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“A complete three-loop calculation of the free energy therefore has the special significance

that it is the best anyone will ever do with perturbation theory.”

from: P. Arnold and C. Zhai, Phys. Rev. D 50 (1994) 7603

In the past couple of years, we have progressed to the four-loop level. In the following, the
major breakthroughs and challenges will be presented, under the subjective light of my own

contributions to the field.
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Chapter 1

Abstract

In this cumulative Habilitation thesis, | have collected and discussed the publications that

came out of my research during the last five years.

Evolving around the main theme of weak-coupling expansions in Quantum Chromody-
namics (QCD) at finite temperature, one of the key achievements of this research line is the

successful implementation of four-loop perturbative computations.

This level of precision allows to make progress with the long-standing problem of incor-
porating long-distance contributions into the thermal QCD pressure, an observable that is
phenomenologically relevant in heavy ion physics, cosmology as well as astrophysics.

Furthermore, as an interesting example of technology transfer, the same higher-order
perturbative techniques could be applied to observables relevant for (zero-temperature) collider
physics, for example to the electroweak rho parameter, and to threshold effects of heavy quarks

in the strong coupling constant.
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Chapter 3
Introduction

e QCD

Quantum Chromodynamics (QCD) has been established more than 30 years ago, as the
theory that describes the strong interaction which binds quarks and gluons into hadrons, such
as protons and pions. Besides its overwhelming phenomenological success, QCD is one of
the most outstanding achievements of theoretical particle physics. Its property of asymptotic
freedom singles it out to be the only quantum field theory that is believed to be mathematically

well-defined.

However, QCD is extremely difficult to solve analytically. While its Lagrangian is for-
mulated in terms of quark and gluon fields, the hadronic world around us corresponds to
complicated bound states of these fundamental degrees of freedom. Indeed, even after more
than 30 years of intense efforts, the only hope for reliably deriving fundamental properties of
nature (such as the proton mass) from first principles are large-scale numerical lattice Monte
Carlo simulations. These numerical studies of the theory utilize the most powerful computer

systems available, and in fact even drive developments in computing technology.

QCD has deep consequences in other contexts (than hadrons) as well: Its properties
determine the expansion of the early universe, corresponding to times between 107 '% to
1s after the big bang, which is of clear phenomenological significance for relic densities of
various forms of dark matter appearing in cosmology [1]. Interestingly, in current and future
heavy ion collision experiments (RHIC, Brookhaven National Lab; LHC, CERN, starting 2007)
matter with properties similar to those in the early universe can be created and studied in
the laboratory, hinting towards a nearly ideal hydrodynamic expansion [2]. In another context,
QCD determines the properties of (extremely) dense matter, such as that in the cores of
neutron stars. Compact star phenomenology is of central interest in astrophysics, driven by



many new observations.

The properties of a hot, expanding system (be it in heavy ion collisions or in cosmology)
are determined by the equation of state (EoS). In its conceptually simplest form, the EoS gives
the pressure p of the system as a function of the temperature T" and the baryon chemical
potential 1. Other quantities such as energy density or baryon density can be derived from the
pressure via basic thermodynamic relations, rendering it one of the most fundamental objects

of finite temperature field theory.

e Pressure perturbatively

Given this motivation, there have been impressive efforts on the determination of the hot QCD
pressure over the past 25 years or so. Due to asymptotic freedom, at high enough temperatures
the coupling is guaranteed to be small. Hence, perturbation theory should become applicable,
and the pressure should be expressible as an expansion in the renormalized gauge coupling g. In
the extreme limit g — 0, one obtains the familiar Stefan-Boltzmann (SB) result, describing the
pressure of a gas of non-interacting particles. At phenomenologically relevant temperatures,

corrections to this limit become important.

The first of these corrections, being of orders O(g*) and O(g®), have been computed
already in 1978-79 [3, 4]. Showing very slow convergence, it was clear however that a deeper
expansion was needed. The next contribution, of O(g*In g), has been computed in 1983 [5].
Completing the full O(g*) result presented an outstanding challenge, however, that was only
met by a 3-loop calculation in 1994 [6]. It turned out that the next term in the series, O(g°),
was much more accessible [7]. The order O(g°) then represents another qualitative increase
in difficulty. As pointed out by Linde already in 1980 [8], at this order one meets genuine

infrared divergences, making this order inaccessible to a purely perturbative expansion.

Nevertheless, the availability of several orders in the expansion allows to experiment with
different resummations [9], in order to improve convergence properties. Another avenue is to
abandon the strict weak-coupling expansion, and try to find improved resummation schemes,
in the hope to achieve better convergence. There has been quite some impressive work along

these lines during the last few years (for a review, see [10]).

e Pressure on the lattice

Lattice Monte Carlo methods, on the other hand, have proven to work for determining the hot
QCD pressure, at least when the effects of quarks are neglected [11, 12], which formally rep-
resents the limit of QCD with infinitely heavy quarks. Unfortunately, this approach works only
up to rather low temperatures (7' < 1GeV, which is still small for cosmological applications).

Including the effects of light quarks into this numerical approach represents a formidable task,
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due to the difficulties of computing fermionic determinants, and due to the even harder sign
problem if one allows for non-zero chemical potential. First results in the same temperature

range are available, but they still contain uncontrolled systematic errors [13].

While the lattice approach to full QCD is plagued with the problems just mentioned, it is
worth noting that there are already definite qualitative results: It has become clear that there
is no sharp phase transition between the quark-gluon plasma phase at high temperatures and
our low-temperature hadronic world (for a recent review, see [14]). By adiabatically changing
the parameters (7', p and quark masses m), one can smoothly change from one “phase”
to the other. Therefore, to learn about the different regions of the phase diagram, and to
understand under which circumstances QCD looks more hadronic than deconfined, it is not
anymore sufficient to concentrate on a small section around some “transition”, but rather to

try to sample the system’s behavior in as large a parameter range as possible.

e Combined method

One of the options to confront the difficult situation is to combine perturbative and numerical
methods. A key observation is that QCD at high temperatures is a multiscale system, exhibiting
three parametrically distinct momentum scales: the purely perturbative “hard” scale p ~ 27T,
as well as the two “soft scales”, p ~ ¢T', g°T, which are generated dynamically and are related
to collective plasma phenomena. Given this scale hierarchy, perturbation theory can be used
to construct effective field theories for the low-energy soft modes, a process that is called

dimensional reduction [15, 16, 17] since the effective theories turn out to be three-dimensional.

In practice, integrating out the hard modes p ~ 77", (which in QCD amounts to all
quarks, as well as all gluonic degrees of freedom except for the so-called zero Matsubara
modes), one arrives at a three-dimensional (3d) effective theory containing the dynamical
scales p ~ ¢T,g>T. This effective theory, being a 3d gauge theory coupled to an adjoint
Higgs field, is called “Electrostatic QCD" (EQCD). In principle one can go even further and
integrate out the soft modes p ~ ¢7 from EQCD, getting a 3d pure Yang-Mills theory,
containing the dynamical scale p ~ ¢?T'. This effective theory, dubbed “Magnetostatic QCD"
(MQCD), is purely non-perturbative [8] and hence has to be treated numerically, e.g. by lattice

Monte Carlo simulations.

Note that, since all effects of fermions have already been mapped out in the first reduction
step, numerical treatment is required only for a 3d purely bosonic theory within this setup, a
task that is evidently much more realistic than performing a full 4d QCD simulation. Hence,
one could hope to be able to apply the combined method in a wide temperature range, while

treating fully dynamical quarks with their physical properties (masses and chemical potentials).



e Status

Motivated by the prospects of the combined method just described, we have tackled a number
of different open tasks that are needed to incorporate the longest-distance (MQCD) contri-
butions into the QCD pressure.

Notably, the logarithmically enhanced four-loop contributions from all scales are now
available [YS4], corresponding to O(¢%In g) in the weak-coupling expansion of the pressure.

This result has in the meantime been generalized to include small chemical potentials [18].

Furthermore, a number of milestones on the way to the main goal, accounting for the full
order O(g%), have already been reached, leaving a single well-defined perturbative computation

to be done, which does not pose any conceptual problems, but is technically demanding.

Apart from purely theoretical interest, reaching the full order O(g°) would greatly improve
the accuracy of the result for the pressure [YS4]. The main reason is that then, for the first
time, all physical length scales have contributed. In chapter 4, the present status of the QCD
pressure will be described in great detail.

e Methods

To include the logarithmically enhanced O(g%1In g) contributions into the pressure [YS4], we
had to deal with evaluating four-loop vacuum graphs in perturbation theory. Hence, a large
amount of work had to be invested into implementing methods that could cope with the
corresponding level of complexity. To this end, we used the computer algebra program FORM
[19], which enabled us to deal with very large intermediate expressions. To start off, a method
for efficiently generating the Feynman graphs needed was implemented [YS2]. Faced with
millions of integrals to evaluate, we then constructed an automatized routine which, based on
the general method of integration by parts (IBP) [20] combined with lexicographic ordering
[21], reduced the huge number of different integrals to a few “master” integrals [YS3]. In
EQCD, these master integrals were then computed manually [YS5], while for MQCD (where
proper care had to be taken to screen infrared divergences), the relevant integrals have been
obtained manually first [YS6], and later been confirmed in a fully automated fashion [YS7]
utilizing the method of numerically solving recurrence relations [21] for the required class of

integrals.

To drive the precision towards inclusion of the full order O(g%), the techniques that are
needed span an even wider field. First of all, to determine the non-perturbative contribution
of MQCD, numerical simulations had to be performed [YS9]. To reach the continuum limit,
all ultraviolet divergences of the relevant operator had to be known, a task that in a 3d

theory can be performed exactly by computing a finite number of terms. This required a
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four-loop computation in lattice regularization [YS8], a daunting task that could however be
mastered by using a radically different expansion method, Numerical Stochastic Perturbation
Theory (NSPT) [22]. Furthermore, to match between the lattice and continuum regularization
schemes, a comparable lattice-regularized computation should be performed with properly
screened gauge field propagators. While the final result is not yet available, we have shown
that NSPT has the potential to deal with this challenge as well [YS14].

Furthermore, a number of purely perturbative (continuum-) matching parameters for the
effective theory setup are needed to a certain precision, requiring on the technical side the
systematic classification, reduction and evaluation of one- and two-loop sum-integrals without
[YS11] and with [YS16] masses and chemical potentials. Note that, at least for the massless
case, many sum-integrals have been evaluated up to the three-loop level already [6, 18]. The
final matching parameter to be computed requires the evaluation of four-loop sum-integrals.
It is unfortunately not yet clear which approach would be optimal for tackling this challenge,
be it an algorithmic reduction via IBP, a numerical treatment, or a combination of both, or

whether even a completely independent idea would be needed.

e Technology transfer

Apart from driving the knowledge of thermodynamic quantities to a new level, there are other
viable directions to put the acquired perturbative techniques to work. Generalizing the methods
of generating, reducing and integrating Feynman diagrams to allow for different actions and
observables, we were able to compute the two-loop static potential of QCD, checking existing
results in the singlet sector, while obtaining new results in the octet sector [YS10], which

naturally appears in computations of heavy quarkonium spectra and decay rates.

Another main avenue for “technology transfer” is the determination of corrections to
observables studied in collider physics. A first example is the R-ratio (defined as o(ete™ —
hadrons)/o(ete™ — ptp™) ), which is connected to the imaginary part of the photon self-
energy I1(¢?) . A practical strategy to calculate its higher-order corrections is to compute
different limits, to then reconstruct the full answer using analyticity arguments and threshold
behavior [23]. The most difficult part of this program, the small-momentum expansion of

I1(¢?) up to a2, requires the treatment of 4-loop vacuum integrals.

e

The next example are QCD corrections to the p—parameter, which is proportional to the
difference of the Z— and TW—self-energies at zero momentum [24]. This fundamental parameter
is sensitive to e.g. mg,, through loop corrections, and hence requires an accurate theoretical
determination, in order to be a significant discriminator for ‘new physics’.

As a third example, note that threshold effects of heavy quarks in the running of the

strong coupling constant a;, conveniently parameterized by so-called decoupling parameters,



are related to vacuum polarization functions at zero external momentum [25]. Being a most
fundamental parameter in the Standard model, it is clear that a precise knowledge of o, and

its scale dependence is needed, hence requiring high-order calculations.

In [YS12], [YS13] and [YS15] we have demonstrated the use of our methods in these
fields.



Chapter 4

Status of the QCD pressure: Details

The QCD pressure, being the central pillar of my research during the last few years, and hence
constituting the main driving force behind all technical development sketched above, certainly
deserves to be discussed in more detail. In this chapter, | will therefore present all necessary
details in a unified notation, while linking them to the papers presented here as well as to the

literature.

As already explained in the Introduction, thermal (equilibrium) QCD possesses three dis-
tinct physical scales, two of them generated dynamically. The contributions to the pressure
(and to any other thermodynamic observable) from each of these scales can be obtained from

carefully constructing and matching a series of effective theories ([26],[YS4]).

The theories under consideration are (hard) QCD, Electrostatic QCD (EQCD) and Mag-
netostatic QCD (MQCD), governing physics on length scales 1/T , 1/gT and 1/¢*T , re-
spectively. While the first two are amenable to perturbative calculations, MQCD is purely
non-perturbative and has to be treated on the lattice. Viewing the gauge coupling ¢(7T') as
parametrically small (which is certainly justified at asymptotically high temperatures), these
three scales are well separated, and can hence be dealt with individually via the effective the-
ory setup. Schematically, for the pressure one can write pocp = pr + pam + pa, Where each
contribution depends on the matching scales. This scale-dependence will cancel in the sum,

rendering pqcp a well-defined physical observable.

