameters that will be used in the Laporta algorithm,
δzmax and σmin, with default values 0 and −1 respectively. δzmax is the maximum number
of times an equation can be subjected to the shift z → z + 1. The resulting equations can
generate additional information. While they could also be obtained by allowing z-shifts
for the seed integrals, it is more efficient to apply the shifts within the Laporta algorithm
only to equations that have turned out to not be redundant. The second parameter σmin
governs the amount of equations in the system that are evaluated by the program. By
default the Laporta algorithm starts with all equations where σ = 0 and works its way up
to higher values of σ, until a difference equation is found, at which point the algorithm

5 IMPLEMENTATION: SPADES 45

terminates. If σmin is set to be non-negative, the program is forced to evaluate all equations
with σ ≤ σmin, even though a difference equation may have been found earlier than that.
This can be useful, since in some cases the order R of the first difference equation to be
found is not the minimal order that can be achieved with the information in the system
of equations. The parameter σ of an equation is to be understood as the maximum value
occurring for the σ of the integrals in the equation. Similarly, the difficulty of an equation
is defined as the difficulty of the most difficult integral it contains. As one last definition,
|A|, |B|, etc. will refer to the number of integrals in the respective pool. With this setup,
the variation of the Laporta algorithm used in SPADES can be illustrated in the flow
chart of Fig. 5.1.

The elimination steps described in Fig. 5.1 are not initially executed for all five integral
types, which is one of the reasons for splitting the system of equations into separate matri-
ces. They are executed only for types I-III to begin with, while all steps taken are recorded
in the order of execution. This includes cancellations by subtracting rows, dividing rows
by coefficients and applying z-shifts. After the Laporta algorithm has finished, the pro-
gram first uses all difference equations in Pool E to construct the difference equation with
the lowest possible order R, while still recording all steps. This equation as well as all
equations from Pool D that one wants to export as equations for solved integrals (in the
sense explained above) are then entered into a set W . For the integral types IV and V the
program then only executes those steps from the record that directly or indirectly affect
the final versions of the equations in W , while all other steps are discarded. This means
that for equations from which all integrals of types I-III can be eliminated, or which are in
any other way unneeded, the coefficients of types IV and V are never even touched. This
saves a lot of time, especially for sectors with many subsectors, in which case the integrals
of types IV and V can easily far outnumber those of the other types.

After all types of integrals have caught up with the necessary steps, the integrals of type
IV are substituted with the respective linear combinations of integrals of type V, if this
has not already been done before the Laporta algorithm. In the difference equation z is
shifted such that the lowest symbolic exponent in Eq. (3.1) is just z to have a standardised
way of expressing a difference equation. The right hand side of the equation also requires
further work to be standardised. The symbolic exponents of all subsector integrals of type
V on that side can be shifted into the range [z, z+Ri] using the difference equations of the
respective subsectors with orders Ri. All equations for solved integrals in pool D that one
wants to export for use in later calculations are shifted such that the symbolic exponent
is simply z with no offset. The right hand sides of these equations are then standardised
in the same way as that of the difference equation. Note that it is sufficient to only export
one equation for a set of solved integrals which only differ in the symbolic exponent, thus
saving further steps in the calculation for integral types IV and V, since only one of the
equations is entered into the set W .

Experience shows that if the master integral J comes from a sector with many subsectors,
the steps after the Laporta algorithm, namely executing the recorded steps for the last
two types of integrals and bringing the equations into a standardised form, can take up
much more time than the actual Laporta algorithm itself. If one is only interested in
the information whether the generated system of equations contains a difference equation
and its order, but not the complete difference equation, SPADES offers some options that

5 IMPLEMENTATION: SPADES 46

|B| > 0 ?

Start
σtop = δz = 0.
Transfer all
eqns. with
σ = 0 from
A to B.

Pick and
remove the
simplest

eq. from B.
Cancel from
it all pivot

integrals in D.

Does the
eq. contain
any integrals
with r = rJ?

Do any
unsolved

integrals with
s > 0 remain
in the eq.?

Add the eq.
to C and E.
σtop > σmin?

Divide the
eq. by the
coefficient
of its most
difficult

integral Ipiv.

Use the eq. to
eliminate Ipiv
from all equa-
tions in D.

Add the
equation to C
and D with
Ipiv as the

pivot integral.

δz < δzmax?

Set δz=δz+1.
Copy eqns.
in C. Shift
z → z + 1 in
new eqns. and
insert them in
B. Empty C.

σtop = σmin
and |E| > 0?

Set δz = 0.
|A| > 0?

Set σtop =
σtop + 1.

Transfer all
equations
in A with

σ = σtop to B.

End
No difference
equation
found.

End
Difference
equation(s)

found.

yes

no

yesno

yes

no

yes

no

yes

no

yesno

yes

no

Figure 5.1: Flow chart of the variation of the Laporta algorithm in SPADES . σtop signifies
the σ parameter the equations currently in Pool B started out with, while δz
marks how many times those equations have undergone the shift z → z + 1.

5 IMPLEMENTATION: SPADES 47

speed up the process.

The user can choose to ignore the right hand side of Eq. (3.1) and only generate the left
hand side of the difference equation. In this case, all integrals of types II, IV and V are set
to zero right after the equations have been generated. For the Laporta algorithm this only
makes a difference, if there are unsolved integrals from subsectors (type II), but almost all
steps after the Laporta algorithm are omitted. To speed things up further, the user can
choose to replace the space-time dimension d with a numeric value. This greatly simplifies
the polynomial algebra and thus shortens the runtime considerably, but may also lead to
incorrect results, if a coefficient should vanish only for that specific choice of d.

Substituting a number for d can however also help improve the runtime for exact calcula-
tions including subsectors. Since all steps of the Laporta algorithm are recorded anyway,
SPADES can run it once with d as a number and identify the exact set of equations needed
to generate the difference equation. A second Laporta algorithm is then started for just
those equations. In this way only the minimal amount of steps necessary with the given
system of equations is executed for a general d. For many of the more difficult systems of
equations at the 5-loop level this approach has proven to be faster than only running the
Laporta algorithm once with a symbolic d.

6 APPLICATION TO MASSIVE VACUUM INTEGRALS 48

6 Application to massive vacuum integrals

I have applied the ideas of section 4 and the program described in section 5 to the master
integrals of fully massive vacuum integrals with a single mass scale up to the 5-loop level.
The (partial) difference equations found have been compared with those J. Möller derived
in his dissertation [12] where the latter were available. In this section, I will discuss these
results along with intermediate results such as number or distribution of syzygies, the
impacts of the user-defined parameters, runtimes and memory requirements as well as the
limitations of the current implementation in SPADES .

6.1 Topologies and master integrals

There are many possible choices one can make for the auxiliary topologies and bases of
master integrals. For this thesis, I will adopt the choices J. Möller made in his dissertation
[12] to simplify the process of comparing results. All propagators Di of the auxiliary
topologies A1,. . . , A5 will be of the form Di = d2

i + m2 using a single mass scale, where
the di are given in table 6.1.

A1 A2 A3 A4 A5
1 k1 k1 k1 k1 k1
2 k2 k2 k2 k2
3 k1 − k2 k3 k3 k3
4 k1 − k2 k4 k4
5 k1 − k3 k1 − k4 k5
6 k2 − k3 k2 − k4 k1 − k3
7 k3 − k4 k1 − k4
8 k1 − k2 k1 − k5
9 k1 − k3 k2 − k3

10 k1 − k2 − k3 k2 − k4
11 k2 − k5
12 k3 − k5
13 k4 − k5
14 k1 + k2 − k4
15 k3 − k4

Table 6.1: Choices for the momenta of the of the auxiliary topologies An for n = 1, . . . , 5
loops. Displayed are the di in Di = d2

i +m2.

Since the auxiliary topology for n loops consists of n(n+1)
2 propagators which can have

either positive or non-positive exponents, the auxiliary topologies A1,. . . ,A5 give rise to 2,
8, 64, 1024 and 32768 sectors in total, respectively. As described in section 2, they can be
grouped into zero sectors, antisectors and physical sectors, of which only the latter need to
be considered for difference equations. The number of physical sectors is typically greater
than the number of topologies, which is why I will choose only one sector per topology as
a representative and map all other sectors in the same topology to its representative using
sector shifts. The diagrams corresponding to the topologies are listed in Figures A.1 and

6 APPLICATION TO MASSIVE VACUUM INTEGRALS 49

A.2. Table 6.2 gives an overview of the numbers of topologies and different types of sectors.
The lists of representative sectors for the topologies can be found in Tables A.1 and A.2
for 1-4 loops and 5 loops respectively. Included there are also the numbers of sectors in
the topologies and possible sector symmetry transformations for the representatives.

Loops Topologies
Physical
sectors

Trivial
zero sectors

Non-trivial
zero sectors

Trivial
antisectors

Non-trivial
antisectors

1 1 1 1 0 0 0
2 2 4 4 0 0 0
3 5 38 22 4 0 0
4 16 680 176 105 1 62
5 67 22051 1941 3625 121 5030

Table 6.2: Numbers of topologies and different types of sectors for the auxiliary topologies
A1,. . . ,A5.

Starting at the 2-loop level, one encounters so-called factorised topologies, whose corre-
sponding graphs consist of two or more disconnected graphs with fewer loops. Integrals
without negative exponents from these topologies factorise into a product of integrals with
fewer loops ni, where

∑
i ni = n. The difference equations for the factorised integrals will

thus have the same forms as the equivalent ones found at lower loop levels for the individual
factors. The numbers of topologies given above are composed of

• 1-loop: 1 = 1 non-factorised topology + 0 factorised topologies

• 2-loop: 2 = 1 non-factorised topology + 1 factorised topology (1-loop squared)
≡ 1{2}+ 1{12}

• 3-loop: 5 = 3{3}+ 1{13}+ 1{1 · 2}

• 4-loop: 16 = 10{4}+ 1{14}+ 1{12 · 2}+ 1{22}+ 3{1 · 3}

• 5-loop: 67 = 48{5}+ 1{15}+ 1{13 · 2}+ 1{1 · 22}+ 3{12 · 3}+ 3{2 · 3}+ 10{1 · 4}

In principle, it would be sufficient to generate via the Laporta algorithm difference equa-
tions only for master integrals of the (1 + 1 + 3 + 10 + 48) non-factorised topologies
and extrapolate from them all remaining ones. I will however also include the difference
equations for factorised topologies in the calculation, as this provides a simple means of
cross-checking some of the results. There are a total of 1, 2, 5, 19 and 131 master integrals
at 1-5 loops respectively [12], which are listed in Tables A.3, A.4 and A.5.