Below, we specify the contributions to the MS pressure pgcp = pe + par + pr [26] from
each physical scale individually, for the case of gauge group SU(N.) and N; quark flavors.
We will work at zero quark masses m, = 0 and vanishing chemical potentials 1y = 0, and
display all dependence on the MS scale fi> = 4mwe~"p? by L = In ;£ . Effects due to finite
quark masses ([4, 27],[YS16]) and chemical potentials [28, 18], as well as generalizations to

10
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the Standard Model [29] are available in the literature, but will not be discussed here.

4.1 Contributions from the ultra-soft scale ¢°7, i.e. from
MQCD

Ultra-soft physics is not accessible by perturbative methods, due to the unscreened transverse
gluonic sector, which would lead to severe infrared problems [8]. This sector is governed by a

three-dimensional pure gauge theory. Its only parameter is the dimensionful 3d gauge coupling
Neg?,
167r2]b7[“'

making a numerical lattice Monte-Carlo treatment necessary. The detailed setup for how to

g3;, which we write as §3, = The screening length gets generated non-perturbatively,

incorporate the ultra-soft contribution into the physical pressure by a carefully defined mixture
of perturbative and non-perturbative coefficients is explained in detail in [YS16]. The result

is
PG(T> 24 £6 1 N2 1
= dal67*T 8 — + L +1 1
2 ARRTE G 190G | g Thdn 473, T3 3
+ [pert] — [nspt| + [non-pert] + (’)(e)} , (4.1)

where dy = N2—1, and a¢ = 52 — 425 72 ([YS4],[YS6]) is a perturbative 4-loop coefficient.
The three coefficients enclosed in square brackets originate from measuring the 3d YM pressure
on the lattice and matching the result to the MS scheme. To be more precise, they are the

following.
e The first number stems from a non-perturbative lattice Monte-Carlo measurement of

the 3d plaquette in pure SU(V,) theory [YS9],

4
D T E———

— 10.7(4) at N, =3,

[non-pert|

where (G = 2N° denotes the dimensionless lattice coupling, and ¢, 4 are divergences of the 3d

Iatt|ce—regu|ar|zed plaquette which can be computed in lattice perturbation theory. They read

d
0 = é‘ , (4.3)
= — 25449 N 4.4
Co (471')2 < 9 + 5.25449 ) s ( )

cs = da([0.04978944(1)] + [~0.04289464(7)|N2 + [0.0147397(3)|N)  (4.5)
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= 6.8612(2) at N, =3,

daN$
s = (277)(‘1 6dag . (4.6)
The number in ¢ is a sum of typical 2-loop (infinite—volume) lattice integrals ([30],[YS9]),
2 (%2 w2 2
with (K is the complete elliptic integral of first kind) ([31, 32],[YS9])
1 = 1
Y, = —/ dBr——— 4.8
72 Jo a:zi sin® x; (4.8)
8
= = (18+12v2 - 10V3 - 7V6) K* ((2—V3)*(v3—+/2)?) & 31759114 , (4.9)
77
1 oym2 S, sin? @y sin?(2; + ;)
= — d* : ~ 0.958382(1) , (4.10
& 4t /71‘/2 Sisin?a; 3, sin2(xi + i) > sin? y; (D, ( )
L /2 sin® ; sin’ (; + ;) sin®(y;
ps = [ Pty S Tisin 2(”7 i) sin (?/)2 ~ 1.013041(1) . (4.11)
7 Jr/2 Soisin® @ >, sin? (z; 4+ y;) 3o sin” y;

The coefficient ¢3 has been estimated by numerical stochastic perturbation theory (NSPT)
for N, = 3 [YS8] and, with higher numerical accuracy and full N, dependence, computed
from 3-loop diagrams in lattice perturbation theory [33]. In principle, it would be nice to know
the full N.-dependence of Eq. (4.2).

e The second number stems from an estimation of (the sum of all) 4-loop vacuum di-
agrams in lattice perturbation theory by NSPT [22], with the IR divergence regulated by
massive gluon- and ghost-propagators (mass term "> A2 and m?cc in the action) [YS14],
NSPT works on a finite lattice of volume (aL)?, so the infinite—volume limit has to be taken

first to ensure that the IR is regulated by the mass term only. A very preliminary result is [34]

4qr)* 1 1
[nspt] = (4) lim lim <1 — TrP> —cyln— (4.12)
8dANS am—0 L—oo N, am|3-1 term am
4 4
= W])Va [cﬁm + g N2 + NI + cﬁBNf}
AtVe
4 4
2 ﬁﬁg 30 in Feynman gauge at N. =3 .

To match the precision obtained for [non-pert], this number should be estimated with at
least 2% accuracy. It would be nice to know all four coefficients, in Feynman gauge, either by
a direct diagrammatic evaluation, or by doing NSPT for (at least) four different values of ..

e The third number stems from a matching 4-loop computation in the (3—2¢)d continuum
theory, regulated in the IR by gluon- and ghost-masses, with gauge parameter &. Gauge
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dependence, introduced by the IR regulator, is guaranteed to cancel against that in [nspt].
The result reads

> [4loop YM vac diags] = ¢°daN; (;JY {OLG + [pert] + O(e)} (4.13)

where J is the 1-loop massive tadpole integral [ 1/(p? + m?). We choose Feynman gauge
& = 1 which here leads to modified propagators 1/p? — 1/(p* + m?), and obtain [35]

[pert] = —3.73134481146281478501 in Feynman gauge (4.14)

where the number can be expressed in terms of 18 fully massive 4-loop scalar master integrals
([YS3].[YST7]). For general &, we would have to calculate vacuum diagrams with two mass

scales (m? and £&m?), which presently is beyond our computational capabilities.

The matching condition for the 3d gauge coupling reads ([36, 37],[YS11])

. Lo (1 2 P
M= q6r2r 7P 12 hyp 288 24 WL 24 mi m3
where n = Njﬂl For the g% pressure, only the leading coefficient is relevant.

4.2 Contributions from the soft scale ¢7, i.e. from EQCD

Soft-scale physics is governed by a three-dimensional gauge theory, coupled to an adjoint Higgs
field. This adjoint Higgs theory possesses a small number of dimensionful coupling constants,
which are related to the parameters of full QCD (being g*> and T') by the equations given

below. The contribution of this sector to the pressure is given by

pu(T) a1
=l dA16772T4{m% [3 —i—(’)(e)}
v [—1 4 (—L+1 I+ ln2 — 3) —i—@(e)}
EUE L 4e 2 E 4
89 11
4 —_—— _ —_
+ gpMg K YR 6 ln2> + O(E)]

+ 9

. i — 2 . 1 — 37
+ A ln ; —|—O(e)] +A§§)m§[ 43n +O(e)]

+ O3z Npme) |, (4.16)

1
o ( —|—8L—4ln'rh% —81n2> +ﬁ]\/j +O<€):|
€
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with the 4-loop coefficients a; = g—;’ — %7‘[‘2, B = —% — %IHQ — % In%2 + %Wz —

2em?In2 + EB((3) + 10 = —1.391512 [YS5], where v is the leading coefficient of a

finite 3d scalar 4-loop integral that is known numerically only [YS5],

4 [ d3ZL‘1 deL’Q dgfL‘g d3$4 1 1
Y0 = (4m) / 3 3 3 3 2 2 X
—oo (2m)3 (27)3 (27)3 (27)3 (x7 — x3)? (wg — x3)
o 1 1 1 1 1 (4 17)
234123+ 1 (11 —24)?+1 (12— 24)2 + 1 (23 —24)% + 1 '
— 0.171007009753(1) , (4.18)

and the matching parameters are [31, 26]

. mg \2 o . .
iy = <4£r) = 4" [Gra + (26mL + Gps) € + O(")
+ 5" [(280amsL+Grs) +(680ams L2+ B L+ Bra)e+ O(e)|
+ 0(¢°), (4.19)
. N.g2 - . 3 R ) 3
I = 167r2? = §+4 [(Z@JL * O‘E7> + (260L% + 2am7 L + Pps)e + (9(62)]

+ §° [453112 +2 (Bl + QBOdE7) L+ e+ 0(5)} +0(5%), (420)

W=1E = 0]+ 0. (421)
v NP 4

(2): c\E _ A . ~6

W= s = g5 1-2+ 00+ 06, (4.22)

11-22z B _ 34 10

where we have used the beta-function coefficients Bo = =3 =5 — 52— zn and, for

brevity, set z = N¢/N.. Writing Z,, = ('(—n)/{(—n), the coefficients read [26, 16, 38]

Gpa = g - (4.23)
Gps = 2amiZi + % (1-2In2), (4.24)
pg = ;dm(ﬁém 4542 —82In2) — gn , (4.25)
arr = 2807 +zla — izan , (4.26)
as well as ([39],[YS11])
AL = AByaEa(2v0 + Z1) + ; (20 4 29z + 222) — 22 (A + 3In2) — ;1 2In2 ,(4.27)

_ 1 - 2 R
Pr2 = 1 Boliea (+7T2 - 16%) t3 aEsZ1(608070 + 5+ 22 — 821n 2)

> 2
+ 520(5+102 = (19+2:)2In2) + = + = (7+6In2 — 16In”2)
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2

+ % (1-2In2+4In%2) — %ﬁ(3+6% +62; +10In2) (4.28)
) 2 .28
Prs = v 4y | Bo + 303 In2(In2+ 2vy)z, (4.29)
. 341 10
o = 2 A2+ e — (3
YE1 B0 + Ay + 18 9 ¢(3)
- 5(43 +24In2+5¢(3)) — %ﬁ(% +80In2 — 14¢(3)) (4.30)

where the ,, are expansion coefficients of the Zeta function ((1—¢) —% +3 020 % “n (note

that o = vg = 0.577216). For the ¢° pressure, the §° terms of Eq. (4.20) are irrelevant.

4.3 Contributions from the hard scale 277, i.e. from hard
QCD

Hard-scale physics can be treated perturbatively, in a simple g?-expansion, without the need
for resummations, thermal masses, or hard thermal loops. This is due to all IR effects being
properly incorporated into EQCD and MQCD, and is one of the main conceptual advantages
of using the effective theory setup. The contribution to the pressure from hard momentum
scales reads

pe(T) o 1 1 [ i
M_Qe = djplom=T 76@ {aE1+g [aE2+O<€)]

R 180
-+ g4 {OéE4 + (180 60éE4 + 2600(]5;2)[/ + OZE3 + O( ):|

dlv
+ g8 [ﬁEl + 812 4 BEL 4 By + O(e)

+ O(gB)} , (4.31)

with ideal-gas coefficient ap; =1+ £ 2, dpo = —2 (4 + 52) [3], and [6]

Sln

. . 116 220 38
g3 = 180(0&}34)2’}/0 +5 |:<5 + — Zl —_ Zg)

E 3
1121 1
2(2—571n2 Zl—Zd)
260 5
21 88 16 8 > /105
T T e V2 -z 2 (2 a2 4.32
+4(3 5n+3133>+4”<4 n)] (4.32)

and unknown coefficients Jg;, which can be determined e.g. by a 4-loop computation of
vacuum diagrams in thermal QCD. Since pqcp is physical, the divergent and scale-dependent
parts of Bg; are related to the other coefficients introduced in the above, serving as a valuable
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check on this open computation. Specifically, from 2-loop running of the 4d gauge coupling

~2 Nng(/j) A — Al — A Ny 52 2 A
9= em 9~ (fio) + G (110)(—280€) + 9" (f10) (480" — 2510) ,  (4.33)
where ¢/ = In ﬁ% =L —1In 4%‘ , one can already fix
B = 180 [4BodmsL + dug + Gpadier — 4(ac + an)] (4.34)
Bg) = 180 [28305@4} + 453 e | (4.35)
Ay = 180 [464E6 + 8papr — 260Gms — 32(aG + an) + Bgz)}
+ 203168 + 460ds . (4.36)

The remaining g%-coefficient, BEl however, entails a four-loop computation of all connected
vacuum diagrams involving quarks, gluons and ghosts, a computation that has so far not
been tackled due to the formidable task of solving many genuine 4-loop sum-integrals. From
diagrammatic arguments, it is clearly a polynomial in z = N¢/N,

BEl = Ho+ 241 + Ho + P Hs (4.37)

and we will in the following indicate how two of its coefficients (the first and last) can be

crudely estimated numerically already.

4.4 Putting everything together

Expanding in ¢, all poles cancel, as they should. In practice we make use of Egs. (4.15),(4.19)
and (4.20) to re-expand all terms with a factor 1/e or L in Egs. (4.1) and (4.16) in terms of
G*. After cancellation of the poles (and taking into account terms like % <€), we can now take
the limit € — 0 in Egs. (4.19), (4.20), whence

my = §ans+ ¢t [260amL + dng| + O0(3°), (4.38)
3 = 3+ [260L+apr] + 00 [AFL2+2 (Bi+250Ger ) L+ + O(5) - (4.39)

Collecting explicit logarithms L, they precisely cancel the scale dependence of §* up to
the order of the computation, and can hence be absorbed by writing

7 = P+ §"200L + FPUBLY +2B.L) + O3 - (4.40)
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Figure 4.1: Left panel: The normalized QCD pressure pgcn/pss at Ny = 0 plotted versus the
effective coupling g from Eq. (4.40). The g° coefficient depends on an unknown parameter A
as defined in Eq. (4.45), and the different curves correspond to choosing A = —2000 (lowest
curve) to A = +12000, in steps of 2000. Left panel: The same, plotted versus In TZ The

black dots correspond to lattice data from [11].