For 1-3 loops there is exactly one master integral per topology, which is the integral with
ai = 1 for all positive exponents of the representative sector of that topology and ai = 0
elsewhere. In the following, I will refer to such integrals as binary integrals. At 4 loops,
one also has one binary master integral for each topology, but 3 of the topologies (with
representative sectors 841, 1009 and 1011) additionally require one master integral each
with one exponent greater than 1. In general, different master integrals will have different
difference equations, however, if two master integrals differ only in one exponent (>0), the
two difference equations for that propagator position will be identical, since the different
exponents will be replaced by the same symbolic exponent z. In practice, this means
that after calculating the difference equations for all binary master integrals, one already

6 APPLICATION TO MASSIVE VACUUM INTEGRALS 50

has one (but not necessarily all) difference equation for each integral with at most one
exponent greater than one. Since one difference equation is sufficient to evaluate the
master integral numerically via factorial series, I will not generate the difference equations
for the remaining positions x for those integrals. At 5 loops one has a total of 131 master
integrals [12], 67 of which are binary and 64 master integrals with at least one ai > 1. Of
these 64, 50 only contain one exponent ai > 1 and are therefore covered by the difference
equations of the binary master integrals, but the remaining 14 differ in two exponents
from the respective binary integrals. There are two possible ways of dealing with these
integrals, the more obvious of which is simply generating the difference equations for them
in addition to those of the binary master integrals. J. Möller pointed out [12] that it is
also possible to instead choose a slightly larger master integral basis3, in which these 14
integrals are replaced by 16 additional integrals, which contain only one exponent greater
than one. In this way it is possible to cover the complete set of master integrals with only
the difference equations of the 67 binary master integrals. In the following, I will therefore
only consider the difference equations for the 1, 2, 5, 16 and 67 binary master integrals.

It was already mentioned in section 3 that for a given master integral the difference equa-
tions for the different propagator positions x are not all independent, since the sector
symmetries may allow shifting the symbolic exponent from x to different positions. The
difference equations for all positions that are connected in this way will have the same
form and therefore I will only consider the one for the leftmost (lowest) position of each
such set of positions. As a consequence the number of difference equations per master
integral depends not only on the number of propagators t, but also on the number of
sector symmetry transformations. The total numbers of independent difference equations
for the binary master integrals are 1, 2, 7, 33 and 234 for 1-5 loops respectively.

3Strictly speaking the set of master integrals is at this point no longer a basis, since its elements are
linearly dependent.

6 APPLICATION TO MASSIVE VACUUM INTEGRALS 51

6.2 Results

The difference equations for fully massive vacuum integrals with a single mass scale up
to 4 loops are already known in the literature (see e.g. [34] or [12]). Since I have written
SPADES specifically for this thesis and it thus is completely untested otherwise, repro-
ducing these results and cross-checking them with the literature is an important first test
of the code’s functionality. I have therefore implemented an automated comparison of
the generated difference equations with those found by J. Möller [12], who used a very
different approach based on Tarasov’s space-time dimensional relations and a completely
independent program for obtaining the equations. All 1+2+7+33 difference equations up
to 4 loops were generated successfully and the results are in perfect agreement with those
of J. Möller. The orders R of the equations are summarised in Table 6.3. One can see
from the table that the simple 1-loop difference equation with order R = 1 derived in
Eq. (3.3) seems to be an exception, as all other difference equations with order 1 occur
only for factorised topologies where the 1-loop case is one of the factors. At 2 and 3 loops
the maximum order is 2, while at 4 loops, R goes as high as 5 for the difference equation
993#1 (where the notation is [Sector ID]#[Position x]).

1-loop
t ID Position x Order R
1 1 1 1 1

2-loop
t ID Position x Order R
1 2 6* 1 1
2 3 7 1 2

3-loop
t ID Position x Order R
1 3 56* 1 1
2 4 60* 1,3 2,1
3 4 51 1 2
4 5 62 1,2 2,2
5 6 63 1 2

4-loop
t ID Position x Order R
1 4 960* 1 1
2 5 992* 1,2 2,1
3 5 961* 1,4 2,1
4 5 841 1 4
5 6 1008* 1,3,4 2,1,2
6 6 993 1,2,4 5,2,2
7 6 978* 1 2
8 6 952 1 2
9 7 1016 1,4 2,2
10 7 1012* 1,3 2,1
11 7 1010 1,2,5 2,2,2
12 7 1009 1,3,4 3,3,3
13 8 1020 1,3,4,8 2,2,3,2
14 8 1011 1,3 4,3
15 9 1022 1,2 3,2
16 9 511 2 3

Table 6.3: Orders R of the difference equations found for 1-4 loops. Sector IDs with a *
denote factorised topologies.

The difference equations at 5 loops were first studied in the dissertation of J. Möller [12].
He generated 117 of the possible 234 difference equations and determined orders of further
61 equations by setting all integrals on the right hand side in Eq. (3.1) to zero. Using
SPADES I was able to, for the first time, determine orders for all 234 difference equations
at 5 loops, which are summarised in Table 6.4. It should be noted that the values in that
table are to be understood as upper limits for the orders R, as it is possible that difference
equations with lower orders will show up, if one chooses larger systems of equations. At

6 APPLICATION TO MASSIVE VACUUM INTEGRALS 52

the time of writing this, 57 difference equations have been fully determined including
subsectors, 8 of which were previously unknown. These numbers could be higher if not
for two limiting factors which will be discussed in section 6.3. Due to those same limiting
factors, 4 of the 57 equations where the right hand side was determined have a higher
order than obtained in the case where subsectors were set to zero. For the remaining
177 equations, the left hand sides of Eq. (3.1) have been generated, with the exception
of 3 difference equations (30239#3, 30526#1, 30526#7). So far, SPADES was only able
to determine the order of these equations by replacing the space-time dimension d with
integer numbers. In each case, the calculation was repeated with several different numeric
choices (11, 12, 13, 1987) for d, with difference equations of the same order emerging at
the same points in the calculations. It is therefore reasonable to assume that these orders
are not merely the result of some coefficient(s) vanishing by coincidence for a numeric d.

All results I obtained for the 117 difference equations J. Möller determined fully have been
cross-checked with the latter and are in perfect agreement with the exception of difference
equation 30858#1. For this equation he states an order R = 5, while SPADES generated
an equation of order 4. The equations have been checked to be compatible in the sense
that the lower order equation reduces the higher order one to 0 = 0 if used repeatedly to
remove the integral with the greatest symbolic exponent. This difference also affects the
results for difference equations in which the corresponding integrals appear on the right
hand side. Of the additional 61 orders Möller determined I was able to confirm 59. In one
case (30862#1) I found a lower order difference equation than he did (3 instead of 4), while
for equation 32745#3 SPADES only generated a difference equation of order 4, where he
found R = 3. In both cases the equations are compatible. The fact that SPADES was
able to confirm almost all of the orders found suggests that the amount of information lost
due to using the GKK approach instead of the conventional IBP approach is very small.
In fact, it is not clear that any information is lost at all, since it is entirely possible that
SPADES could still find the difference equation of order 3 for 32745#3, if the set of seed
integrals is expanded or a higher value for ∆ is chosen.

In general, the orders of the difference equations at 5 loops are much higher than at lower
loop levels, with the highest value being 20. One can observe a strong correlation between
the order of difference equations and the number of master integrals in a sector. All sectors
with a difference equation of order 8 or higher have at least 2 master integrals, for R ≥ 12
they show a minimum of 5 master integrals.

6 APPLICATION TO MASSIVE VACUUM INTEGRALS 53

t ID Position x Order R
1 5 31744* 1 1
2 6 32256* 1,2 2,1
3 6 31746* 1,3 2,1
4 6 29702* 1,3 4,1
5 6 28686 1 4
6 7 32512* 1,2,3 2,1,2
7 7 32288* 1,5 2,1
8 7 32258* 1,2,3,5 5,2,2,1
9 7 31754* 1,3 2,2,
10 7 30872* 1,4 2,1
11 7 30858 1,2 4,2
12 7 30214 1,2,3 7,4,2
13 7 29703 1,3 7,8(9)
14 8 32640* 1,2,3 2,1,2
15 8 32576* 1,2,5,6 2,2,1,2
16 8 32528* 1,2,3 2,2,2
17 8 32513* 1,2 2,1
18 8 32386 1,2,3 5,2,2
19 8 32274 1,3,4 5,2(4),2(4)
20 8 32266 1,2,3,5,6 5,2(4),2,2,2
21 8 32259* 1,2,3,5 3,3,3,1
22 8 31380 1,2,3,8 7,2,2,2
23 8 31246 1,2,4,6 11,9,8,6
24 8 30876 1 2
25 8 30862 1,2 3,3
26 8 30222 1,2,3 8,7,8
27 9 32704 1,2,3,4,6 2,2,2,2,2
28 9 32648* 1,2,3,4,12 3,1,2,2,2
29 9 32608* 1,5,6 4,1,3
30 9 32592 1,3,4,6 2,2,2,2
31 9 32529* 1,2 2,2
32 9 32518 1,2 2,2
33 9 32394 1,2,3,12 5,2,2,2
34 9 32390 1,2,3,4,5,8,13 7,3,2,3,3,3,3