Note that this coupling is explicitly scale independent to the order we are working, d, ;26° =

O(g®). We now have the full pressure as a sum of its ultra-soft, soft and hard parts as

1
pocp = dAw2T4{16ﬁus+16ﬁs+45ﬁh}, (4.41)
2

N 1
Pus = 0% [8040 <1n = + 1) + 3 + [pert] — [nspt]| + [non—pert]] , (4.42)

4G,

. 3l 5 . 3 . 89 w2 11
Ps = m%g + e {ln(QmE) — 4] + gpig [—24 r + 5 1112]
50 ; (W22 g2 01— 30
Pn = Gp1+ G ags + §* [Gms — 1800us]
+ g {BEl — 180 (BEQ + apafrs + 54E554E7” : (4.44)
The ¢° coefficient of pqcp hence depends on a constant
A = Bgy £ 7200xp + 384.8260NspT (4.45)

where we recall that g, stands for the result of the open 4-loop computation, and the §
parameterize the error-bars of the numerical constants from Egs. (4.3,4.13) as [10.7 + onp]
and [30 + dnspr|, respectively. Assuming that the NSPT computation will finally have an
error-bar of about 2%, which is comparable in precision to the lattice error-bar dxp = 0.4,
A = Bg; £600. In the following, we will for simplicity set dnp = dnspr = 0, remembering the
induced error-bar on ;. Using the same coupling as in py,, the above matching conditions
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now read
mZE = §*Aps4 + § g + 0(516) )
0 = 7P+ §'amr + 3% + 0%,

(
(

Ay = g4+ 03, (4.48

3= -2 40 (

We would now like to plot the result for pgep. ldentifying the non-interacting (ideal-
gas; Stefan-Boltzmann) limit as psg = dAT4%o?E1, we could display the normalized pressure
Pqep/pse as a function of the coupling g, for fixed Nt. This is done in the left panel of Fig. 4.1,
at Ny = 0 and for various A. Our goal, however, should be to try to make contact to existing
lattice determinations of the full pressure, where typically pocp/psg is given as a function of
T/T,. Continuum-extrapolated lattice data exist for Ny = 0 only, so in the following we will
restrict to this special case. Aiming for this rather phenomenological comparison, we evidently

need to make some choices, specified below.

We use the running 4d coupling from the exact solution of the 2-loop RGE equation,
—30/31

L+ W, <—g§exp {—1 2% (L +1n i"T)D |

g*(n) (4.50)
Here, W_,(z) is one of the two real branches of the Lambert W function (see e.g. [40] and
the left panel of Fig. 4.2; W (z) is the function that satisfies W exp(I¥) = z). Note that
the above solution entails two choices: The branch of the W-function and the integration
constant were chosen in accord with asymptotic freedom (note that the argument of W
— 07 for i — o0) and the ‘usual’ definition of Ays (being the absence of a 1/In* i term

in the asymptotic expansion of §(ji) at large f1). Indeed, at large L= In ;£ the expansion
M
W_i(—¢) =Ine—Inlni+O(1/Ine) reproduces §*(f1) = 1/(23&)4—% In(2L)+O(L™1Y)) =

ﬁ f’zlﬁgf? + O(L™?) , in accord with e.g. Ref. [41].

Although in principle all dependence on the renormalization scale i, entering through L,
is of higher order, in practice we need to fix it once we need numerical values for the coupling
g. Following [YS11], we choose the scale ji by the principle of minimal sensitivity applied to
the 1-loop result for g2, and then estimate the scale—dependence by a variation of a factor
of §,, = [0.8..2.0] around this fiop, obtaining L = aE7 + In 2. The slightly asymmetric
choice of 4, here reflects the fact that the 1-loop g3, faIIs off more steeply on one side of the
plateau than on the other.

To compare with continuum-extrapolated lattice data [11], we use ;= = 1.22 §7, where
I\AS

dr, = [0.9..1.1] encompasses the central values and error bars of estimates of this quantity
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Figure 4.2: Left panel: The two real branches of 1 (z) versus z. The upper (dashed) branch
is Wo(z), the lower (solid) branch is W_;(z). Right panel: The effective coupling § from
Eq. (4.40) plotted versus In Tlc using the choices explained in Sec. 4.4. The upper/lower curve
corresponds to the uncertainty in scale choice stemming from fixing 1 and determining 7./ Ay
with (6,,97.) = (2.0,0.9)/(0.8,1.1), the bigger effect coming from the latter parameter.

from different lattice collaborations (for a summary of the different methods and results, see
[YS11]). This would translate into a horizontal error bar for the lattice data when plotted
against T'/Ays.

In the right panel of Fig. 4.2, we have plotted the effective coupling g as defined in
Eq. (4.40), converted to a function of In Tlc Note that its value is smaller than 0.2 even at
T..

The normalized pressure pqep/pse, converted to a function of In TZC along the lines above,
is displayed in the right panel of Fig. 4.1. For comparison, the continuum-extrapolated lattice
data of Ref. [11] has been included as black dots. The figure suggests a value for the Ny = 0
coefficient of the unknown constant Br1, #o ~ 8500 =+ 600, bearing in mind the error bar
defined in Eq. (4.45).

4.5 OQutlook

We have currently no idea what the 4-loop hard-scale coefficient Bry is, even though it can
be computed diagrammatically. As already mentioned above, it should be a polynomial in
2= Nt/Ng, fr1 = #o + 271 + 22#9 + 2343, where only a single (ring) diagram contributes
to #3, suggesting it as the first test-case for 4-loop sum-integral technology.

It seems possible to give an estimate of the highest-N; contribution to (g from the
large-N; solution for the pressure, since terms of order g°N? originate from the hard-
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scale pressure pg only. In [42] this was attempted by fitting the numerically known ex-
act large-N; pressure with a polynomial in ¢g. This results in #3 = 8‘%[+20(2)] —
DIn2 (1 + 12799 — 38 In2 + 167, — 823) ~ [+36(1)], where the terms proportional to In2
originate from translating the choice of renormalization scale i = 7T of [42] to our definition

of Br1, where powers of L = In 125 were subtracted out.

Furthermore, fitting the full ¢® pressure at Ny = 0 and IV, = 3 to lattice data around 47T,
[11] suggests a value #, ~ 8500+ 600, if one takes the conjecture for granted that all higher-
order corrections sum up to a subdominant contribution. There is no guarantee whatsoever
that this conjecture holds, making a perturbative computation of the #; unavoidable. We
take the above check against the lattice data as indication that the effective theory setup has
a chance to analytically describe the transition from temperatures as low as a few times 7

to infinite temperatures, in terms of computable corrections to the ideal-gas limit.



Chapter 5

Presentation of the papers
with identification of own contributions

e [YS1] Resumming Long-Distance Contributions to the QCD Pressure

In this paper, we propose a method for summing the slowly convergent perturbative series
for the QCD pressure by employing numerical lattice Monte Carlo techniques within EQCD.
The idea is to perform a lattice measurement of the adjoint Higgs condensates (Tr A2) and
((Tr A2)?) along a line in the EQCD parameter space that corresponds to keeping 4d physics
fixed. This has to be supplemented with two perturbative computations of those condensates,
in lattice and continuum regularization schemes, respectively, allowing then for taking the
continuum limit, and for subtracting out the scheme difference. Note that the condensates
are nothing but different derivatives of the EQCD pressure, making it possible to integrate

back to the pressure.

While this “derivative method” is employed in 4d simulations of the full pressure as well,
there is an important conceptual difference: while in 4d, the integration constant is fixed to be
zero at some small temperature, hence introducing an ambiguity (which is numerically small
however), we can fix the 3d integration constant perturbatively at very high temperature, in
principle to arbitrary precision. In practice, there remains sensitivity to unknown higher-order
coefficients in that integration constant of course, which can (and do) become relevant when

they are evolved to lower temperatures.

Having the status of a proof of principle, this paper offers a number of possible extensions,
such as including higher-order perturbative corrections, and/or other condensates, which will

hopefully be attacked in the near future.

My main contribution to the project was on the perturbative and the conceptual sector,

21
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while | was not involved in the lattice simulation part.
e [YS2] Simple way to generate high order vacuum graphs

The enumeration of Feynman diagrams contributing to a specific loop order together
with a derivation of the accompanying symmetry factors seems to be the 'trivial’ part of
any perturbative calculation. At higher orders, it is our experience however that an efficient
algorithmic setup of this initial step proves necessary. This does not only assure completeness
of the required set of diagrams, but it also has the potential of streamlining the subsequent
integration step considerably by grouping together sets of related diagrams, thereby avoiding

an unnecessary repetition of subdiagram computations.

The main idea is to utilize the very efficient notion of skeleton (2-particle-irreducible,
2PI) diagrams to achieve the above-mentioned grouping (into so-called skeleton and ring
diagrams). For simplicity, let us explain the main point using a generic bosonic ¢* + ¢* theory

here. The skeleton expansion for the free energy as a functional of the full propagator D reads
1
~F[D] = — (Tr InD~' + Tr I[D]D) + @[D] .

Here ®[D] collects all 2P vacuum diagrams. The full propagators D are related to their
corresponding self-energies by D~! = A~! — II where A are the free propagators. The
partition function has an extremal property, such that the variation of F' with respect to the
full propagator vanishes, giving a relation between skeletons and self-energies, dp ®[D]| =
% I1[D]. Pictorially, this corresponds to obtaining a self-energy by “cutting a propagator” in
all possible ways in the set of vacuum skeletons. Hence, knowing the skeletons alone provides

full information.

In this paper, we have succeeded in giving a closed formula from which all skeletons can
be generated. This is most useful for an algorithmic implementation, and even systematizes

the generation of combinatorical (“symmetry”) factors in an efficient way.
| was involved in all levels of this project.
e [YS3] Automatic reduction of four-loop bubbles

In this paper, | report on an implementation of an algorithm that reduces two generic
classes of (up to) four-loop vacuum Feynman integrals to a small number of so-called master
integrals. To be more explicit, these classes are single-mass-scale scalar momentum integrals,
whose integrands consist of products of either fully massive scalar progagators 1/(p* + m?),

or of a mixture of massive and massless propagators.

While the general method, relying on integration by parts and lexicographic ordering, is
much more flexible, these specific examples have been chosen since they are precisely the
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structures that arise in the two effective theories EQCD and MQCD. For both classes, |
have identified the relevant master integrals, opening the way to tackle this important set of

integrals in realistic higher-loop calculations.
| am the only author of this paper.
e [YS4] Pressure of hot QCD up to ¢°In(1/g)

In this paper, we report on the successful calculation of the highest coefficient for the
QCD pressure that can be computed in perturbation theory alone. It corresponds to the
logarithmically enhanced four-loop contributions. This computation combines a number of
different highly technical steps (such as higher-order vacuum diagram generation, automatized
algebra, reduction to master integrals, and actual analytic evaluation of the latter) for the
first time, in a physically relevant setup. Most of the details are given in the other papers
discussed here.

Phenomenologically, the result gives very encouraging hints that the effective theory setup
does indeed have a chance to correctly describe the pressure in a huge temperature interval,
once the full order O(g%) is known.

| assumed a key role in most calculations needed for the realization of this project.

e [YS5] Four—loop vacuum energy density of the SU(N.) + adjoint Higgs
theory

Here, we give details about a well-defined subset of the calculation needed in the previous
paper. We provide explicit expressions for the vacuum energy density of EQCD, and not only
enumerate the EQCD parameters that will be needed for the full O(g®) of the QCD pressure,
but also give most of them in an analytic form.

Furthermore, we discuss the evaluation of master integrals in an expansion around d =
3 — 2¢ dimensions in quite some detail, providing formulae which are useful for a more generic

set of massive integrals than the specific ones we encountered in this concrete calculation.
| assumed a key role in most calculations needed for the realization of this project.
e [YS6] Tackling the infrared problem of thermal QCD

Here, | give details about a well-defined subset of the calculation needed in [YS4]. |
discuss the steps that have been performed in order to get the MQCD contribution the the
four-loop logarithmically enhanced terms in the QCD pressure.

While the generic techniques that were employed are in complete analogy to the those
decribed above, | would like to highlight one very interesting point that occurred in the

computation: While the final result for the overall divergence of the sum of all diagrams
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seemed to contain finite parts of fully massive four-loop master integrals that are not yet
known, checking the cancellation of the gauge parameter (in principle a 9th order polynomial)
revealed one linear relation between those unknowns. This linear relation then in fact absorbed

all unknowns from the final result.
| am the only author of this paper.

e [YS7] High-precision evaluation of four-loop vacuum bubbles in three dimen-
sions

In this work, we employ an interesting and very generic method to numerically compute
€ expansions of master integrals to — in principle — arbitrary depth and precision. We test this
algorithm on the set of fully massive scalar vacuum integrals in 3d, which corresponds to the
integrals needed for (the properly infrared-regularized version of) MQCD, and obtain many
new coefficients.

The technique starts from deriving recurrence relations for suitably generalized master
integrals, introducing one extra dimensionless parameter. To derive these recurrence relations,
we use techniques analogous to those that were employed for the reduction step in earlier
calculations. After formally solving a hierarchy of recurrence relations in terms of factorial
series and computing a sufficient number of initial (or boundary) values, the infinite series
representing each master integral can be truncated, and the remaining finite (but large)

number of terms can then be summed up numerically.
| was responsible for all but the last (numerical) part of this project.
e [YS8] 3-d lattice Yang-Mills free energy to four loops

Lattice perturbation theory can be useful to evaluate renormalization constants, and to
match between lattice and continuum schemes, in order to permit incorporating lattice mea-
surements into the (continuum) QCD pressure. Due to superrenormalizability, a 3d theory
can actually be renormalized exactly, to all orders, by only computing a finite number of
potentially divergent diagrams. To complete the renormalization program for the plaquette
in 3d pure gauge theory, the four leading terms of its expansion around the continuum limit
(8 =2N./(ag?) — oo) are actually needed,

C C C
A—Tp)= 4 24—+ ... .

Doing a diagrammatic expansion in lattice regularization to this order seems to be a formidable
problem.