t ID Position x Order R
35 9 32329 1,3 2,2
36 9 32278 1,2,3,5,14 8,3,2,3,3
37 9 32270 1,2,3,6,12 12,7,11,7,7
38 9 32267 1,2,3,5 3,3,4,2
39 9 31516 1,2,3,6,12 6,6,11,5,5
40 9 31388 1,2,6 3,4,3
41 9 30231 1,13 20, 11
42 10 32736 1,2,3,5,6,9 6,4,4,2,3,3
43 10 32712 1,2,5,6,8 3,2,2,2,2
44 10 32708 1,2,3,4,6,13 3,2,2,2,2,2
45 10 32674 1,2,3,4 3,2,2,2
46 10 32652* 1,2,3 3,1,2
47 10 32596 1,6 11,7
48 10 32562 1,3,4 3,2,2
49 10 32534 1,2,3,4,11,13 6,4,2,4,3,3
50 10 32398 1,2,3,4,5,6 8,3,2,3,6,2
51 10 32391 1,2,3,6 6,4,3,3
52 10 32279 1,3,4,6,13,14 16,11,18,9,9,6
53 10 31420 1,6 3,3
54 10 30563* 1,5 3,1
55 10 30239 1,3,14 19,18*,6
56 10 29550 1,6,12 10,10,7
57 11 32744 1,2,5,6,7,8,10 11,4,2,9,3,2,3
58 11 32737 1,2,3,5,6,9,15 3,2,3,2,2,2,3
59 11 32713 1,2,3,4,7 3,2,2,2,2
60 11 32682 1,2,3 2,2,2
61 11 31736 1,3,4,7 10,3,3,7
62 11 30691 1,2,3,5 6,3,3,2
63 11 30526 1,2,3,6,7 17*,16,11,9,16*
64 12 32745 1,2,3,7,8 3,2,4,2,2
65 12 31740 1 6
66 12 30699 1,2,5 7,3,2
67 12 30527 1,6 18,10

Table 6.4: Orders R of difference equations for 5 loops. Underlined orders signify that the
complete difference equation including subsectors was generated. Orders with
a * have only been determined using a numeric value for d, while sector IDs
with a * denote factorised topologies. The notation R(R′) indicates that a left
hand side of a difference equation with order R is known, but the full difference
equation including subsectors has only been generated with order R′.

6 APPLICATION TO MASSIVE VACUUM INTEGRALS 54

In the following, I will discuss some details of the calculations that lead to the above results.
Since the central point of the approach in this thesis are the syzygies that guarantee that
certain exponents will not be raised, I have collected some numbers of syzygies found at
different loop levels n, numbers of propagators t and degrees ∆ in Table 6.5. The values
found there are taken from the calculation of specific difference equations, but are typical
for calculations with the same parameters n and t.

Loops t
Difference
equation ∆ = 0 ∆ = 1 ∆ = 2 ∆ = 3 ∆ = 4

2 2 6#1 2 3 0 0 0
2 3 7#1 0 6 0 0 0
3 3 56#1 3 12 0 0 0
3 4 51#1 0 18 0 0 0
3 6 63#1 0 3 22 13 0
4 4 960#1 4 30 0 0 0
4 5 841#1 0 40 0 0 0
4 7 1009#1 0 7 83 24 0
4 9 511#2 0 6 1 197 13
5 5 31744#1 5 60 0 0 0
5 6 28686#1 0 75 0 0 0
5 7 29703#3 0 29 230 6 0
5 8 30222#1 0 14 225 135 0
5 9 32390#4 0 11 160 132 29
5 10 29550#1 0 10 43 527 62
5 11 32737#5 0 25 0 138 613
5 12 30527#1 0 10 0 108 1193

Table 6.5: Typical numbers of syzygies for various loop levels, numbers of propagators t
and degrees ∆.

As one can see, the only topologies with syzygies at degree ∆ = 0 are those which factorise
into at least one 1-loop topology. In general, the number of syzygies increases with the
number of loops n and different propagators t. Furthermore, the distribution is shifted
to higher degrees for greater t. This is expected, as more propagators that must not be
raised put more constraints on the syzygies, thus allowing less syzygies to be found at lower
degrees. A general rule of thumb seems to be that the peak of the syzygy distribution
starts at ∆ = 1 for t = n and moves up one degree roughly every two steps of t. If
this trend holds at the 6-loop level, one would expect the syzygy distributions for the
most difficult topologies to peak at ∆ = 5, which would be beyond the current limits of
SPADES as will be discussed in section 6.3. So far calculating syzygies up to the peak
of the distribution was sufficient in each case to generate a difference equation. However,
in some cases including syzygies of higher degrees leads to a difference equation of lower
order. It is thus quite possible that some of the difference equations at 5 loops with very
high R turn out to actually have a lower order and the difference equation of order 3 for
32745#3 is found once ∆ = 5 will be accessible. One last interesting fact to notice from
Table 6.5 is that it is possible to have gaps in the syzygy distribution at degree ∆, with
syzygies found at both ∆ − 1 and ∆ + 1. This shows that it is in general not advisable

6 APPLICATION TO MASSIVE VACUUM INTEGRALS 55

to use the non-existence of syzygies at a given degree as a criterion for terminating the
syzygy finding algorithm prior to the user-defined ∆max.

The inclusion of the extensions to the syzygy algorithm discussed in section 4.3 opens
up possibilities of finding additional syzygies, which at first lead to raised propagators
which are immediately cancelled by symmetry relations or the vanishing of the integral in
dimensional regularisation. As expected, for many degrees ∆ this leads to a higher number
of syzygies being found. However, in all cases where this was studied, the additional
syzygies seem to add no new information to the system of equations. This is a curious
result, as it might suggest that the information of symmetry relations and dimensional
regularisation is somehow already contained in the system of equations without being
entered manually or the extensions being used, even though as shown in section 4 no
reason is known why this should in general be the case for a finite set of seed integrals.
Future investigation will have to determine whether this result is a coincidence, a property
of vacuum diagrams or holds true in general. Even though the extensions do not seem
to provide additional information, they might still be helpful in reducing the amount of
redundant information. In many cases they actually reduce the overall number of syzygies
found. This is due to the fact that the additional syzygies found at say ∆ = 1 are mapped
to the higher degrees via subroutine 1 and may remove degrees of freedom that would have
led to syzygies at that degree. Since every syzygy is mapped with every xi allowed and
can thus remove multiple degrees of freedom, the total number of syzygies can be reduced
in this way. Some examples of this for the symmetry extension as well as cases where the
extension raises the number of syzygies found are listed in Table 6.6.

Difference
equation

Symmetry
extension ∆ = 1 ∆ = 2 ∆ = 3 Sum

30222#1 no 14 225 135 374
30222#1 yes 21 233 105 359
30876#1 no 26 127 73 226
30876#1 yes 52 29 73 154
30858#1 no 20 330 0 350
30858#1 yes 46 108 23 177
28686#1 no 75 0 0 75
28686#1 yes 98 0 0 98
29703#3 no 29 230 6 265
29703#3 yes 47 206 64 317

Table 6.6: Comparison of the numbers of syzygies found for selected 5-loop calculations
with and without the symmetry extension enabled.

An interesting aspect of the results of the Laporta algorithm is the number of equations
that are actually needed to generate the difference equations. Since SPADES already
records the steps of the Laporta algorithm, the number of equations out of the whole
system that were combined to eventually form the difference equation is easily obtained.
Unfortunately, I have no such data available from calculations with conventional IBP ap-
proaches for comparison, but I expect that this number is considerably smaller in SPADES
due the fact that all steps concerning raised exponents are already taken care of in the
syzygy part of the program. For the non-factorisable 5-loop topologies the number of

6 APPLICATION TO MASSIVE VACUUM INTEGRALS 56

equations needed for the difference equation ranges from 10 to 500, with the majority of
topologies between 50 and 250. This does not include equations for integrals of subsectors,
which are assumed to have been generated in previous calculations. However, one usu-
ally wants to generate more than these 10-500 equations to solve as many integrals with
negative exponents as possible for use in calculations where the current sector appears as
a subsector itself. I have found that a parameter smax = 4 for the set of seed integrals
(see Eq. (5.6)) seems to be a good choice at 5 loops, which depending on the topology
and number of syzygies typically generates between 104 and 105 equations in total, of
which 70−95% are completely redundant. Some ideas to reduce the number of redundant
equations are given in section 7.

6.3 Runtimes and limitations

All calculations have been performed on machines with Intel R© Xeon R© X5660 processors
(2.80 GHz, 12 MB Cache) and 48 GB of RAM. SPADES is currently limited to using a
single CPU core. In this section, I will give an overview of runtimes and limitations of
the different parts of the program, starting with the syzygy finding algorithm and then
moving on to the generation of difference equations via Laporta’s algorithm.

The implementation of the syzygy finding algorithm as described in section 5.1 currently
has two bottlenecks, the row reduction of the B∆ performed by the method lSolveSparse
and the generation of the nullspace of the matrix Q in subroutine 2. All other parts of the
algorithm usually account for only a negligible fraction of the overall runtime. Table 6.7
lists some runtimes for these two parts of the algorithm.

Difference ∆ = 2 ∆ = 3 ∆ = 4
Loops t equation B∆ Subr. 2 B∆ Subr. 2 B∆ Subr. 2

4 4 960#1 < 1s < 1s < 1s < 1s < 1s < 1s
4 5 841#1 < 1s < 1s < 1s < 1s < 1s 1.9s
4 7 1009#1 < 1s < 1s 3.1s 2.0s 138s 8.1s
4 9 511#2 < 1s 1.1s < 1s 9.7s 214s 9.9s
5 5 31744#1 < 1s < 1s < 1s 1.7s < 1s 24s
5 6 28686#1 < 1s < 1s < 1s 3.7s 8.3s 39s
5 7 29703#3 < 1s 1.3s 61s 6.2s 6430s 112s
5 8 30222#1 < 1s 1.6s 79s 22s 41300s 447s
5 9 32390#4 < 1s 1.5s 38s 21s 22200s 486s
5 10 29550#1 < 1s 2.4s < 1s 96s 82900s 2250s
5 11 32737#5 < 1s 1.2s < 1s 26s 31s 822s
5 12 30527#1 < 1s 2.8s < 1s 248s 44s 23500s

Table 6.7: Runtimes for lSolveSparse(B∆) and subroutine 2 of the syzygy finding algo-
rithm. The numbers of syzygies found in the calculations are listed in Table
6.5. All runtimes for n ≤ 3 and/or ∆ ≤ 1 are omitted due to being negligibly
small.

As one can see, the runtime is heavily dependent on the number of loops and the degree ∆,
since they determine the size of the matrices B∆ and Q. Runtimes of lSolveSparse with

6 APPLICATION TO MASSIVE VACUUM INTEGRALS 57

typical matrix sizes were already given in Table 5.1. For large matrices the elements in the
intermediate steps of the Gauss algorithms can become very large objects, which consider-
ably slows down the progress. Furthermore, this leads to very high memory requirements
during the calculations, with a single matrix at 5 loops and ∆ = 4 occupying in some cases
as much as 30 GBs of RAM (for a matrix size of approximately 4 · 104 × 1.3 · 105). It is
therefore obvious that ∆ = 5 at 5 loops is not within reach for the current implementation.
Several ideas to improve the algorithm in the future are listed in section 7.

For the Laporta part of SPADES I will divide the runtimes into four pieces. The first
time comprises all preparations for the Laporta algorithm. This includes generating the
blueprint equations from the syzygies, inserting the values for the seed integrals, applying
sector shifts and symmetries to all integrals and sorting their coefficients into the matrix
for the Laporta algorithm. The second time given is the runtime of the Laporta algorithm
for a numeric space-time dimension d. I have chosen d = 12 for all runtimes listed here,
which only on one occasion out of all calculations done at 5 loops resulted in a coefficient
which was 0 for the numeric, but not the general d. The third time refers to the same
Laporta algorithm with a symbolic d, where all equations known to be redundant from the
first Laporta algorithm are omitted from the beginning. The fourth and last value given is
the time for determining the right hand side of the difference equation, which contains all
integrals of subsectors of the current sector. This includes retracing and executing the steps
from the Laporta algorithm for the subsector integrals as well as applying the previously
generated difference equations of those sectors to reduce the number of integrals to a
minimum. Several user-defined parameters which were introduced in section 5.2 can affect
the runtime considerably: smax is the maximum number of negative powers distributed in
the seed integrals, δzmax is the number of times an equation can be shifted by 1 in the
symbolic exponent and σmin is the minimum number of negative powers in the sector of
the master integral up to which equations have to be evaluated by the Laporta algorithm.
Several runtimes for difference equations that have been generated including the subsectors
are listed in Table 6.8.

Difference Prepa- Laporta Laporta Sub-
n t equation smax δzmax σmin # eqns. ration d = 12 symb. d sectors
4 4 960#1 3 3 5 4688 3s 2.0m 9s 0s
4 6 993#1 4 5 4 5821 3.2m 20s 2s 5.2m
4 8 1020#4 3 5 3 1502 1.9m 2s <1s 5s
4 9 511#2 3 5 3 1551 2.2m 3.3m <1s 5.3m
5 5 31744#1 4 4 5 47861 1.8m 23m 18s 0s
5 6 28686#1 4 4 4 36498 30m 3.1m 50s 7.5h
5 7 29703#1 3 4 4 8300 6.6m 3.3m 18.3m 24m
5 7 30858#1 4 4 5 37660 47m 1.2h 2.7h 16h
5 8 32266#1 3 4 4 7528 13m 2.5m 26s 18m
5 8 31380#1 3 4 4 6400 18m 7.4m 3.6m 1.6d
5 8 31246#6 3 4 3 8210 29m 44s 19s 15h

Table 6.8: Several runtimes for the Laporta part of SPADES . s = seconds, m = minutes,
h = hours, d = days.

6 APPLICATION TO MASSIVE VACUUM INTEGRALS 58

From Table 6.8 one can learn several things:

• The runtimes for two topologies with similar parameters and sizes of the system of
equations can be vastly different. This makes it very difficult to predict even the
order of magnitude of the runtime.

• Some of the steps before the Laporta algorithm are still far from being optimised.
This is especially true for the application of the sector symmetries.

• The calculations for the subsectors take up the bulk of the runtime in most cases
where there are any subsectors (t > n). This gets progressively worse for higher
t, since there are more subsectors to consider. The problem could be reduced by
utilising multiple processors as discussed in section 7.

• The Laporta algorithm with a numeric d has the potential to greatly reduce the run-
time of the actual Laporta algorithm one wants to perform by removing redundant
equations. As an example, in the calculation for difference equation 32266#1 the
first Laporta algorithm reduces the size of the system of equations from 7528 to 451
equations. As seen in Table 6.8 the combined runtime of both Laporta algorithms is
approximately 3 minutes. If one skips the first Laporta algorithm and does the full
calculation with a symbolic d, this value increases to 10 minutes.

There are currently two major limitations which prevent the generation of all difference
equations at the 5-loop level. The first is the time it takes to calculate the subsector part of
the equations, which as seen in Table 6.8 grows rapidly with the number of propagators t.
Some suggestions that might reduce that time are given in section 7. The second problem
is the current implementation of the sector symmetries. As described in section 5.2, a
database is created which holds the symmetrised versions of all integrals that appear
in the calculation. If the integral to be symmetrised has any negative exponents, the
corresponding propagators might be shifted to linear combinations of propagators. For
integrals with large s, the symmetrised expression can thus contain a sum of many integrals,
all with potentially large coefficients. Additionally, the number of possible integrals grows
with s. Currently the database is held in the RAM, but already at t = 8 for 5 loops
its memory requirements grow too large, thus limiting the parameter smax which governs
the size of the set of seed integrals. This means that too few equations for integrals
with negative exponents are generated for a given sector ID, which would be needed
to replace these integrals in calculations for sectors that have ID as a subsector. This
problem can however be avoided in the future by switching to an external database, which
would additionally reduce the time for applying the sector symmetries, since integrals from
subsectors would already have been symmetrised in previous calculations. The memory
requirements of the Laporta algorithm itself have not posed a problem so far, since they
remained below 1.5GB in almost all cases.

In Table 6.9 I list several runtimes for the difference equations with t ≥ 9, where I set
all integrals of subsectors to zero. In this way both of the above mentioned problems are
avoided, since the calculation is completely finished after the Laporta algorithm and the
expressions for the symmetrised integrals are much shorter.

Table 6.9 shows even wider gaps between the runtimes for different topologies than Table
6.8. I believe the extremely long runtime for the difference equations with very high

6 APPLICATION TO MASSIVE VACUUM INTEGRALS 59

Difference Prepa- Laporta Laporta
n t equation R smax δzmax σmin # eqns. ration d = 12 symb. d
5 9 32704#1 2 2 4 1 183 6s 1s <1s
5 9 32390#1 7 1 4 3 1344 6.0m 1.6m 17s
5 9 32270#1 12 2 8 4 4984 1.8m 2.9h 8.5h
5 9 30231#1 20 1 20 4 2898 13s 2.0h 31d
5 10 32712#2 2 1 4 1 108 2s <1s <1s
5 10 32279#6 9 1 4 5 1648 57s 54m 47m
5 10 30239#1 19 2 15 5 3240 13s 43m 8.2d
5 11 32737#1 3 2 8 4 1982 7s 11s 1s
5 11 30526#2 16 2 20 5 7054 1.6m 2.0h 13.3d
5 12 31740#1 6 1 5 5 617 35s 56s 23s
5 12 30527#1 18 2 15 5 2568 45s 6.8m 13d

Table 6.9: Several runtimes for the Laporta part of SPADES with subsector integrals set
to zero. s = seconds, m = minutes, h = hours, d = days.

orders to be due to the current implementation of shifts in the symbolic exponent z.
By shifting z by 1, evaluating the new equations, then shifting it again and repeating
this process, in some constellations very large coefficients can appear in the intermediate
steps of the Laporta algorithm. During the calculation of equation 30231#1, the Fermat
executable needed roughly 600MB of memory for a single coefficient, where this value
is normally around 10-50MB. The problem is most apparent for the difference equations
with high orders, since they could only be found using higher values for δzmax. A different
approach to z-shifts that would likely solve this problem is suggested in section 7. The
above mentioned large coefficients caused the corresponding calculations to be the only
ones so far where the matrix of the Laporta algorithm needed more than 1.5GB of RAM.
While the memory requirements would probably be reduced by implementing better z-
shift behaviour, they might still prove to be problematic once the full difference equation
is considered, since e.g. already the left hand side of the difference equation 30231#1
results in a 63MB output file when saved as a string with no compression.

Apart from several specific problems which were identified in this section, the overall
runtimes of SPADES are encouraging. In many cases, the Laporta algorithm at the
5-loop level only takes a few minutes or even seconds, which seems difficult to achieve
without the use of syzygies [12]. Considering that SPADES is not yet optimised in many
regards, I believe a full set of 5-loop difference equations for the massive vacuum integrals
is within reach once the problems listed here are overcome and the performance is boosted
by implementing some of the ideas presented in section 7.

7 POSSIBLE IMPROVEMENTS 60

7 Possible improvements

There are several ideas for improving performance and functionality of SPADES that I was
not able to implement within the time constraints of a master’s thesis, but hope to test
in the future. One of the most obvious improvements, albeit non-trivial to implement,
is the parallelisation of the code. Currently SPADES runs on a single processor, but
many parts of the calculation are well suited to be distributed among multiple processors.
This is especially true for the part which takes up the bulk of computation time for most
difference equations, which is the determination of the right hand side of the equation
after the Laporta algorithm. Since all the necessary steps are already determined and
recorded in the Laporta algorithm, there is absolutely no interdependence between the
manipulations of the coefficients of different integrals at this point, thus making it an ideal
candidate for parallelisation. The prospect is especially appealing because the calculations
which currently take the most time are those with many subsectors involved, which in turn
allows more processors to be used efficiently in parallel due to the higher number of different
integrals.