Using the method of Numerical Stochastic Perturbation Theory (NSPT), however, allows
to obtain numerical estimates for these coefficients, which might be sufficiently precise for
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practical use. In this paper, we determine all four coefficients by this method, with an error

that increases with the loop order, and reaches about 1.5% for ¢,.

| played a rather minor role in this project, delivering perturbative (continuum) coefficients,
and being more involved on the conceptual level. All numerical work originates from my

collaborators.
e [YS9] Plaquette expectation value and gluon condensate in three dimensions

To obtain the non-perturbative contribution to the QCD pressure, we perform lattice
measurements in MQCD. The observable we consider here is the elementary plaquette ex-
pectation value. As already mentioned above, the theory being super-renormalisable, one can
match the lattice regularization scheme exactly to the continuum (MS) scheme. This requires
a perturbative 4-loop computation on the lattice which, unfortunately, has not been completed
yet. Knowing all the divergences, we could however already perform a stable continuum limit,

getting a result that awaits the perturbative coefficient.

| played a minor role only in this project, since | was not involved in the large-scale

numerical simulations that formed the core of it.
e [YS10] Two-loop static QCD potential for general colour state

This paper summarizes a non-trivial 4d calculation, which could interestingly be per-
formed by a generalization of the techniques that were discussed above in the framework of

dimensionally reduces effective theories.

As a result, while checking an older result for the static singlet potential, we were able to

obtain a new coefficient for the octet case at the two-loop level.
| assumed a key role in most calculations needed for the realization of this project.
e [YS11] Two-loop QCD gauge coupling at high temperatures

We determine new coefficients for two of the matching coefficients that occur in the
dimensional reduction step from QCD to EQCD, via a systematic expansion in the gauge
coupling. Some of the obtained coefficients contribute to the O(g°) part of the pressure, and

hence represent further building blocks on the road to this level of precision.

Knowing the relation between QCD and EQCD gauge couplings to this precision actually
allows to assess the performance of the effective theory setup by comparing predictions for
the spatial string tension to 4d lattice measurements of the same quantity. We find good

agreement, down to surprisingly low temperatures.

| was involved in all parts of this project.
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e [YS12] High-precision epsilon expansions of single-mass-scale four-loop vac-
uum bubbles

Following the same strategy employed already in the 3d paper [YS7], we now obtain
numerical results for expansions of master integrals in four dimensions. We treat a larger
class of integrals here, to set the stage for actual four-loop computations in the framework
of Standard Model precision tests. As a service to the community, we furthermore collect all

results that are known analytically, making them available in computer-readable form as well.

As an amusing twist, we even used the integer-relation finding algorithm PSLQ combined
with educated guesses about the number content of certain integrals, to uncover analytical
values from our high-precision numerics. Most of these new analytical values have now been

proven to be correct by completely orthogonal methods.
| was responsible for all but the numerical part of this project.
e [YS13] Four-loop singlet contribution to the electroweak rho parameter

The electroweak p parameter measures the relative strengths of the charged and neutral
currents. Being a parameter vital for precision tests of the Standard Model, we have determined
a (gauge-invariant) subset of four-loop contributions. The choice of our class of diagrams is

motivated by the relatively large contribution of the corresponding set at the 3-loop level.

Again, we were able to use all the computational technology outlined above even in this
4d setting. As a result, we find a satisfyingly small correction to the p parameter, signalling

good convergence of the perturbative series.

| assumed a key role in most calculations needed for the realization of this project, except

for the diagram generation step.
e [YS14] Four-loop plaquette in 3d with a mass regulator

This paper documents a generalization of the above Ref. [YS8]. Aiming at fully incor-
porating MQCD into the QCD pressure, note that there is a small twist: In the absence of
sufficient infrared screening of the 3d gluonic fields, for technical reasons a mass term had to
be introduced into the continuum calculation, cf. [YS6]. Hence, to cancel the induced effect,
the perturbative matching computation on the lattice side has to be performed with exactly

the same regulator.

Hence, we demonstrate that NSPT is capable of dealing with a massive regulator. While
we analyze data up to the three-loop level only, it becomes clear that, given a sufficient amount
of computing time, the four-loop result that is needed to match the continuum scheme in
MQCD can be obtained with this method.
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Again, my role in this project was delivering perturbative (continuum) coefficients, and

being involved on the conceptual level.
e [YS15] Four-Loop decoupling relations for the strong coupling

The strong coupling constant « is a most fundamental parameter in the Standard Model.
Its precise value as well as scale dependence are vitally important for many theoretical pre-
dictions. To incorporate effects of heavy quarks into its running, it is convenient to define
matching (or decoupling) parameters, which arise from comparing an effective (N; — 1)-quark
theory with the original one. As usual, this matching can be performed accurately in pertur-

bation theory.

Like above, we could make use of our reduction and integration techniques, enabling us

to write down an analytic value for the four-loop correction to the decoupling constant for av.

| assumed a key role in most calculations needed for the realization of this project, except

for the diagram generation step.
e [YS16] Quark mass thresholds in QCD thermodynamics

We derive two-loop expressions for some of the coefficients entering the QCD pressure in
the effective theory setup, including quark masses m; and chemical potentials y;. Our results
can be given in terms of a minimal set of basic integrals, which in certain limits like 7" — 0

or m; — 0 reduce to analytically known terms.

These general expressions then allow us to give phenomenological results for thermody-
namic quantities for QCD and the Standard Model, accounting correctly for physical quark

mass effects.

| was involved in most calculations needed for the realization of this project.
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The strict coupling constant expansion for the free energy of hot QCD plasma shows bad convergence
at all reasonable temperatures, and does not agree well with its 4D lattice determination. This has recently
led to various refined resummations, whereby the agreement with the lattice result should improve, at the
cost of a loss of a formal agreement with the coupling constant expansion and particularly with its large
infrared sensitive “long-distance” contributions. We show here how to resum the dominant long-distance
effects by using a 3D effective field theory, and determine their magnitude by simple lattice Monte Carlo

simulations.

DOI: 10.1103/PhysRevLett.86.10

Introduction.— At temperatures above 200 MeV, the
properties of matter described by the laws of QCD are
expected to change. The system should look more like a
collection of free quarks and gluons than a collection of
their bound states, such as mesons. It is a challenge to find
observables which would clearly manifest this change,
and hopefully also be directly or indirectly measurable in
heavy ion collision experiments.

From the theoretical point of view, one of the simplest
observables witnessing the change is the free energy of
the plasma, or its pressure [1]. Indeed, according to the
Stefan-Boltzmann law, the value of the free energy counts
the number of light elementary excitations in the plasma,
be they quarks and gluons, or mesons.

The reality is somewhat more complicated. Interactions
change the Stefan-Boltzmann law, so that pressure is no
longer proportional to the number of degrees of freedom.
And in fact, interactions are strong. An explicit compu-
tation of the free energy to order O (g>T*) [2—4] shows
that there are large corrections, with alternating signs, such
that convergence is poor at any reasonable temperature. Of
course, at least without light dynamical fermions, the full
pressure can still be obtained with 4D finite temperature
lattice simulations [1]. However, in order to really under-
stand the properties of the QCD plasma phase, one should
also have some analytical understanding of the origin of
this result.

A way of at least understanding why the convergence
is poor is the observation that, when a; = g2/(47) < 1,
the system undergoes dimensional reduction [4—9], and its
static long wavelength “soft” or “light” degrees of freedom
can be described by a three-dimensional (3D) effective
field theory,

Lip = 3 TeFE + TiD;, Ao + mb TrAZ + Ax(TrAd)?,
where m12) ~ g°T?, A4 ~ g*T are parameters computed
perturbatively up to optimized next-to-leading-order level

10 0031-9007/01/86(1)/10(4)$15.00

PACS numbers: 11.10.Wx, 11.10.Kk, 12.38.Gc, 12.38.Mh

(see below). This effective theory is confining, and there-
fore nonperturbative [10,11]. In [4], L3p was used to re-
produce the perturbative free energy up to order O (g°T*)
[2,3], and the bad convergence was shown to be due pre-
cisely to these degrees of freedom.

Our objective here is to study the free energy of QCD
by including the dominant, badly convergent contributions
from L3p nonperturbatively, to all orders, by using lattice
Monte Carlo simulations. In this way, we can find out
how important the combined effect of the badly convergent
series really is in the free energy.

It is important to keep in mind that infrared sensitive ef-
fects can be different in various quantities. For instance,
the free energy is dominated by ultraviolet degrees of free-
dom, and the long-distance effects we study here may turn
out to be subdominant. Thus it would be wrong to con-
clude that any approach which manages to reproduce the
numerical data for the free energy in a satisfactory way
would also reproduce other quantities. A good testing
ground for this is the longest static correlation lengths in
the QCD plasma: they are fully nonperturbative, but it is
already known that the results of 4D simulations [12] are
reproduced precisely by the infrared degrees of freedom
that we employ in L3p [6,9,13].

The relation of our approach to the other recent ap-
proaches for the determination of the free energy of QCD
[14—16] can be described as follows. At present, these
approaches do not reproduce the known O (g°T*) result
in the limit of a weak coupling, nor do they account for
any genuine nonperturbative contributions. Thus large
infrared effects are suppressed without an a priori justifi-
cation; the justification comes a posteriori through the rea-
sonable agreement with numerical data. Our results here
attempt to provide a theoretical understanding of why the
long-distance contributions need not be important in the
QCD pressure.

Method.—The pressure or the free energy density of
QCD is a quantity which formally gets contributions

© 2000 The American Physical Society
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from both short-distance physics [/ < (#T)"'] and long-
distance physics [/ = (¢T)~']. The separation of the free
energy into these two different types of contributions was
discussed in detail in [4]. Interactions between the short-
and long-distance modes account for the parameters of the
effective long-distance theory L3p, and in addition there
is an additive part coming directly from the short-distance
modes, as we will presently specify.

To describe the effects of the short-distance modes in
detail, we find it useful to introduce the dimensionless pa-
rameters y = mp /g3, x = Aa/g3, where g3 is the gauge
coupling within the effective theory. In terms of the physi-
cal parameters T, Ayg of QCD, next-to-leading-order
“fastest apparent convergence” optimized perturbation
theory tells that [9] (for a number of flavors, Ny = 0, and
colors, N. = 3),

2 2
8o ¢ 1)
T~ 11In(6.742T/Ays)’
o 3 _ 3 .9
11In(5371T/Ay) . ° 8a2x 1672
(2)

The result of [4], Eq. (36), can now be expressed as
follows. Using the MS scheme with the scale parameter
3p. let us compute the dimensionless quantity

Fstx,y) = —Lﬁln[f DA exp(— f d*x £3D>:|,
Vg3
3)
where V is the volume. The pressure can then be expressed
as (we have here again put Ny = 0, N, = 3)

p(T) = polT) X [

“4

where po(T) = (72T*/45) (N2> — 1 + (7/4)N.Ny) is the
noninteracting Stefan-Boltzmann result. The 75 depen-
dence here is canceled by that in Fygs(x, y).

A few comments on Eq. (4) are in order. First, the term
proportional to y could also be written as ~@ (x?), and at
the present level of accuracy there is no unique way of
making a distinction. We have chosen the present form
because the relatively large logarithmic term is then dealt
with in connection with g, whereby cancellations occur.
Second, strictly speaking, In(z;p/7) should be replaced
with In(;p/T) + 8, but § = yg — In2 — 41/2160 —
(17/72)In27 — (37/36)[InZ ] (2) + (19/72)[In{](4) =
1.35 X 10™* can be ignored for all practical purposes.
Finally, with the expressions available at present, the
relation in Eq. (4) has an error starting at order O (g®),
corresponding to O[1/(47)*] within the parentheses.
This correction is, however, from short-distance physics
alone, and we shall ignore it here.

By using Egs. (1), (2), and (4), the perturbative short-
distance contribution to the pressure has been accounted
for to a satisfactory level, and we are left with evaluating
the long-distance part, Fyis(x, y). The perturbative expres-
sion for Fys(x,y) is known up to the 3-loop level, cor-
responding to O (g°T*) accuracy in p(T). Adding terms
involving the scalar self-interaction x to the result of [4],

| we can write

Ms(x,)’) y3/2 |: 1 i| y |: <3 1 E3D> dA + 2 :|
Fustey) v LT Cal = — —Indy + 1 +
dy ar | 3] @apl"M\g T 2 T P
1/2 2 _
y (89 11 77) dA+2(1 ) dA+2<10 ds )2}
+ AEZ-"m+I)-¢ — — lndy)x + — Inl6
(477)3[ A<24 6 6 AT\ T 2 4 nioy Jx
AJMS(X,)’)
+ s 5
0. 5)

where dy = N> — 1,C4 = N, and A Fys(x, y) accounts |
for the higher-order corrections. In terms of the 4D cou-
pling constant, all contributions involving x in Eq. (5) are
of order @ (g°) or higher, while the terms ~y3/2, y Iny,
y!/2 are of orders g>, g*In(1/g), g°, respectively.

As is well known [2—-4], the convergence of the pertur-
bative expansion in Eq. (5) is quite poor when values of
x,y corresponding to any reasonable physical temperature
T/ Ay are chosen. For future reference, we illustrate this
in Fig. 1. We have used Egs. (1), (2), and (4) together with
terms up to order y'/2 in Eq. (5).

The idea of our approach of improving the determination
of Fus(x,y) is the following. We write

) , (6)

AFs(x,y) = AFus(xo, yo)
N fydy<<m7 s | dx A Tus
Yo dy dy 9dx

where y = y(x) is defined in Eq. (2). The partial deriva-
tives are now given by adjoint Higgs field condensates:

A RS
g (1) (1)
MS MS,pert

dy
where (TrA3/ g%>M_S,pert is the perturbative result up to
O (y~1/2), obtained by taking a derivative of Eq. (5) with
respect to y. In the case of dA Fs/0x, a similar relation
is obtained but with the condensate {(TrA3)?).

On the other hand, with a computation in lattice
perturbation theory, a condensate measured in lattice
Monte Carlo simulations can be related to the conden-
sates <TrA%)m, ((TrA§)*sis.  Because of the super-
renormalizable nature of L3p, such analytical relations
can be computed exactly near the continuum limit [17,18].

11

TrA(%

2
83

TrA3
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FIG. 1. The pressure in Eq. (4), with the long-distance part
from Eq. (5) included in various loop orders. The 4D lattice
results are from the first reference in [1]. It should be noted
that they have a normalization ambiguity at low temperatures
T =< T. allowing for a small shift of the curve.