In the Laporta algorithm itself, I would like to change the way the shifts in the symbolic
exponent z are handled. Currently, as described in section 5.2, a batch of equations is
solved as much as possible via the Laporta algorithm, then the shift z → z + 1 is applied
to the ones that still contain integrals of types I to III and this process is repeated δzmax
times. While many results found with the current implementation rely on that shift, it also
leads to numerous equations which have the same form as the ones they originated from,
only with a shifted z, but are never actually used to cancel integrals from other equations.
Furthermore, as discussed in section 6.3, this can also lead to very large coefficients in the
intermediate steps, thus slowing down the Laporta algorithm. A more elegant solution
would be to group all integrals which only differ in the symbolic exponent together and
only allow one equation in the system to have an integral from that (pivot) group as
its most difficult integral. The equation could then be treated in the same way as a
difference equation, with the order R being the difference between the greatest and the
lowest symbolic exponent in the pivot group of integrals. If a second equation with the same
pivot group should appear, the equation with the lower order has to be repeatedly used
(with the appropriate z-shift) to cancel the integral with the greatest symbolic exponent
from the equation with the higher order, until only one equation with integrals in the pivot
group remains. This implementation would reduce the number of redundant equations in
the system as well as allow for unlimited z-shifts rather then having a maximum δzmax.

In the current implementation SPADES generates the system of equations by applying
the syzygies first to a general seed integral with symbolic exponents ai at all non-positive
positions and only afterwards substituting numeric values for the remaining ai to obtain
the final equations. The intermediate equations containing the symbolic ai can be seen
as the blueprints for the whole system of equations. In principle, it should be possible
to run a smaller, modified version of a Laporta algorithm already on this set of blueprint
equations. A new ordering prescription for the difficulty of the integrals with the symbolic
ai would be needed, which upon substitution of (random) numeric values would have to
resemble the prescription for the final integrals as closely as possible. Furthermore, the
algorithm would have to be restricted to only divide or multiply by terms which are non-

7 POSSIBLE IMPROVEMENTS 61

zero for any numeric choice for the exponents. This restriction would severely limit the
amount of operations a Laporta algorithm could perform. Nevertheless, an attempt might
be worthwhile, since any simplification of one of the blueprint equations translates into
a simplification of many equations in the system upon substituting all distributions of
numeric values for the exponents ai.

One of the limiting factors of the current implementation for finding syzygies is the size
of the matrices B∆ for large ∆, if many syzygies have been found at previous degrees.
Since the B∆ are only needed to determine a set of pivot columns which in turn are used
to prevent finding redundant syzygies, one might try to skip this step where B∆ becomes
too large for efficient calculations. Instead of mapping the full syzygies found at previous
degrees to degree ∆, one could also map only the pivot column positions of B∆−1 to
the new degree. In doing so one risks ending up with less pivot positions at degree ∆
than possible and thus finding redundant syzygies at that degree. While this approach
completely eliminates the need to apply lSolveSparse to B∆, having less pivot positions
would increase the number of elements in the matrix Q and thus the runtime of subroutine
2. This downside as well as the risk of redundant syzygies are good reasons not to abandon
the complete matrices B∆ altogether, but the approach might be used to extend the range
of degrees ∆ SPADES can cover where the B∆ grow too large.

In section 3.1, I portrayed the idea of R.N. Lee [39] to reduce the number of redundant IBPs
by taking advantage of the fact that the IBP operators Oij = ∂

∂kµi
qµj fulfil the commutator

relation

[Oik, Ojl] = d (δilOjk − δjkOil) . (7.1)

This allowed him to write a multiplicative basis for the IBP operators (see Eq. (3.23))
much smaller than the set of all Oij . As described in section 3.1, the major problem with
applying this to non-symbolic reductions is that some of the IBP operators could only be
cast aside for seed integrals with (r,s) values up to (rmax−n+1,smax−n+1). However, a
modified version of this approach applied to syzygy operators could avoid the better part
of this problem. Given any (master) integral J , I will label a general syzygy operator for
a syzygy α∆,k of degree ∆ for J as

U∆,k ≡ ∂

∂kµi
qµj α

∆,k
i,j , U∆,k ∈ U∆, (7.2)

where summation over repeated indices is implied and U∆ is the set of all syzygy operators
of degree ∆ for J . The operators obey the relation[

U∆,k, U∆′,k′
]

= ∂

∂kµi
qµj

{
α∆,k
a,j

(
∂

∂kνa
qνbα

∆′,k′
i,b

)
− α∆′,k′

a,j

(
∂

∂kνa
qνbα

∆,k
i,b

)}
︸ ︷︷ ︸

≡α∆+∆′,k,k′
i,j

≡ U∆+∆′,k,k′ ∈ U∆+∆′ .

(7.3)

U∆+∆′,k,k′ is again a syzygy operator for the integral J because it has the correct form
and also does not allow raised propagators because neither U∆,k nor U∆′,k′ do. As with
the IBP operators, to ensure that the information gained by acting with U∆+∆′,k,k′ on an

7 POSSIBLE IMPROVEMENTS 62

integral I is already in the system, one has to act with U∆,k on all integrals that result
from acting on I with U∆′,k′ and vice versa. The important difference to the IBP case
here is that U∆,k and U∆′,k′ do not raise any propagators4. If the integral I has r′ and s
values (r′I , sI), acting on it with U∆,k will thus only yield integrals with values (r′ ≤ r′I ,
s ≤ sI + ∆ + 1). This means that seed integrals for syzygies with a lower degree ∆ would
have to allow for higher s-, but not r′-values than those for syzygies with higher degrees.
This is a sensible step in any case, since it allows all syzygies to reach similar s-values
of integrals in the final equations. This makes it possible to ensure that the information
U∆+∆′,k,k′ would carry is already in the system of equations with very little additional
effort. The syzygy algorithm could then avoid finding U∆+∆′,k,k′ by adding the appropriate
row for α∆+∆′,k,k′

i,j to B∆+∆′ . This opens up a second way of “mapping up” syzygies to
higher degrees in addition to the multiplication by the xi performed by subroutine 1.
However, unlike subroutine 1, the α∆+∆′,k,k′

i,j could potentially introduce the space-time
dimension d as an additional variable into the B∆. The longer runtime for lSolveSparse
this additional variable would cause can be avoided by substituting a numeric value for d
(or in fact any variable) in the B∆. This does not produce wrong results for the syzygies,
since one is only interested in the positions of the pivot columns of B∆, not the specific
values of its elements. The only (negligible) drawback of substituting a numeric value for
d is the chance that coefficients might vanish only for that value of d and thus reduce the
number of pivot columns found, but for sensible numeric choices this chance should be
very small.

One of the two time consuming parts of finding the syzygies is typically generating the
basis of syzygy vectors that are orthogonal to P∆. Here each term in P∆ contains exactly
one of the dummy variables ti which correspond to the propagators Di whose exponents
should not be raised for the sector ID. One could thus write P∆ as

P∆ =
∑
i∈C

tiP
(i)
∆ (7.4)

and reformulate the task of subroutine 2 to find a basis for all syzygy vectors which are
orthogonal to all P (i)

∆ . This task could be simplified by not starting the construction of a
basis from scratch, but from the set of syzygy vectors for that degree already found for
subsectors. Assuming a subsector IDsub of ID is reached by removing the j-th propagator
from the set of propagators with positive exponents, the syzygy vectors from that subsector
are already orthogonal to all P (i)

∆ for all i 6= j. If the subsector in question is additionally
shifted to a different sector ID′sub via a sector shift, the syzygy vectors would have been
determined for ID′sub and would need to be subjected to the inverse sector shift to fulfil
this constraint. A part of the basis that subroutine 2 needs to find can then be constructed
from those linear combinations of the syzygy vectors of the subsector which are orthogonal
to P (j)

∆ as well. This can be repeated for each j ∈ C, although it is likely that many of the
additional syzygy vectors found in this way would be redundant due to linear dependence
with those already found from the previously considered subsector(s). The procedure
described here would not completely eliminate the need for subroutine 2 as currently
implemented, since it is possible that the subroutine would find additional syzygies which

4Exceptions to this are the symbolic propagator and non-positive propagators. Neither case poses a
problem since a raised symbolic propagator is covered by z-shifts and raised non-positive propagators can
only lower s, but not raise r.

7 POSSIBLE IMPROVEMENTS 63

cannot be constructed from syzygies of subsectors of the same degree. While it is always
possible to construct all syzygies of degree ∆ for the sector ID from the syzygies of
IDsub if all syzygies of the latter are first mapped to degree ∆, this mapping could lead
to factorisable syzygies for sector ID, which are unwanted. Subroutine 2 can thus find
non-factorisable syzygies which are not constructible from syzygies of the same degree of
subsectors. However, I believe that constructing syzygies from subsectors first can already
remove many of the degrees of freedom in subroutine 2 and thus speed up calculation of
the remaining syzygies considerably.

There are also several smaller improvements that have yet to be implemented, only two
of which I will list here. The first is simply an additional requirement on subroutine 2
of the syzygy part to minimise the number of elements at the positions which correspond
to the coefficients of the derivatives in the syzygy operators. Elements at these positions
tend to lead to more integrals than the elements at the positions which correspond to the
lower rows of the matrix E, due to the derivatives hitting the former but not the latter.
This change could reduce the number of integrals in the blueprint equations and thus save
steps in the Laporta algorithm. Another idea for a possible improvement stems from the
fact that preliminary tests have shown that the current order of choosing equations in the
Laporta algorithm might not be ideal. Instead of choosing the simplest remaining equation
first, it can in some cases be beneficial to choose the equation with the smallest number of
integrals. Future testing will have to find a good compromise between these two criteria.

8 CONCLUSION AND OUTLOOK 64

8 Conclusion and outlook

In this thesis, I have studied the generation of so-called difference equations for fully
massive vacuum Feynman integrals with a single mass scale. To this end, I employ the
ideas of Gluza, Kajda and Kosower [1] to search for linear combinations of integration by
parts operators that do not raise the exponents of a given integral they operate on. These
operators can be expressed via vectors which consist of polynomials of scalar products
of momenta and masses, the so-called syzygies. An algorithm for finding these syzygies,
which is solely based on simple linear algebra, was proposed by Schabinger [6]. I have
modified and extended this approach and implemented it in C++ as the first part of a
program called SPADES . The second part of SPADES then translates the syzygies into
a system of equations for the vacuum integrals which in turn is solved for a difference
equation via a modified Laporta algorithm.

I have applied this setup to all master integrals of the fully massive vacuum integrals up
to 5 loops. The difference equations up to 4 loops were already known in the literature
and SPADES generated all of them correctly. At the 5-loop level I was able to, for the
first time, determine a complete set of orders for all difference equations. Many of them I
already generated fully and for almost all of them I could obtain the equation when I set
all integrals of subsectors to zero. The results have been compared with those of J. Möller
where the latter were available and are in agreement. The runtimes for obtaining most of
these results are within reasonable limits, even though SPADES is not yet fully optimised
and several problems with the current implementation were identified. This suggests that
the approach taken in this thesis is a very viable choice over the conventional IBP method
for generating difference equations. The advantage over the latter is the fact that a sizeable
part of the work, removing integrals with raised propagators, is taken out of the Laporta
algorithm and solved with the simple means of linear algebra for all integrals with arbitrary
non-positive exponents at once.

In section 7, I listed several ideas to overcome the problems identified in section 6.3 and
enhance both the performance and functionality of SPADES . I believe that with their im-
plementation a complete set of difference equations for the 5-loop massive vacuum integrals
is within reach. Once this is achieved, the equations will have to be used to numerically
evaluate the master integrals via factorial series, which in itself will present a challenge
due to the high orders of some of the difference equations found. Another logical step
is to remove SPADES ’s current limitation to vacuum integrals with a single mass scale.
Both external momenta and multiple masses can be introduced via the parameters χi as
described in section 4. This would open up a large number of integral classes, for many of
which difference equations have yet to be found.

A APPENDIX 65

A Appendix

1-loop
t ID Sectors Symmetries
1 1 1 1 1

2-loop
t ID Sectors Symmetries
1 2 6* 3 4
2 3 7 1 6

3-loop
t ID Sectors Symmetries
1 3 56* 16 24
2 4 60* 12 12
3 4 51 3 24
4 5 62 6 8
5 6 63 1 24

4-loop
t ID Sectors Symmetries
1 4 960* 132 192
2 5 992* 141 48
3 5 961* 66 48
4 5 841 15 120
5 6 1008* 102 16
6 6 993 66 12
7 6 978* 12 144
8 6 952 12 48
9 7 1016 7 48
10 7 1012* 12 48
11 7 1010 48 8
12 7 1009 33 8
13 8 1020 15 8
14 8 1011 15 8
15 9 1022 3 12
16 9 511 1 72

Table A.1: Chosen representatives of the physical sectors for the auxiliary topologies A1,
A2, A3 and A4, the number of sectors in the topology they belong to and the
number of sector symmetry transformations (including the identity transfor-
mation) possible for the representatives. Sector IDs with a * denote factorised
topologies.

A APPENDIX 66

t ID Sectors Symmetries
1 5 31744* 1398 1920
2 6 32256* 2070 288
3 6 31746* 1141 192
4 6 29702* 430 240
5 6 28686 80 720
6 7 32512* 1885 64
7 7 32288* 448 288
8 7 32258* 1780 24
9 7 31754* 164 288

10 7 30872* 296 96
11 7 30858 212 72
12 7 30214 420 48
13 7 29703 228 48
14 8 32640* 234 96
15 8 32576* 1440 16
16 8 32528* 266 96
17 8 32513* 248 192
18 8 32386 162 48
19 8 32274 496 16
20 8 32266 680 12
21 8 32259* 766 16
22 8 31380 324 16
23 8 31246 428 8
24 8 30876 11 384
25 8 30862 94 32
26 8 30222 210 24
27 9 32704 256 16
28 9 32648* 550 16
29 9 32608* 336 16
30 9 32592 536 8
31 9 32529* 34 288
32 9 32518 84 48
33 9 32394 128 24
34 9 32390 544 4

t ID Sectors Symmetries
35 9 32329 10 384
36 9 32278 272 8
37 9 32270 400 4
38 9 32267 140 16
39 9 31516 316 4
40 9 31388 54 32
41 9 30231 76 12
42 10 32736 236 4
43 10 32712 192 8
44 10 32708 196 8
45 10 32674 47 32
46 10 32652* 142 24
47 10 32596 76 10
48 10 32562 50 32
49 10 32534 232 4
50 10 32398 208 4
51 10 32391 88 8
52 10 32279 260 2
53 10 31420 21 32
54 10 30563* 10 144
55 10 30239 28 12
56 10 29550 24 16
57 11 32744 172 2
58 11 32737 144 4
59 11 32713 72 8
60 11 32682 17 32
61 11 31736 68 4
62 11 30691 16 16
63 11 30526 40 4
64 12 32745 50 4
65 12 31740 3 48
66 12 30699 8 12
67 12 30527 4 16

Table A.2: Chosen representatives of the physical sectors for the auxiliary topology A5,
the number of sectors in the topology they belong to and the number of sector
symmetry transformations (including the identity transformation) possible for
the representatives. Sector IDs with a * denote factorised topologies.

A APPENDIX 67

1-loop
t ID Master Integral
1 1 1 J1

2-loop
t ID Master Integral
1 2 6 J1,1,0
2 3 7 J1,1,1

3-loop
t ID Master Integral
1 3 56 J1,1,1,0,0,0
2 4 60 J1,1,1,1,0,0
3 4 51 J1,1,0,0,1,1
4 5 62 J1,1,1,1,1,0
5 6 63 J1,1,1,1,1,1

4-loop
t ID Master Integral
1 4 960 J1,1,1,1,0,0,0,0,0,0
2 5 992 J1,1,1,1,1,0,0,0,0,0
3 5 961 J1,1,1,1,0,0,0,0,0,1
4 5 841 J1,1,0,1,0,0,1,0,0,1
5 6 1008 J1,1,1,1,1,1,0,0,0,0
6 6 993 J1,1,1,1,1,0,0,0,0,1
7 6 978 J1,1,1,1,0,1,0,0,1,0
8 6 952 J1,1,1,0,1,1,1,0,0,0
9 7 1016 J1,1,1,1,1,1,1,0,0,0
10 7 1012 J1,1,1,1,1,1,0,1,0,0
11 7 1010 J1,1,1,1,1,1,0,0,1,0
12 7 1009 J1,1,1,1,1,1,0,0,0,1
13 8 1020 J1,1,1,1,1,1,1,1,0,0
14 8 1011 J1,1,1,1,1,1,0,0,1,1
15 9 1022 J1,1,1,1,1,1,1,1,1,0
16 9 511 J0,1,1,1,1,1,1,1,1,1

17 5 841 J3,1,0,1,0,0,1,0,0,1
18 7 1009 J2,1,1,1,1,1,0,0,0,1
19 8 1011 J2,1,1,1,1,1,0,0,1,1

Table A.3: List of all master integrals for 1-4 loops [12]. The notation in this table is
Ja1,...,am ≡ I(a1, . . . , am). Note that at 4 loops there are 3 master integrals
with ai > 1.

A APPENDIX 68

t ID Master integral
1 5 31744 J1,1,1,1,1,0,0,0,0,0,0,0,0,0,0
2 6 32256 J1,1,1,1,1,1,0,0,0,0,0,0,0,0,0
3 6 31746 J1,1,1,1,1,0,0,0,0,0,0,0,0,1,0
4 6 29702 J1,1,1,0,1,0,0,0,0,0,0,0,1,1,0
5 6 28686 J1,1,1,0,0,0,0,0,0,0,0,1,1,1,0
6 7 32512 J1,1,1,1,1,1,1,0,0,0,0,0,0,0,0
7 7 32288 J1,1,1,1,1,1,0,0,0,1,0,0,0,0,0
8 7 32258 J1,1,1,1,1,1,0,0,0,0,0,0,0,1,0
9 7 31754 J1,1,1,1,1,0,0,0,0,0,0,1,0,1,0

10 7 30872 J1,1,1,1,0,0,0,1,0,0,1,1,0,0,0
11 7 30858 J1,1,1,1,0,0,0,1,0,0,0,1,0,1,0
12 7 30214 J1,1,1,0,1,1,0,0,0,0,0,0,1,1,0
13 7 29703 J1,1,1,0,1,0,0,0,0,0,0,0,1,1,1
14 8 32640 J1,1,1,1,1,1,1,1,0,0,0,0,0,0,0
15 8 32576 J1,1,1,1,1,1,1,0,1,0,0,0,0,0,0
16 8 32528 J1,1,1,1,1,1,1,0,0,0,1,0,0,0,0
17 8 32513 J1,1,1,1,1,1,1,0,0,0,0,0,0,0,1
18 8 32386 J1,1,1,1,1,1,0,1,0,0,0,0,0,1,0
19 8 32274 J1,1,1,1,1,1,0,0,0,0,1,0,0,1,0
20 8 32266 J1,1,1,1,1,1,0,0,0,0,0,1,0,1,0
21 8 32259 J1,1,1,1,1,1,0,0,0,0,0,0,0,1,1
22 8 31380 J1,1,1,1,0,1,0,1,0,0,1,0,1,0,0
23 8 31246 J1,1,1,1,0,1,0,0,0,0,0,1,1,1,0
24 8 30876 J1,1,1,1,0,0,0,1,0,0,1,1,1,0,0
25 8 30862 J1,1,1,1,0,0,0,1,0,0,0,1,1,1,0
26 8 30222 J1,1,1,0,1,1,0,0,0,0,0,1,1,1,0
27 9 32704 J1,1,1,1,1,1,1,1,1,0,0,0,0,0,0
28 9 32648 J1,1,1,1,1,1,1,1,0,0,0,1,0,0,0
29 9 32608 J1,1,1,1,1,1,1,0,1,1,0,0,0,0,0
30 9 32592 J1,1,1,1,1,1,1,0,1,0,1,0,0,0,0
31 9 32529 J1,1,1,1,1,1,1,0,0,0,1,0,0,0,1
32 9 32518 J1,1,1,1,1,1,1,0,0,0,0,0,1,1,0
33 9 32394 J1,1,1,1,1,1,0,1,0,0,0,1,0,1,0
34 9 32390 J1,1,1,1,1,1,0,1,0,0,0,0,1,1,0