Thus, we need to evaluate the condensates on the lattice,
transform the result to the MS scheme, and perform finally
the integration in Eq. (6) numerically. When added to
A Fis(xo, yo), we obtain a nonperturbative result, which
we can plug into Eq. (4).

What remains is to determine the integration constant
A Fis(xo, yo). The idea is that, despite the bad conver-
gence shown in Fig. 1, at high enough temperatures the
form of A Fys(xo,yo) is known. Indeed, inspecting the
general structure of Eq. (5), we know that

€o xo Ca
A JMS(XO,)’O) = (477)4 dACg|:1 + @<C_A, 477y1/2>:|
0

8
Here ep, containing an unknown logarithmic depén2
dence on Yy, represents the famous nonperturbative
O (g%T*) term [10]. Suppose now that we choose
T = Ty ~ 10" Ay, corresponding to xo = 1.0 X 1072,
yo = 3.86. Then the higher-order terms in Eq. (8) are
expected to be subdominant, since CA/(47Tyé 2) ~ 0.1
and xo/C, ~ 0.01, and we only need to know ey.

The main error sources of this nonperturbative and un-
ambiguous setup are as follows.

(a) Even though, in principle, an independent nonper-
turbative determination of e is possible, for instance, by
measuring the condensate (TrF’ ,2]> along the lines in [19],
doing this systematically requires a 4-loop computation in
lattice perturbation theory, and this is beyond our scope
here. Therefore we will treat ¢( as a free integration con-
stant whose magnitude will be fixed below.

(b) Because of the smallness of x/Cy4, we will also
ignore here the term arising from dA Fyz/0x in Eq. (6).

(c) The numerical procedure introduces small statistical
errors, as well as systematic errors, from the extrapolations
to the infinite volume and continuum limits.

(d) Finally, we should of course remember that the ef-
fective theory Li3p loses its accuracy when higher-order

12

operators, not included, become important. In fact, for
Ny = 0the QCD phase transition is related to the so-called
Z(3) symmetry [11,20], and this symmetry is not fully re-
produced by L3p [9,21] without all of the higher-order
operators. There are many indications, however, that the
effective theory should be rather accurate down to low tem-
peratures, T ~ 2T, [6,9,13]. Below that, some other ef-
fective description may apply (see, e.g., [22]).

Numerical results.— After this background, we show
in Fig. 2 the difference in Eq. (7), measured with lattice
simulations. This result is then used in Eq. (6) to obtain
A Frs(x,y). When added to Egs. (4) and (5), we obtain
Fig. 3. As discussed above, the boundary value at (almost)
infinite temperature, determined by ey, is for the moment
a free parameter.

We observe that at low temperatures the outcome de-
pends strongly on the value of ej. The correct value would
appear to be e¢g = 10.0 = 2.0. Even then, the present re-
sults lose their accuracy at T ~ 57, but seem to work well
above this. Exploiting the full power of the dimensionally
reduced theory down to its limit 7 ~ 27, would also ne-
cessitate the inclusion of ((TrA3)?).

Discussion.—1In 4D lattice simulations, there is a (nu-
merically small) ambiguity in the determination of the
pressure, because only pressure differences can be mea-
sured, and thus an integration constant has to be specified
at low temperatures in a nonperturbative regime. Here we
fix the integration constant by starting from the opposite
direction, from very high temperatures. This allows us to
determine all quantities in terms of 7/Ayg and the num-
ber of fermion flavors, without ambiguities. We can also
address a huge range of temperatures, unlike 4D simula-
tions which can only goup to T ~ afew X T.,.

The result of our procedure is summarized by
Egs. (4)—(7) and Fig. 3. We draw two important conclu-
sions. The first is that the outcome depends strongly on
the nonperturbative contribution of order @ (g°T*) [10],

108,(T/As)
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FIG. 2. The difference in Eq. (7). Here Bg = 6/(g3a), where
a is the lattice spacing, and the continuum limit corresponds to
the extrapolation B¢ — .
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FIG. 3. The pressure after the inclusion of A Fgs(x,y) from
Eq. (6). Statistical errors are shown only for ¢y = 10.

as can be observed from the ey dependence in Fig. 3.
The value of e¢g could, in principle, be determined by a
well-defined procedure, although in practice it is a project
of considerable technical complication. But our present
study provides an estimate for what the result should be.
The order of magnitude O(10) seems reasonable, since
it is known from other contexts such as the Debye mass
[13] that nonperturbative constants tend to be large.

The second is that, when the large nonperturbative
O (g%T*) term is summed together with the set of all
higher-order terms determined via (TrA3), then these
long-distance contributions almost cancel at T = 30Ayg.
Indeed, the sum, the curve with e¢g ~ 10 in Fig. 3, does
not differ much from the term @ (y'/?) in Fig. 1. For
smaller temperatures, 5Ayg = T < 30A3gs, on the other
hand, only our numerical results are trustworthy.

Finally, we also find that, although the dependence on
the effective scalar self-coupling x is of high perturbative
order, in practice it is expected to play a role as one ap-
proaches T.. Its contribution can be obtained from the
condensate ((TrA3)?). To relate this to the MS scheme re-
quires again a perturbative 4-loop computation.

Let us end with a philosophical note. When one wants
to understand 4D simulation results, one could argue that
one should aim at almost fully analytical resummations
[14—16]. However, we suspect that these are unavoid-
ably specific for the particular observable considered: they
may work for the entropy or pressure because the result
1s short-distance dominated, but would fail, for instance,
for Debye screening where long-distance effects are domi-
nant. It seems to us that it may ultimately be more useful
to obtain a unified understanding of the relevant degrees of
freedom in the system, even if some observables have to
be evaluated numerically.

This work was supported by the TMR Network, Fi-
nite Temperature Phase Transitions in Particle Physics,
EU Contract No. FMRX-CT97-0122. We thank the Cen-
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We describe an efficient practical procedure for enumerating and regrouping vacuum Feynman graphs of a
given order in perturbation theory. The method is based on a combination of Schwinger-Dyson equations and
the two-particle-irreduciblé“skeleton”) expansion. The regrouping leads to skeletons containing only free
propagators, together with “ring diagrams” containing all the self-energy insertions. As a consequence, rela-
tively few diagrams need to be drawn and integrations carried out at any single stage of the computation and,
in low dimensions, overlapping ultraviolet and infrared subdivergences can be cleanly isolated. As an illustra-
tion we enumerate the graphs contributing to the four-loop free energy in QCD, explicitly in a continuum and
more compactly in a lattice regularization.

DOI: 10.1103/PhysRevD.65.045008 PACS nuntderl11.15.Bt, 11.10.Wx, 12.38.Bx

[. INTRODUCTION the scalar integrals remaining are hard to evaluate analyti-
cally. It is therefore clear that, ideally, one would like to

There are many physics contexts where multiloop Feynautomatize the whole proceduffer a review of the current
man diagram computations are carried out. In QED one goestatus see, e.g.13]).
up to the four-loop leve(for reviews see, e.g[1l]) because In this paper we concentrate on the first step of any mul-
experiments are so precise. In particle physics phenomendiloop computation, the enumeration of various Feynman
ogy, particularly QCD, one goes up to the four-loop leveldiagrams. This step should be the easiest to automatize, since
(see, e.g.}2]) because the coupling constant is not small. Inall one needs is a straightforward evaluation of Wick con-
studying critical phenomena in the simplestN)(condensed tractions. Indeed, various packages, SUCIFERNARTS [14]
matter systems, one goes up to the five-loop Iések, e.g., andQGRAF[15], are available for determining-point func-

[3]) because the effective expansion parameter is not smaltions in a given particle physics model.

Studies of QCD at a finite temperatuFeare faced with a For vacuum graphs in condensed matter systems a similar
similar challenge. Indeed, the coupling constant expansioapproach is possible. For the quarticN)(scalar model the
converges even worse than at zero temperature requiring abmbinatorics is not yet too hard, but variants thereof al-
least T>10° Aqcp to make any sense at d.5]. So far, ready require some work. Consequently, graphical algo-
though, only the resummed three-loop level has been reacheihms have been developed at four-loop order and beyond
for the simplest physical observable, the free en¢fybe-  for a number of simple mode([46].
cause a broken Lorentz symmetry makes the analysis much In many cases, though, a straightforward generation of the
more complicated than in the cases mentioned above. In fadyll set of diagrams of a given loop order may not be the
even in principle only one more order(gartly) computable, ideal way to go. In realistic theories there are very many
and then the expansion breaks down compleftély Multi- graphs, and all integrals would have to be evaluated on the
loop computations are not useless, though: the infrared protsame footing. This is almost impossible, particularly if many
lems can be isolated to a simple three-dimensi¢8B) ef-  different masses appear.
fective field theory[8] and studied nonperturbatively there ~ Here we wish to present what would seem to us to be a
[9], but to convert the results to physical units from lattice maximally manageable setup. All vacuum graphs are gener-
regularization still necessitates a number of fixed-order perated, but they are cleanly separated into two groups: one, of
turbative computationgl0,11,13. two-particle-irreduciblg2Pl) “skeletons” with free propaga-

As the loop order increases, so does the computationabrs, and the other, of “ring diagrams” with various self-
effort. The sheer enumeration of various diagrams and theignergy insertiongsee alsd17]). The self-energies, in turn,
symmetry factors becomes nontrivial. The group-theoretiare directly obtained from lower order skeletons. We find
and Lorentz structures of single graphs are involved. Finallythat this setup economizes the generation of the various

graphs quite significantly. We also point out that in low di-
mensions, relevant for statistical physics applications, the in-

*Email address: keijo.kajantie@helsinki.fi tegrations remaining are qualitatively different in the two
"Email address: mikko.laine@cern.ch sets.
*Email address: york.schroder@helsinki.fi As an illustration of the setup, we enumerate the diagrams
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contributing to the four-loop free energy of finite temperatureloop and can thus be introduced only at the Et#]. Second,

QCD (as well as QED and the symmetric phases of the elecene should notice that the sign conventions in Eds. (2)

troweak theory and scalar electrodynamic¥Ve hope, are such that in the case of Euclidean actiopg, is typi-

though, that the setup may be applicable to some other caseally negative.

as well. That is why we wish to separate it from the evalua- For a theory with a broken symmetry, the inverse free

tion of the integrals arising in the finif€ context[18], spe-  propagatorA ~* and the couplinggjj... are functions of the

cific for that physical situation. order parameter, but otherwise there are no essential compli-
Our plan is the following. We summarize our basic nota-cations. We return to this point in Sec. IV A.

tion in Sec. Il, reorganize the standard skeleton expansion in The partition functionZ[J] in Eq. (1) is the generating

Sec. I, review the Schwinger-Dyson equations fepoint  functional for full Green's functions] ™ = 572[J]|;_o. As

and vacuum graphs in Sec. IV, and combine them with theisual, we define

modified skeleton expansion to obtain a generating formula

for skeleton diagrams in Sec. V. The corresponding results W[J]=In2Z[J], (©)]

are given for a lattice regularization of a generic model in _ . , _

Sec. VI. As an illustration, we show the loop expansion forthgngensratmg functional of connected Green’s functions,

the free energy of QCD and related models in Sec. VII. Wel n - = 63W[J][;—o. Finally, one can define the effective ac-

discuss some basic properties of our setup and conclude #PNn via

sec. Vill Sl $1=WIII-¢1,  $=5WIL, @

IIl. NOTATION which  generates 1Pl  Green's functions,T't""

Let us start by introducing a concise notation. While the™ 84Setl ¢lly—o. Note, in particular, thabSeql ¢]=—J. The
method is valid for any theory, we explicitly give all equa- Yacuum, or free energy (made dlmen_S|onIess by a division
tions for a generig3+ ¢* model. Later on we discuss more with the temperaturd’), can be obtained from any of the

specific examples within this class, in particular QCD, asgenerating functionals as

well as some extensions of this class. The generic class also __ __ __
includes the electroweak sector of the standard model, both F=-InZ[0]=~WLO]=~Se{ O]. ®
in its symmetric and its spontaneously broken phase. From the basic relationgy= 6,;W[J], 8,Serlb]=—1, it
The partition function is defined as follows that
23] f Dep eSle1+3e 1 SWL 185 Serl ¢1= — 1. ©®

Defining, as usual, the “proper” self-energy by
whereS[ ¢] is the action,

. . . 85Ser $pl=—A"T+II, (7
= oA+ 0o N 0O .
Sel== 5 @il @i+ 37 ik @ikt 77 ik PiPj Pk we see from Eq(6) that 55W[J] is the full propagator:
() 1
and summations over various indices, numbefiregl sca- SSW[J]=D[ ¢]= T =A+AITA+ATTATIA +---.
lar) fields and their internal and spacetime structures, are (8)

implied. Two comments are in order. First, we will for the

moment not display fermions explicitly. As far as vacuumWe shall use here the following notation for free and full
graphs are concerned, they do not introduce any complicgropagators, the proper self-energy, as well as general 1PI
tions apart from the usual overall minus sign for each closedertices:

A = — (free propagator), (9)

D = === — +—@— + + ... (full propagator), (10)

nm = -- --  (proper self-energy, with legs “amputated”), (11
A™! = --g-- (inverse free propagator, with legs amputated), (12)
555t = -: (general amputated 1PI vertex) . (13

n

045008-2
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Ill. SKELETON EXPANSION WITH FREE PROPAGATORS H3=ng[A]+(Hi2rr[A+AHi1rrA])3

We next review the skeleton expansion for the free energy irr i A yire
F [20,21] and modify it such that full propagators can be TUILIA+ATA+ATT ATI A,
replaced with free propagatof&7]. By a skeleton we mean _
a 2PI vacuum diagram: one that remains connected even if =IISTA]+ TRV A+ TRA2[A], (19)
any two lines are cut. The skeleton expansion has been used
as the starting point also ii7].

It can be showrj20,21] that the loop expansion for Eq.
(5) can be written as

wherell]" aren-loop 1PI graphs, whildI[**™ are obtained
by cutting m lines in a lower ordedI,[A] and dressing
them appropriately:

I j l

wherei={bosons, fermiors Cyso= 1/2, @andCeermion= — 1 red 1)r A 1_ irr irr
Here ®[D] collects all 2Pl vacuum diagrams. The full Mg V[A]= (ATl A)j0s T2 TA]
propagatorsD; are related to their corresponding self- A TTIM A Y irr
energies byD '=A"1-1I [cf. Eq. (8)], whereA are the TAILA+ALTALTA);05 HTTA]L
free propagators. Both, II, and® can be regarded as func- (22
tionals of the full propagators. The partition function has an
extremal property, such that the variationFofvith respect to 1
any of the full propagators vanishf20,21,23, giving a re- 420 A = 2 (AIITA) (AT A) 8y 85 TTTTA].
lation between skeletons and self-energies: 2 . Ik 22
3, P[D]=cII[D]. (15
For the explicit diagrammatic characteristicsI6f*", see
Here we have introduced the implicit notation that wheneveSec. V B.
a term is multiplied byc;, thell's andD’s following it are It is easy now to unfold the loop expansion also for
assumed to carry the same subscript. Pictorially, @&  P[D]=2,=,P,, the last term in Eq(16). Up to the five-
corresponds to getting a self-energy by “cutting a propagaloop level, we can write
tor” in all possible ways in the set of vacuum skeletons.

;l(;ar:]ce knowing the skeletons alone provides full informa- (Po[D]) 5= (D[ A+A(IT,+I1,+1I5)A
In Egs.(14), (15), it is the full propagator® which ap- A+ 1) AT +115)A
pear in the skeleton graphs and self-energies. We would in-
stead like to obtain skeletons with free propagators. As a first +AILATTL AL A Dnss, (23
step in this direction, we expan@ in terms of the self-
energy insertion$I[D], D=AX,-,(ITA)", to get (P3[D])pes=(P[A+A(IT;+1I,)A
1 +AH1AH1A]) <5, (24)
F=> ciTr{InA‘lJrE (1—ﬁ>(HA)” "
i n=2
(P4[DDn=s=(Py[A+AIT;A])p<s, (25
—®lAD, (HA)”}. (16)
=0
" (P5[D])nes=Ds[A], (26)

We then have to evaluaié[D].
To go forward more explicitly, we restrict ourselves to the where the arguments are to be Taylor expanded, with first
five-loop level here. Let the subscriptdenote the loop or- derivatives obeyingcf. the diagrammatic identity Eq15),
der, and writd1=3,_I1,,. It turns out that we need at most evaluated with free propagatgrs
I15. In a straightforward way, we obtain

_ Sy @ [A]=cIT [A], (27)
H1=H1[A]EHT[A], (17) A n[ ] ittn 1[ ]
H2:Hi2rr[A]+( ill'r[A+AHilrrA])2 ?ilggdr}irg];rée(;szgg)s_(bzr;;ging back reducible self-energies, de-
. Inserting these expansions into Ef6), we finally get, up
=I5 [A]+ 5 [A], (18 to the five-loop level,

045008-3
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& 3
§(AH1)

1
—F==2 ¢TrinA™ "+ &,[A]+ ®g[A]+ X ¢Tr| 5 (Al
[

+D[A]+ D ¢Tr

1
- AHlA( e+ > redd

1 w1
4(AH1)4+(AH1)2A(Hgf+ ZH;G“”)

+ DA+ ¢Tr

1 . _
+§AngA(ng+H;edl))+AH1A 3

I + %Hf;dlw 1ng‘*2>” (28)

or, written diagrammaticallyand denoting byF the noninteracting result
-F = —Fo + q)g[A]

(o5 (1673 D))
+ <<I>5[A] +> 6 (% . ++%
€ P - )

Here a circle withn inside denotedI", a squarell[?*?,
and a double squaiid®® . We will term the skeletons with
free propagatorsp[A], irreducible Note that the numeri-
cal factors in front of various types of ring diagrams do notFor the generating functional of the connected Green’s func-
appear to trivially follow from any simple symmetry argu- tions, Eq.(3), one gets

ment (particularly in the case of reducible self-energy inser- Jexng

tions),pbut are b)elzst worked out explicitly via the Ta?/)llor ex- 0=STWTJ]+ 5] +J. (3D

pansions we have described. Finally, for the effective action, Eq4), we use from Sec. I

Equation (29) is the starting point of our setup. It ex- w\vrr 37— — (5D SN S =W" —Dl 1S
presses the free energy in an economic way in terms of thtﬁ_at_ S'[ﬁﬁ] t(é, oétitai(n $183)0, [J]16,=D[¢]é,, and
- effl

irreducible skeleton®,[A]: either as direct contributions
or as self-energy insertions obtained from the same skeletons g —STh+Dl[ 18 32
via Egs.(27) and(20)—(22). We note that at tha-loop level, el $1=ST+DI$]0,]. (32

one needs®,[A], but only II, [A], obtained from pyttingp— 0 on the right-hand side, this gives the SD equa-

ozf D 5,e391199=(5'[8;]+3)Z[J]. (30

®,_4[A] tion for the one-point function, while taking derivatives with
respect top on both sides of Eq.32) and putting¢— 0 only
IV. SCHWINGER-DYSON EQUATIONS WITH FULL afterwards generates SD equations for higher-point Green’s
PROPAGATORS functions

Next, we need to generate the skeletdn$A ], needed in
Sec. lll. To do that, we first review briefly the general setup
of Schwinger-Dysor(SD) equations, converted to our nota-
tion. The SD equations will then play a central role in our

main result, Eq(49), which is an explicit formula allowing S5.DId1=D 23S D 34
for a systematic generation of all skeletahg[ A ]—in prin- oPLAI=DL](0Serl #1DLS] 34

ciple to any order. In this section, we follow closely the very A pote may be in order here concerning theories with

IP'=65'S'[¢+D[ #1561l g0 (33

HereD[ ¢] is in Eq.(8), and we note that

enjoyable presentation by Cvitanoyit9]. spontaneously broken symmetries. In that cagecorre-
] ) sponds to the fluctuating field around some reference value
A. General n-point functions v, typically v=(¢). The quantity we should ultimately be

The basic SD equation for the generating functiaffal] ~ computing is the free energy density as a function of
of full Green'’s functions derives from the trivial fact that the v: i.e., the effective potentiaV(v)=F/(volume). Then
integral of a total derivative vanishes: everything goes as before: we still p#pt—0 in the equa-

045008-4
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tions above after differentiation, while the condensatep-

pears as a parameter in the free propagators as well as in thie

cubic and quartic couplings in EE) [the termJ¢ linear in

¢ in Eg. (1) need not be changel®3]]. The graphs also
remain the same:
expansion in Eq(29), are to be includefi23]. Tadpole-type

graphs often associated with broken symmetries would onl

be generated if we want to reexpand the valu¥ @f) at the
broken minimum in a strict loop expansion: writing
=3 =0Vn, V=220V, such thatvj(vy) =0, implies

only 1PI graphs, generated by the loop

PHYSICAL REVIEW [B5 045008

1 12Vv))3
24

lrvg/ (Vi)4V'”’
(Vo)*

LV
8 (V”) v=v ’

(35

where the latter terms inside the square brackets correspond
Yo various tadpole graphs, with obvious notation: Vglis
the free propagator of the Higgs particle with a vanishing
momentumy;(V}) is a one-loop diagram with one létyo
legs, Vy is a three-vertex, etc.

Let us now illustrate the structure of E¢33) for the

1 (V)2 generic model in Eq2). Starting from Eq(2), writing down
V(v)|vr(v)=0=Vo(vo) +Vi(vo) +| Vo— 5 1” } indices, and employing E¢34), we obtain, for the right-
2 Vj v=vg hand side of Eq(32),
! N2\ " 3\ s -1 1 1
NV ViV, N 1 (V1) Vl_} (Vo) V’o} 04,S=—Ajj ¢+ §7ijk(¢j b+ Dj)+ 5 Yijki (Pj P
PV 2 (W) 6 (WP
+Djkd1+ D+ Dby
12+ n ! AV rr+ I\ 2\ s/
N V4_1-(V2) ,2V1V3+ 1 2ViVoVi ’ (2V1) V5 +DjmDinDi0 8y, 4 55, Serl B1). (36)
2 A 2 (Vo)

2\ 201\ NN We now take further derivatives according to E§3). Put-
13(V)*(Vy)* +3(V},) 3V2V o t(V1)'V ting ¢=0 after each differentiation, we thus obtain the stan-
6 (Vo) dard equation$written in the notation of Eq¥9)—(13)]

-~ 1. 1
- +OHEO @
= OO D @

= — --f--+ -@-, (39
OO OB D o)

- .@ SO 40
S leeNorior ile:

+ {2-loop terms} , (41)

where “cyclic (nq,n,,..

.)" denotes cyclic permutations of Sec. VI.

the legs numbered. We have not written down the two-loop Let us stress that in a local theory the manipulations
terms in Eq.(41), since they are not needed in our explicit needed in Eq(33) can essentially be made using regular

four-loop demonstration below. Likewise, all higher-point derivatives and can thus easily be implemented algebraically.
1PI1 functions Flp', n=5, start with one-loop graphs in Introducing furthermoré as a loop counting parametea4]

the model of Eq.(2) and will again not contribute at allows for an iterative solution of the corresponding SD

this order; they will for®s, as well as in the model of equations.
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B. Vacuum diagrams

1 1
—hdy Seﬁ[¢]:<hs[@]> =7 SL#+DL¢]oy]. (44)

The SD formalism above provides equations relating
n-point Green’s functions. To incorporate vacuum diagrams,
one can use another simple trick: scaling. Noting that, e.g.The free energyr = —Sc{0] can now be obtained by setting
Z[J] is a functional of all interaction parameters present in¢=0 and integrating oves. _ _ _ _
the action,Z[J,¥i , ¥ijx .--.], one can derive hosts of rela- Noting again that after a rescaling of the integration vari-

tions by varying any of these parameters. ables an expansion if is equivalent to the loop expansion
A most useful example is to rescale the entire action a§24l, one can integrate the left-hand side of Ed4) by
S ¢]—(1/h) S ¢] and then varyi: J#(L/R)[---], but on the right-hand side one integrates over

the loop number. Writing
1 11
—haﬁInZ[J]—<S[<p]>—S[5]Z[J]. (42 _
h 291 A7 - Sl 0]=F =Fo+ Fiu=Fo+ 3, FI, (49
n=2
Rewriting this in the “connected” languageecallW=In Z),
wheren counts the number of loops, it follows that

1
—hdyWLI]= o SIW'[I]+6,], (43) , 1
Fr'=——7{S[¢+D[$]54lls-0ln N=2.  (46)
allows one to finally go over to 1Pl functiorig; W= d; Ses
+ S d+ 30y p= S, W' = ¢, and5;=W"5,=D[ ¢]6,): lllustrating Eq.(46) for our generic theory in Eq2), we get

ORISR O ORI EI()] @

where we again use the notation of E¢®—(13).

In principle the whole loop expansion can now be generated from(&#), using Egs.(38)—(41). The n-loop vacuum
diagrams are expressed in terms of hRoint functions, which in turn are governed by a set of SD equations. Looking closer
at it, though, it is somewhat of a mess: one has to expand full propagators in terms of free oneslEsdube SD equations
to iterate loops folI's, which brings back full propagators, etc. Fortunately, none of this is necessary f@%cas we now
explain.

V. GENERATING THE IRREDUCIBLE SKELETONS ®[A]

The key observation for combining Schwinger-Dyson equations and the skeleton notation in a useful way is that we need
to extract from Eq(47) only a specific partP[A]: we already know, by Eq29), what all the rest combines into. But then full
propagators can be replaced by free propagators in all but the first term (@ #qglndeed, any self-energy insertion within
one of the other graphs leads to a two-particle-redudi®iRR) diagram. For the same reason, the 1PI vertices in(4&g).can
be iterated by using the SD equations of the form in Ed8), (41), but with free propagators. More precisely, it goes as
follows.

To generate thareducible skeletonsP[A] from Eq. (47), it is sufficient to expand the first term as

Q - Q + ®+{2PR}
= Trl+%@+%®+%@+%@ + {2PR}, (48)

where in the second step E@8) was used. Taking into account the minus sign in the relatioR ahd ®[A] [cf. Eq. (29)]
and writing again the loop expansion &s=3,,..,®,,, one finally obtains a closed exact equation

vty (B HOOHD @), e @
I

Equation(49) is our main result. It generates all skeletonsself-energies via Eq27) and the analogues of Eq&0)—
of all orders in the theory of Eq2), once Eqs(40), (41) are  (22). Inserted finally into Eqg.(29), we obtain the free
used(with free propagatops The skeletons, in turn, generate energyF.
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A. Vacuum skeletons up to the five-loop level a matrix notation for how the vertices are connected. The

The procedure of working out E¢49) is simple and me- significant entries (_)f the matrix can be ordt_ared to a_single
chanical and can, at least up to the four-loop level, even b8umber, and by doing the same for all possible orderings of
carried out by hand, as we shall demonstrate. The only confhe vertices, a unique representatifgay, the smallest of
plication arising is the identification of equivalent topologies: Such numbenscan be assigned to each topology. For an ex-
the same graph can be written in very many different Waysp”Cit implementation of this kind of a procedure, see the
In order to deal with this situation, it appears easiest to assecond paper ifi16].
sign an algebraic notation for the different topologies, rather Let us now explicitly work out the diagram classes in Eq.
than a mere graphical one. For example, one can count tHd9) up to the four-loop level. For the first one, inserting Eq.
numbers of three-point and four-point vertices appearing ir(40) gives either a two-loop graph, or three-loop graphs to be
the graph, and within those equivalence classes, one can ugerated further on, or directly four-loop graphs:

O, - @+{®+%®+®]4+®+@+@+5( D o

Here the further iterations give

@4 = @”@f@“ =B (51
%®4 - 1) HE) =P -OB+(6)+1) (52
@, - @ B0

We have dropped five-point functions each time they appear, since in the model(@),Bfjey start with a one-loop term, so
that diagrams containing them generate higher loop orders.
The second class in EG49) only contributes tab,[A] and is trivial. For the third class in E§49),

AD), - = W], - =B+ =D o
For the fourth class, we only need the one-loop terms in(Egj,

@4 - @+3@+6@+%@' (55

Collecting finally these different contributions together with coefficients according t¢48j.we get

%:ﬁ@%@O’ (56)
=)+t (\D++(0) - 7
#= H(@ADHDAPH QD HOD -

Proceeding to higher loop orders, an automatized treatment proves essential, for the reasons outlined above. Implementing
our generic formulas as well as an ordering algorithm separating topologiesin[25], we obtain in a straightforward way
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the complete set of five-loop skeletons,
$y=1 s CED LD+ (D) 18D 18N D
5= 2Tl 18\ 16\ [ 2\ U] 4 2 2
41 41 v Y 1 1
+1 +1 +3 +3 +3 +1
H(Q+p+ e+ i+Ep
1 1 1 1 1 1 1
@D EHIDHOHDIQ
ADAPAPHID @O

Note once more that these skeletons are all that is needed for generating the loop expansion for the full free energy, as
discussed above.