t ID Master integral
35 9 32329 J1,1,1,1,1,1,0,0,1,0,0,1,0,0,1
36 9 32278 J1,1,1,1,1,1,0,0,0,0,1,0,1,1,0
37 9 32270 J1,1,1,1,1,1,0,0,0,0,0,1,1,1,0
38 9 32267 J1,1,1,1,1,1,0,0,0,0,0,1,0,1,1
39 9 31516 J1,1,1,1,0,1,1,0,0,0,1,1,1,0,0
40 9 31388 J1,1,1,1,0,1,0,1,0,0,1,1,1,0,0
41 9 30231 J1,1,1,0,1,1,0,0,0,0,1,0,1,1,1
42 10 32736 J1,1,1,1,1,1,1,1,1,1,0,0,0,0,0
43 10 32712 J1,1,1,1,1,1,1,1,1,0,0,1,0,0,0
44 10 32708 J1,1,1,1,1,1,1,1,1,0,0,0,1,0,0
45 10 32674 J1,1,1,1,1,1,1,1,0,1,0,0,0,1,0
46 10 32652 J1,1,1,1,1,1,1,1,0,0,0,1,1,0,0
47 10 32596 J1,1,1,1,1,1,1,0,1,0,1,0,1,0,0
48 10 32562 J1,1,1,1,1,1,1,0,0,1,1,0,0,1,0
49 10 32534 J1,1,1,1,1,1,1,0,0,0,1,0,1,1,0
50 10 32398 J1,1,1,1,1,1,0,1,0,0,0,1,1,1,0
51 10 32391 J1,1,1,1,1,1,0,1,0,0,0,0,1,1,1
52 10 32279 J1,1,1,1,1,1,0,0,0,0,1,0,1,1,1
53 10 31420 J1,1,1,1,0,1,0,1,0,1,1,1,1,0,0
54 10 30563 J1,1,1,0,1,1,1,0,1,1,0,0,0,1,1
55 10 30239 J1,1,1,0,1,1,0,0,0,0,1,1,1,1,1
56 10 29550 J1,1,1,0,0,1,1,0,1,1,0,1,1,1,0
57 11 32744 J1,1,1,1,1,1,1,1,1,1,0,1,0,0,0
58 11 32737 J1,1,1,1,1,1,1,1,1,1,0,0,0,0,1
59 11 32713 J1,1,1,1,1,1,1,1,1,0,0,1,0,0,1
60 11 32682 J1,1,1,1,1,1,1,1,0,1,0,1,0,1,0
61 11 31736 J1,1,1,1,0,1,1,1,1,1,1,1,0,0,0
62 11 30691 J1,1,1,0,1,1,1,1,1,1,0,0,0,1,1
63 11 30526 J1,1,1,0,1,1,1,0,0,1,1,1,1,1,0
64 12 32745 J1,1,1,1,1,1,1,1,1,1,0,1,0,0,1
65 12 31740 J1,1,1,1,0,1,1,1,1,1,1,1,1,0,0
66 12 30699 J1,1,1,0,1,1,1,1,1,1,0,1,0,1,1
67 12 30527 J1,1,1,0,1,1,1,0,0,1,1,1,1,1,1

Table A.4: List of all master integrals with ai ≤ 1 ∀i at 5 loops [12]. The notation in this
table is Ja1,...,am ≡ I(a1, . . . , am). Master integrals with ai > 1 are found in
Table A.5.

A APPENDIX 69

t ID Master integral
68 6 29702 J3,1,1,0,1,0,0,0,0,0,0,0,1,1,0
69 6 28686 J3,1,1,0,0,0,0,0,0,0,0,1,1,1,0
70 7 30214 J2,1,1,0,1,1,0,0,0,0,0,0,1,1,0
71 7 30214 J3,1,1,0,1,1,0,0,0,0,0,0,1,1,0
72 7 29703 J2,1,1,0,1,0,0,0,0,0,0,0,1,1,1
73 7 29703 J2,2,1,0,1,0,0,0,0,0,0,0,1,1,1
74 7 29703 J3,1,1,0,1,0,0,0,0,0,0,0,1,1,1
75 8 32259 J2,1,1,1,1,1,0,0,0,0,0,0,0,1,1
76 8 31246 J1,2,1,1,0,1,0,0,0,0,0,1,1,1,0
77 8 31246 J2,1,1,1,0,1,0,0,0,0,0,1,1,1,0
78 8 31246 J3,1,1,1,0,1,0,0,0,0,0,1,1,1,0
79 8 30862 J2,1,1,1,0,0,0,1,0,0,0,1,1,1,0
80 8 30222 J2,1,1,0,1,1,0,0,0,0,0,1,1,1,0
81 8 30222 J2,2,1,0,1,1,0,0,0,0,0,1,1,1,0
82 8 30222 J3,1,1,0,1,1,0,0,0,0,0,1,1,1,0
83 9 32608 J2,1,1,1,1,1,1,0,1,1,0,0,0,0,0
84 9 32390 J2,1,1,1,1,1,0,1,0,0,0,0,1,1,0
85 9 32278 J2,1,1,1,1,1,0,0,0,0,1,0,1,1,0
86 9 32270 J1,1,2,1,1,1,0,0,0,0,0,1,1,1,0
87 9 32270 J1,2,1,1,1,1,0,0,0,0,0,1,1,1,0
88 9 32270 J2,1,1,1,1,1,0,0,0,0,0,1,1,1,0
89 9 32270 J2,2,1,1,1,1,0,0,0,0,0,1,1,1,0
90 9 32270 J3,1,1,1,1,1,0,0,0,0,0,1,1,1,0
91 9 32267 J2,1,1,1,1,1,0,0,0,0,0,1,0,1,1
92 9 31516 J1,1,2,1,0,1,1,0,0,0,1,1,1,0,0
93 9 31516 J1,2,1,1,0,1,1,0,0,0,1,1,1,0,0
94 9 31516 J2,1,1,1,0,1,1,0,0,0,1,1,1,0,0
95 9 31388 J2,1,1,1,0,1,0,1,0,0,1,1,1,0,0
96 9 30231 J2,1,1,0,1,1,0,0,0,0,1,0,1,1,1
97 9 30231 J2,1,1,0,1,1,0,0,0,0,2,0,1,1,1
98 9 30231 J2,1,2,0,1,1,0,0,0,0,1,0,1,1,1
99 9 30231 J2,2,1,0,1,1,0,0,0,0,1,0,1,1,1

t ID Master integral
100 9 30231 J3,1,1,0,1,1,0,0,0,0,1,0,1,1,1
101 10 32736 J2,1,1,1,1,1,1,1,1,1,0,0,0,0,0
102 10 32596 J2,1,1,1,1,1,1,0,1,0,1,0,1,0,0
103 10 32596 J2,1,2,1,1,1,1,0,1,0,1,0,1,0,0
104 10 32596 J2,2,1,1,1,1,1,0,1,0,1,0,1,0,0
105 10 32596 J3,1,1,1,1,1,1,0,1,0,1,0,1,0,0
106 10 32534 J2,1,1,1,1,1,1,0,0,0,1,0,1,1,0
107 10 32398 J2,1,1,1,1,1,0,1,0,0,0,1,1,1,0
108 10 32391 J2,1,1,1,1,1,0,1,0,0,0,0,1,1,1
109 10 32279 J1,1,1,2,1,1,0,0,0,0,1,0,1,1,1
110 10 32279 J2,1,1,1,1,1,0,0,0,0,1,0,1,1,1
111 10 32279 J2,2,1,1,1,1,0,0,0,0,1,0,1,1,1
112 10 32279 J3,1,1,1,1,1,0,0,0,0,1,0,1,1,1
113 10 30239 J2,1,1,0,1,1,0,0,0,0,1,1,1,1,1
114 10 30239 J2,1,2,0,1,1,0,0,0,0,1,1,1,1,1
115 10 30239 J2,2,1,0,1,1,0,0,0,0,1,1,1,1,1
116 10 30239 J3,1,1,0,1,1,0,0,0,0,1,1,1,1,1
117 10 29550 J1,1,1,0,0,2,1,0,1,1,0,1,1,1,0
118 10 29550 J2,1,1,0,0,1,1,0,1,1,0,1,1,1,0
119 10 29550 J3,1,1,0,0,1,1,0,1,1,0,1,1,1,0
120 11 32744 J2,1,1,1,1,1,1,1,1,1,0,1,0,0,0
121 11 31736 J2,1,1,1,0,1,1,1,1,1,1,1,0,0,0
122 11 30526 J1,1,2,0,1,1,1,0,0,1,1,1,1,1,0
123 11 30526 J1,2,1,0,1,1,1,0,0,1,1,1,1,1,0
124 11 30526 J2,1,1,0,1,1,1,0,0,1,1,1,1,1,0
125 11 30526 J2,2,1,0,1,1,1,0,0,1,1,1,1,1,0
126 11 30526 J3,1,1,0,1,1,1,0,0,1,1,1,1,1,0
127 12 31740 J3,1,1,1,0,1,1,1,1,1,1,1,1,0,0
128 12 30527 J2,1,1,0,1,1,1,0,0,1,1,1,1,1,1
129 12 30527 J2,1,2,0,1,1,1,0,0,1,1,1,1,1,1
130 12 30527 J2,2,1,0,1,1,1,0,0,1,1,1,1,1,1
131 12 30527 J3,1,1,0,1,1,1,0,0,1,1,1,1,1,1

Table A.5: List of all master integrals with at least one ai > 1 at 5 loops [12]. The notation
in this table is Ja1,...,am ≡ I(a1, . . . , am). Master integrals with ai ≤ 1 ∀i are
found in Table A.4.