OO

Ool»-\

B. Self-energies up to the two-loop level

Now that we haveb [A] in Egs.(56)—(59), irreducible as well as reducible self-energies can easily be obtained with Egs.
(27), (20)—(22), etc. For bosonic particles, for instanag £ 3), we get

mr = -@- = (O () (60
= -o- = (DO HOHoRG . @

red(l— __.__ - '@'4‘% @ ’ (62)

etc. Note that the outcome of the derivative in E2jf) must be symmetric in allbosonig indices. The three and four-loop

self-energies could be derived frofn, and® 5, respectively, but we choose not to give them here, since they are not needed
for the set of four-loop vacuum diagrams that we will display explicitly in Sec. VII.
With Egs.(60)—(62), the ring diagrams in Eq29) are readily written down.

VI. GENERIC MODEL ON THE LATTICE

So far we have considered the generic model in @y. However, in a lattice regularization of gauge theories, higher
vertices appear as well, without spoiling renormalizability. At the generic level, it is straightforward to add such couplings to
the theory in Eq.(2). We can include, e.g., terms up t0(1/8!)¥ijkimnop®i P} PkPI PmPnPo®p, as would arise in lattice
perturbation theory for SU{) gauge theories, if one keeps terms contributing to four-loop vacuum graphs. Such computations
would be needed when one converts results of three-dimensional numerical Monte Carlo studies from lattice to continuum
regularization10].

In this case, everything goes as before, except for the appearance of extra vertices in the SD equations, as well as in Eq.

(49). We shall here simply spell out the final results, without rewriting explicitly the modified SD equations. We obtain the
following additional skeletons:

_ 1 1

. = D@4 @+ O QD+
HEOHEOHOOOHERHR. o
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as well as the additional irreducible self-energy

— 1 1 1 1
O RGN ORIE S

where we again assumeg= 3.

VII. APPLICATIONS: QCD, QED, SQED, ELECTROWEAK THEORY

As an application of the generic formulas derived above, we consider in this sectiti) §difge theory with fermions and
a scalar field. This class includes QCD and Q&ihere graphs containing scalar propagators and, in the latter case, gauge
field self-interactions are to be dropped Jpuds well as the electroweak theory and scalar electrodynatS8iQ€D. For
brevity, we display here only the vertices appearing in the symmetric phases of the latter theories. We mostly use the language
of QCD, referring to the gauge fields as gluons, etc.

The Lagrangian is specified by giving Feynman rules for the free propagators and free vertices,

’ ) 7-r"'§‘t\7..¢'§'%.,a/&a}<v><v><v (66)

where gluongscalarg are denoted by wavystraigh} lines. Both quarks and ghosts are denoted here by dotted lines; the
Feynman rules for them are different, but the symmetry factors agree—the only exception being diagrams with more than one
closed fermion loop, in which case both ghosts and quarks can appear in the same diagram simultaneously, reducing the
symmetry by an obvious factor.

We do not here write down counterterms explicitly. Coupling constant counterterms can be viewed as a part of the cubic and
quartic couplings, while wave function and mass counterterms can be treated as a paitrefitieble self-energiedI;',
making their appearance only in ring diagrams according to(Z9).

Let us first note that once we write down the summation over the field content explicitly i2)Ethe “natural” symmetry
factors in front of the vertices change. For instance, writing the four-point vertex in the case of two sets of §iglds,
—{Ai}+{B,}, and using the symmetry of;; , one gets

1 1 1 The only thing remaining is to write the summation over
21 Yiik @199k = 77 Vi ARAKATT 37 YijkaAiAAB particle species explicitly also in the propagators of Egs.
' ' ' (56)—(58),
1
+W7ijal3AiAjBaBB+.“' (67) = n . + B '
(69)

S_imilarly, writing the three-point vertex for three different Only the vertices allowed by the Feynman rules are kept
fields, {¢i}—{A} +{B,} +{Cwm}, one finds after this substitution. This generates all the graphs, with the
correct symmetry factors.

1 1 1
31 YikPi®iPkT 3y YikAiA A 21 i «AiAB,
A. Vacuum skeletons up to the four-loop level

+ i amABLCy . (68) The procedure outlined above can easily be carried out
explicitly, and up to the four-loop level even by hand. The
main complication is again the identification of various

With these conventions, each tree-level vertex in the graphiequivalent topologies, and for this a suitable algebraic nota-
cal notation corresponds just t@j , Vi, €tC., without tion may be more useful than a graphical one. As a result, for
any symmetry factors there: all of them are shown explicitly.the field content in Eq(66), we finally obtain
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Using Eqgs.(27), (20), the skeletons above immediately produce the self-energies of the model (G8EdWVe obtain

(72)

1 1 1
A@ O

B. Self-energies up to the two-loop level

(76)
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000 O S 7
6) ©. @

O .
= 1®+1{?}+% +5 () - (81)

C. Ring diagrams up to the four-loop level

To be exhaustive up to the four-loop level, let us finally give the set of ring diagrams for the model(6BEVhile there
are no ring diagrams up to the two-loop level, from E2P) we get

(~Flnw), = 1€ 44 D+ P, 2
' “ Py ", & s,
(~Flnen), = $4_d+h +i ~3p, 071 Q _92Q B
4 S o o
@
et le]
[

Note the extremely economic structure of the skeleton extheory one is interested in can be specified as discussed in
pansion of Eq(29): the few ring diagrams above summa- Sec. VII. Our method is also directly applicable to theories

rize 22(276) three-loop(four-loop diagrams. with spontaneous symmetry breaking, as only free propaga-
tors and vertices are modified; tadpole graphs are generated
by Eqg.(35).
VIII. DISCUSSION This iterative procedure is very straightforward and can

In this paper we have described a simple practical procel?e automatized, but up to the four-loop level the computa-

dure for systematically generating all vacuum diagrams of glons are easily carried QUt even by hand, as we ha\_/e dem-
given loop order in a generic field theory. onstratgd. Thus, we beheye that our setup economizes the
We have shown that the sum of vacuum diagrams can bgeneratlpn of the_ set of high-order vacuum diagrams, com-
written in the form of a modified skeleton expansion, Eq.Pared with techniques where all types of graphs have to be
(29). It contains two-particle-irreducible “skeletons” with dealt with on the same footing, without a separation into
free propagators, as well as various self-energy insertiongkeletons with free propagators and ring diagrams.
inside “ring diagrams.” The self-energies are, in turn, deter- Up to this point, we have not discussed at all the integra-
mined by the skeletons. Thus, all one really needs is thons remaining to be carried out after the diagrams have
skeletons. been generated. Let us end by pointing out that our setup is
The two-particle-irreducible skeletons of a given orderbeneficial as far as their structure is considered, as well, in
are, then, generated by Eg@9). It contains a number of full dimensions lower than f17].
three-point and four-point vertices, which can in turn be ex- The point is that low-dimensional field theories of the
panded using specific “irreducible” Schwinger-Dyson equa-type in Eq.(2) are superrenormalizable. In fact, fde=2,3,
tions[Egs.(40), (41), etc], where full propagators have been only the two-point function suffers from ultraviolet diver-
replaced with free propagators. In this way, all vacuumgences, as can be seen by simple power counting. Therefore
graphs are generated simultaneously, with the correct synhe skeleton graphs, which by definition do not have any
metry factors. Finally, the precise particle content of thegenuine two-point functions inside them, do not contain any
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ultraviolet divergences in subdiagrams. The ring diagramsthose in the skeleton graphs, and this problem can thus be

on the other hand, do have ultraviolet divergences in subdiadealt with in a tractable settind 8].

grams. Note, in particular, that singg , I1"°4™ come with

different symmetry factors in Eq29), the counterterms in

1}, which make the wholdI, finite, do not in general

immediately cancel all the ultraviolet subdivergences of the We thank M. Achhammer, U. Heinz, S. Leupold, and H.

ring diagrams. Schulz for useful discussions and correspondence. This work
Consequently, various ring diagram classes can contributeas partly supported by the TMR netwoHinite Tempera-

to the overall divergences of the vacuum graphs with potenture Phase Transitions in Particle PhysjdsU Contract No.

tially infrared sensitive coefficients, coming from the other FMRX-CT97-0122, by the RTN networlSupersymmetry

parts of the final integration, while skeleton diagrams cannotand the Early UniverseEU Contract No. HPRN-CT-2000-

Fortunately, the ring diagram integrations are simpler tharD0152, and by the Academy of Finland, Project No. 163065.
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We give technical details about the computational strategy employed in a recently completed investigation of
the four-loop QCD free energy. In particular, the reduction step from generic vacuum bubbles to master integrals
is described from a practical viewpoint, for fully massive as well as QED-type integrals.

1. Introduction

Vacuum integrals, i.e. integrals without exter-
nal momenta (often also called tadpoles or bub-
bles), constitute an important class of multi-loop
Feynman integrals. While the perturbative ex-
pansion of quantities like the free energy can be
directly expressed in terms of vacuum integrals,
they also serve as essential building blocks for
many other computations, being the coefficient
functions in asymptotic expansions of diagrams
with external legs, and encoding the ultraviolet
behavior of multi-scale integrals.

A typical perturbative calculation proceeds in
four conceptually independent steps. First, all
relevant diagrams including their combinatoric
factors are generated. For an algorithm that does
this for vacuum integrals, see [1]. Second, the
Feynman rules of the theory under consideration
are inserted, and the color and Lorentz algebra is
performed. Since in general individual loop inte-
grals are divergent, a regularization scheme has to
be adopted, the most practical one at present be-
ing dimensional regularization (DR). Third, lin-
ear relations between the regularized integrals are
exploited, to systematically reduce all integrals
occurring in the computation to a small set of
so-called master integrals. In the framework of
DR, the most important class of relations can be
derived from integration-by-parts (IBP) identities
[2]. Fourth, the master integrals have to be evalu-
ated, either, in some fortunate cases, fully analyt-
ically, or as an expansion in terms of the regular-
ization parameter, in which case — and only here
— the number of dimensions d has to be specified.
For results on the 4-loop level, see [3] (d = 4 — 2¢)

and [4] (d =3 - 2¢).

At higher loop orders, it is inevitable to auto-
mate the above setup to a large degree. There
exist many approaches to implement automated
perturbative calculations, and this is not the
place to give a comprehensive review (see e.g.
[5]). Instead, it is the third of the above steps
that we wish to elaborate on in thi8 contribution.

A computer algebra system that is particularly
well suited to cope with the demands of higher or-
der perturbative calculations is FORM [6]. While
by no means mandatory to use, we have adopted
it to implement our algorithms, and hence we
will indicate in a few places which specific FORM
commands turned out to be extremely helpful.

2. Notation and general considerations

Consider the generic vacuum topologies of
Fig. 1. In this intuitive graphical notation, ev-
ery line represents a propagator (p? + m?)=%,
with integer power a; > 0, where the index i la-
bels the different lines with momenta p;, which
in turn can be expressed as a linear combination
of the ¢ loop momenta k;. The vertices do not
have any structure, except for assuring momen-
tum conservation. Each diagram can carry a non-
trivial numerator structure, which in the general
case consists of powers of scalar products of the
loop momenta. At ¢ loops, there are £(£ + 1)/2
different combinations k; - k;.

Let us distinguish three different representa-
tions of our integrals, which naturally appear at
various levels of the reduction process: generic
integrals, their standard representations, and the
master integrals. The goal of step three is then to

0920-5632/03/$ — see front matter © 2003 Published by Elsevier Science B.V.
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Figure 1. The 1+1+8+10 generic vacuum topolo-
gies up to four loops. The 0+1+2+6 factorized
topologies are not shown here.

formulate the algorithms which transform generic
to standard to master integrals:

/(d) H19‘5j5( (k; - kj)bij
ki..e I_L' (1712 + m%)a;
tter [0 TL(k: kg,
Filter i ki)
—> TI. (92 + m2)a a;}, {bij, my
k1. .e Hi (p% +m?)a.- ({ } { ¥ })

Tables Z cj(d) Masterg-d) ({m;}) (1)

j

Above, the label ’Filter’ symbolizes a collection
of low-level routines, whose main action is to com-
plete squares in the numerator and cancel against
propagators such that only irreducible numera-
tors remain. At this point, it is possible to repre-
sent an £-loop vacuum integral by a list of £(£+1)
non-negative numbers ({a;}, {bij,m:}), the first
half of them collecting the powers of propagators
a;, while the second half contains either the power
of an irreducible numerator (if the corresponding
a; is zero) or the mass of the line. Furthermore,
at this step equivalent topologies are re-labeled in
a unique way by shifting the loop momenta, i.e.
assigning a characteristic pattern of zeroes among
the a; to each topology of Fig. 1.