A APPENDIX 70

Figure A.1: All diagrams of the vacuum topologies up to 4 loops with the sector IDs of
the respective representative sectors [12,45,46].

A APPENDIX 71

Figure A.2: All diagrams of the 67 vacuum 5-loop topologies with the sector IDs of the
respective representative sectors [12,45,47].

REFERENCES 72

References

[1] J. Gluza, K. Kajda and D. A. Kosower, Towards a Basis for Planar Two-Loop Inte-
grals, Phys. Rev. D 83 (2011) 045012 [arXiv:1009.0472].

[2] C. Anastasiou and A. Lazopoulos, Automatic integral reduction for higher order per-
turbative calculations, JHEP 0407 (2004) 046 [hep-ph/0404258].

[3] A. V. Smirnov, Algorithm FIRE – Feynman Integral REduction, JHEP 0810 (2008)
107 [arXiv:0807.3243].

[4] C. Studerus, Reduze-Feynman Integral Reduction in C++, Comput. Phys. Com-
mun. 181 (2010) 1293 [arXiv:0912.2546 [physics.comp-ph]]; A. von Manteuffel and
C. Studerus, Reduze 2 - Distributed Feynman Integral Reduction, arXiv:1201.4330.

[5] S. Laporta, High precision epsilon expansions of massive four loop vacuum bubbles,
Phys. Lett. B 549 (2002) 115 [hep-ph/0210336].

[6] R. M. Schabinger, A New Algorithm For The Generation Of Unitarity-Compatible
Integration By Parts Relations, JHEP 1201 (2012) 077 [arXiv:1111.4220].

[7] K. G. Chetyrkin, M. Misiak and M. Munz, Beta functions and anomalous dimensions
up to three loops, Nucl. Phys. B 518 (1998) 473 [hep-ph/9711266].

[8] Y. Schröder and M. Steinhauser, Four-loop singlet contribution to the rho parameter,
Phys. Lett. B 622 (2005) 124 [hep-ph/0504055].

[9] R. Boughezal and M. Czakon, Single scale tadpoles and O(G(F m(t)**2 alpha(s)**3))
corrections to the rho parameter, Nucl. Phys. B 755 (2006) 221 [hep-ph/0606232].

[10] Y. Schröder and A. Vuorinen, High precision evaluation of four loop vacuum bubbles
in three-dimensions, hep-ph/0311323.

[11] Y. Schröder and A. Vuorinen, High-precision epsilon expansions of single-mass-scale
four-loop vacuum bubbles, JHEP 0506 (2005) 051 [hep-ph/0503209].

[12] Jan Möller, Fully Massive Tadpoles at 5-loop: Reduction and Difference Equations,
Dissertation, University of Bielefeld, 2012.

[13] C. -N. Yang and R. L. Mills, Conservation of Isotopic Spin and Isotopic Gauge In-
variance, Phys. Rev. 96 (1954) 191.

[14] L. D. Faddeev and V. N. Popov, Feynman Diagrams for the Yang-Mills Field, Phys.
Lett. B 25 (1967) 29.

[15] G. ’t Hooft, Dimensional regularization and the renormalization group, Nucl. Phys.
B 61 (1973) 455.

[16] G. ’t Hooft and M. J. G. Veltman, Regularization and Renormalization of Gauge
Fields, Nucl. Phys. B 44 (1972) 189.

[17] D. J. Gross and F. Wilczek, Ultraviolet Behavior of Nonabelian Gauge Theories, Phys.
Rev. Lett. 30 (1973) 1343.

REFERENCES 73

[18] W. E. Caswell, Asymptotic Behavior of Nonabelian Gauge Theories to Two Loop
Order, Phys. Rev. Lett. 33 (1974) 244.

[19] D. R. T. Jones, Two Loop Diagrams in Yang-Mills Theory, Nucl. Phys. B 75 (1974)
531.

[20] O. V. Tarasov, A. A. Vladimirov and A. Y. .Zharkov, The Gell-Mann-Low Function
of QCD in the Three Loop Approximation, Phys. Lett. B 93 (1980) 429.

[21] S. A. Larin and J. A. M. Vermaseren, The Three loop QCD Beta function and anoma-
lous dimensions, Phys. Lett. B 303 (1993) 334 [hep-ph/9302208].

[22] T. van Ritbergen, J. A. M. Vermaseren and S. A. Larin, The Four loop beta function
in quantum chromodynamics, Phys. Lett. B 400 (1997) 379 [hep-ph/9701390].

[23] K. G. Chetyrkin, Four-loop renormalization of QCD: Full set of renormalization con-
stants and anomalous dimensions, Nucl. Phys. B 710 (2005) 499 [hep-ph/0405193].

[24] K. G. Chetyrkin and V. A. Smirnov, R* Operation Corrected, Phys. Lett. B 144
(1984) 419.

[25] M. Misiak and M. Munz, Two loop mixing of dimension five flavor changing operators,
Phys. Lett. B 344 (1995) 308 [hep-ph/9409454].

[26] J. C. Collins, Normal Products in Dimensional Regularization, Nucl. Phys. B 92
(1975) 477.

[27] T. Binoth, E. W. N. Glover, P. Marquard and J. J. van der Bij, Two loop corrections
to light by light scattering in supersymmetric QED, JHEP 0205 (2002) 060 [hep-
ph/0202266].

[28] Michael E. Peskin and Daniel V. Schroeder, An Introduction to Quantum Field The-
ory, Westview, 1995.

[29] M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals, Comput.
Phys. Commun. 175 (2006) 559 [hep-ph/0511200].

[30] A. V. Smirnov and M. N. Tentyukov, Feynman Integral Evaluation by a Sec-
tor decomposiTion Approach (FIESTA), Comput. Phys. Commun. 180 (2009) 735
[arXiv:0807.4129 [hep-ph]].

[31] A. V. Smirnov and A. V. Petukhov, The Number of Master Integrals is Finite, Lett.
Math. Phys. 97 (2011) 37 [arXiv:1004.4199 [hep-th]].

[32] O. V. Tarasov, Generalized recurrence relations for two loop propagator integrals with
arbitrary masses, Nucl. Phys. B 502 (1997) 455 [hep-ph/9703319].

[33] A. V. Smirnov, V. A. Smirnov and M. Steinhauser, Applying Mellin-Barnes technique
and Groebner bases to the three-loop static potential, PoS RADCOR 2007 (2007) 024
[arXiv:0805.1871 [hep-ph]].

[34] S. Laporta, High precision calculation of multiloop Feynman integrals by difference
equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033].

REFERENCES 74

[35] O. V. Tarasov, Connection between Feynman integrals having different values of the
space-time dimension, Phys. Rev. D 54 (1996) 6479 [hep-th/9606018];

[36] R. N. Lee, Space-time dimensionality D as complex variable: Calculating loop integrals
using dimensional recurrence relation and analytical properties with respect to D, Nucl.
Phys. B 830 (2010) 474 [arXiv:0911.0252 [hep-ph]].

[37] K. G. Chetyrkin and F. V. Tkachov, Integration by Parts: The Algorithm to Calculate
beta Functions in 4 Loops, Nucl. Phys. B 192 (1981) 159; F. V. Tkachov, A Theorem
on Analytical Calculability of Four Loop Renormalization Group Functions, Phys.
Lett. B 100 (1981) 65.

[38] T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions,
Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329].

[39] R. N. Lee, Group structure of the integration-by-part identities and its application to
the reduction of multiloop integrals, JHEP 0807 (2008) 031 [arXiv:0804.3008 [hep-
ph]].

[40] C. Bogner and S. Weinzierl, Feynman graph polynomials, Int. J. Mod. Phys. A 25
(2010) 2585 [arXiv:1002.3458 [hep-ph]].

[41] B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassen-
ringes nach einem nulldimensionalem Polynomideal,
http://www.risc.jku.at/Groebner-Bases-Bibliography/details.php?details_id=706,
Dissertation, 1965.

[42] D. Cabarcas and J. Ding, Linear Algebra to Compute Syzygies and Gröbner Bases, IS-
SAC ’11: Proceedings of the 36th international symposium on Symbolic and algebraic
computation, 2011.

[43] C. W. Bauer, A. Frink and R. Kreckel, Introduction to the GiNaC framework for
symbolic computation within the C++ programming language, cs/0004015 [cs-sc].

[44] R. H. Lewis, Computer algebra system Fermat, http://home.bway.net/lewis/.

[45] J. A. M. Vermaseren, Axodraw, Comput. Phys. Commun. 83 (1994) 45.

[46] K. Kajantie, M. Laine and Y. Schroder, A Simple way to generate high order vacuum
graphs, Phys. Rev. D 65 (2002) 045008 [hep-ph/0109100].

[47] Jannis Schücker, Templates for 5-loop Vacuum Diagrams in Axodraw, not published.

Acknowledgements

I would like to extend my gratitude to the following people:

• York Schröder, for his great supervision of this thesis, his patience with all my
questions and for providing lists of sector shifts, symmetries and zero sectors.

• Jan Möller, for helpful discussions about difference equations and how to best find
them, and for providing me with his results, which were invaluable for cross-checking
my own.

• Lisa, Benedict and Michael for proofreading this thesis.

• The people of D6/E6, especially Anne, Eva, Benedict and Michael, for a great at-
mosphere to work in.

• Last but not least, my family and friends, for always being supportive and patient
throughout my work on this thesis.

Declaration

I hereby affirm that this master’s thesis represents my own work and has not been previ-
ously submitted to any examination office. All resources used have been referenced.

Bielefeld, November 19th, 2012

Thomas Luthe