In the remainder, we will specialize on two dif-
ferent general classes of vacuum diagrams. First,
we will consider all lines to have the same mass,
m; = m. This class of integrals is useful when
computing infrared-safe quantities like renormal-
ization coefficients, in which case the infrared sec-
tor of individual diagrams can be regulated by in-
troducing masses into massless propagators. Sec-
ond, we will allow for all m; to be either zero or m,
with the restriction that the number of massive
lines at each vertex be even. This includes theo-

ries like QED and gauge+Higgs models, whence
we call this class '"QED-like’.

The label 'Tables’ in Eq. (1) symbolizes a
lookup in a database, which contains the neces-
sary relations in a tabulated form. These tables
are the main ingredient of the reduction step, and
their organization and generation, which system-
atically exploits IBP identities, will be described
in more detail below.

The intermediate step of applying the ’Filter’
algorithms not only serves the purpose of allowing
for a fairly compact representation of the integral,
but can also be used to keep the number of en-
tries in the database, the memory requirements,
and the CPU time needed for their derivation, in
manageable bounds. To this end, we found it ad-
vantageous to add further routines to the 'Filter’
package:

e Early detection of zeroes: massless (sub-)
tadpoles are zero in DR, as are integrals
whose integrand does not depend on one of
the loop momenta.

e Symmetrization of the integrand: use the
full symmetry group of the corresponding
topology to order the list, and hence enable
early cancellations in big expressions.

o Decouple scalar products involving the loop
momentum of a factorized one-loop tadpole:
fk(k—k“;—;—n-’f%"; vanishes for odd n and is pro-
portional to a totally symmetric combina-
tion of metric tensors geu ., -« Gun_1un}-
The FORM function dd- is perfectly suited
for this symmetrization. This eliminates
the need to derive relations for 8 {out of
9, the 9th being the two-loop x two-loop
case) of the factorized topologies, since af-
ter decoupling the numerator, factorization
into scalar vacuum integrals of the type of
Eq. (1) is complete.

® Reduce powers of factorized one-loop tad-
poles to one:

dék _ d-2a ddk
(k2 + m2)e+l — 2am? [ (k2 +m?2)e

e Employ the ’triangle relation’ [2]: for in-
tegrals involving massless lines, this helps
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to reduce the number of different topolo-
gies that have to be treated in the database
considerably.

Another potentially useful routine, which we have
however not implemented, would be to use T-
operators [7] in order to trade all numerator
structure for higher dimensions of the integral
measure, hence also immediately decoupling the
factorized (two-loop x two-loop)-topology.

One more practical note: To not miss cancella-
tions, it is important to have a unique representa-
tion for coefficients. Partial fractioning of terms
like dfa and d_lal d_1a2 helps here, ensuring the
coefficients ¢;(d) to be a sum of powers of simple
poles 71— and powers of d.

In principle however, all these further relations
are redundant since they would be automatically
covered by the IBP identities. As mentioned
above, their sole purpose is to optimize the deriva-
tion of relations among the integrals, to be dis-

cussed next.

3. Reduction

Integration by parts relies on the fact that an
integral over a total derivative of any of the loop
momenta vanishes in dimensional regularization.
For the case of vacuum integrals, which we are
interested in here, the IBP identities read

d
0= / % Op, au ({ai}, {bij, mi}) , @)

where p,q € {k1,...,k¢} cover all ¢2 different ¢-
loop identities, and we have made use of the stan-
dard representation introduced above.

There are two possible general strategies imple-
menting the IBP identities to find relations use-
ful for reducing the integrals from their standard
representation to master integrals.

The first strategy is to derive general relations,
valid for symbolic list-entries. These general sym-
bolic relations can then be applied repeatedly to
any integral of the specified class, no matter how
large the powers are, to achieve the reduction.
In practice however, it turns out that it is quite
an art to shuffle IBP identities for integrals with
symbolic indices such as to obtain useful reduc-

OO (€
ATAATAY

Figure 2. The 1+0+2+10 master integrals of
QED type, up to four loops. Full lines carry a
mass m, dotted lines are massless. All numera-
tors are 1, all powers of propagators are 1. Note
that there is no two-loop representative needed.

tion relations. In absence of a generic algorith-
mic formulation, it involves extensive handwork,
and typically there are many special cases to be
considered when pre-factors vanish at special pa-
rameter values. At lower loop orders, there are
complete solutions, see e.g. [9] for two-loop two-
point functions with general masses, or [10] for
three-loop vacuum integrals with one mass.

The second strategy, nowadays constituting the
mainstream of higher-loop computations, is a
more brute-force approach, which however has
the huge advantage of being perfectly suited to
be completely automated. The main idea is to
write down IBP identities for specific values of
the indices. Introducing a lexicographic order-
ing among the integrals [8], it is then possible
to solve every single one of the IBP identities for
the 'most difficult’ integral occurring. By starting
from simple topologies (low number of lines), one
systematically generates relations which express
"difficult’ integrals in terms of ’simpler’ (in the
sense of the ordering) ones. Solving an adequate
set of fixed-index IBP relations, it is possible to
express every integral of interest in terms of a few
simple ones, ultimately the master integrals.

The reason why the second strategy is sufhi-
cient for most computations is that in practice,
one does not meet the most general integrals, but
only a subset, typically characterized by an upper
cutoff on the sum of indices. Indeed, dealing with
a concrete model like QCD, knowledge of the ver-
tex and propagator structure allows to constrain
the set of possible indices ({a;}, {bi;,m;}), hence
rendering the search-space to be covered with IBP
identities finite.

Building up the relations proceeds as follows:
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Pick a list of indices ({a;}, {bi;, m;}) that is
'simple’, typically meaning a low number of
loops, a low number of different lines, a low
number of extra powers on the propagators,
a low number of powers on the irreducible
numerators. In FORM, these lists are most
naturally represented by sparse tables.
o Generate the first of the IBP identities.
o Call 'Filter’ to transform the resulting sum
of integrals to the standard representation.
e Label the ‘'most difficult’ integral, according
to the lexicographic ordering. A global op-
eration like that became possible with the
introduction of ’$-variables’ in FORM v3.
Invert its coefficient and multiply it into the
equation. We do so only if we can factor-
ize the coeflicient into terms which are lin-
ear in d, to preserve the generic structure of
coefficients. While (at present) there is no
factorization algorithm in FORM, we im-
plemented one by ’guessing’ zeroes, utiliz-
ing the fact that since the coefficients are
generated by IBP, most of them have fac-
tors (nd+a) where n is not bigger than the
number of loops, and a is an integer of mod-
erate size. To check that no relations are
missed when factorization fails, it is useful
to keep track of those cases and check in the
end.
¢ Bring the most difficult integral (having
coefficient 1) to the left-hand-side, taking
the generated equation as a definition. In
FORM, this is done by the £ill statement.
e Take the next IBP identity, repeat the
above steps. Increase list-indices. Repeat...
e Write the relations found to disk in inter-
vals. Large intervals ensure a high degree
of re-substitution (of relations for integrals
that are found later but that appeared on
the right-hand-sides earlier), but are risky
when the program execution crashes.

Solving the IBP relations one by one like de-
scribed above seems to be simpler than solving
large systems of linear equations at once. In the
end, it might be advantageous to re-substitute re-
lations, which is possible by re-loading sets of re-
lations into memory and re-writing them to disk.

@ W

Figure 3. The 0+0+0+3 fully massive master in-
tegrals, in addition to those 1+1+3+10 of Fig. 1,
taken at powers and numerators 1. A dot on a
line means it carries an exrtra power.

In the end, one has to check whether the
set of generated identities is sufficiently large to
achieve a reduction of all integrals occurring in
the physics problem at hand. While a first edu-
cated guess on the maximum powers needed can
be obtained by scanning the terms to be calcu-
lated after application of the ’Filter’ package, it
might be necessary to enlarge the set of relations
in further runs. To this end, the tablebase state-
ment of FORM, implemented in version 3.1, al-
lows for a good control over large amounts of data
in the form of tables and table elements.

The resulting master integrals are depicted in
Fig. 2 for the 'QED-like’ case, and in Figs. 3,1 for
the fully massive case.

4. Master integrals

Once the reduction algorithm ’stops’, are we
guaranteed to arrive at the desired minimal set
of master integrals? If we had followed the path
of deriving generic reduction relations, valid for
symbolic indices, the answer would be yes. For
the implementation in terms of specific indices,
one can however not be absolutely sure not to
miss a relation which would only be detected
when increasing the upper cutoff on indices of the
integrand. For most practical purposes it might
already be sufficient to work with an incomplete,
but small, basis.

In the case of gauge theories, it is also amusing
to watch the gauge-parameter dependence as an
indicator of how ’close’ one is to the minimal set,
since in a full reduction gauge-parameter depen-
dent terms cancel at an algebraic level, in d di-
mensions, before evaluating the master integrals.

The basis of master integrals is of course not
unique, but depends on the actual choice of the
lexicographic ordering. While we label an integral
with unit numerator as ’simpler’ than one with in-
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Figure 4. Relations for a basis conversion from the set of massive masters found in [3] to our notation.

creased powers on the lines, one could as well have
put priority on always reducing powers of propa-
gators to one. The latter choice was adopted in
a recent paper [3], where the three master inte-
grals of Fig. 3 are replaced by ones of equivalent
topology, but with irreducible numerators. Con-
sequently, there must be linear relations between
the two choices of basis, valid analytically in d di-
mensions. From our tables, we simply read them
off, see Fig. 4.

5. Discussion

We did not comment on the problem of so-
called spurious poles here. Spurious poles are
singular pre-factors, which can occur in the re-
duction relations. They are difficult to avoid in
general, if one is not willing to specify the dimen-
sion yet in the reduction process. However, in our
four-loop computation of the QCD free energy, we
treated them after the reduction was performed
successfully, by changing basis with the help of
the tables.

In principle, the package at hand can be used
for other calculations requiring a four-loop reduc-
tion of massive vacuum bubbles. One such ap-
plication would be the re-evaluation of the QCD
beta function.
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The free energy density, or pressure, of QCD has at high temperatures an expansion in the coupling constant
g, known so far up to ordeg®. We compute here the last contribution which can be determined perturbatively,
g%In(1/g), by summing together results for the 4-loop vacuum energy densities of two different three-
dimensional effective field theories. We also demonstrate that the inclusion of the new pertuyBla{tfs)
terms, once they are summed together with the so far unknown perturbative and nonpertgbagiras,
could potentially extend the applicability of the coupling constant series down to surprisingly low tempera-
tures.
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. INTRODUCTION inside the logarithm i®(g®In(1/g)) remains otherwise un-
determined. Therefore, our conclusions on this point remain
Because of asymptotic freedom, the properties of QCDon a conjectural level, but turn out to show nevertheless a
might be expected to be perturbatively computable in variousomewhat interesting pattern, which is why we would like to
“extreme” limits, such as high virtuality, high baryon den- include them in this presentation.
sity, or high temperature. We concentrate here on the last of Finally, it should be stressed that even if the perturbative
these circumstances, that is, temperatdr&sger than a few expansion as such were to remain numerically useless at re-
hundred MeV. alistic temperatures, these multiloop computations are still
The physics observable we consider is the pressure, avorthwhile: the infrared problems of finite temperature QCD
minus the free energy density, of the QCD plasma. Potentiatan be isolated to a three-dimensior@D) effective field
phenomenological applications include the expansion rate aheory[13] and studied nonperturbatively there with simple
the early Universe after it has settled into the standard modéhttice simulationg14]. However, to convert the results from
vacuum, as well as the properties of the apparently ideadD lattice regularization to 3D continuum regularization, and
hydrodynamic expansion observed in on-going heavy iorfrom the 3D continuum theory to the original four-
collision experiments, just shortly after impact. dimensional4D) physical theory, still necessitates a number
In these environments, it turns out that the naive expectasf perturbative “matching” computations. Both of these
tion concerning the validity of perturbation theory is too op-steps are very closely related to what we do here, although
timistic. Indeed, even assuming an arbitrarily weak couplingwe discuss explicitly only the latter one.
constantg, perturbation theory can only be worked out to a
finite order in it, before the serious infrared problems of fi-
nite temperature field theory deny further analytic progress Il. THE BASIC SETTING
[1,2]. For the pressure, the problem is met at the 4-loop

der, 5). X |
order, 0r0(g’) properties of QCD at a finite temperaturean be reduced to

This leads to the interesting situation that there is a defi b ¢ bativel bl hi i
nite limit to how far perturbation theory needs to be pushed® NUmber of perturbatively computable matching coetfi-

So far, there are known loop contributions at ordéxs? cients, as wel] as some'remaining contribution; from a series
[3], O(g®) [4], O(g*In(Lig)) [g] (g% [6] andO(gg(sf]Y]). of effective _fleld theorieq13]. Our presentation follqws
There is also an all-orders numerical result available for d'nostly that in[11], but there are a few significant differ-

theory with an asymptotically large number of fermion fla- €M¢ . o .
vors [32/3]. The purpyosg of theypregent paper is to collect to- The underlying theory is finite temperature QCD with the

anying pap@<0], allow-  9auge group SLMC),_anc_JINf flavors of massless quarks. Ir_l
ignegtheursreigltsdg?errrgivr\]/g a;(r:nc;rl?/ﬁcaﬁ/y gtr?edla’it] remaining dimensional regularization the bare Euclidean Lagrangian
perturbative contribution,O(gIn(L/g)), for the physical 'cads. before gauge fixing,
QCD.

It must be understood that even if computed up to such a gh

high order, the perturbative expansion could well converge SQCD=f de dx Locos (2.1
only very slowly, requiring perhaps something like> TeV, 0
to make any sense at 4lf,11,13. With one further coeffi-
cient available, we can to some extent now reinspect this
issue. To do so we actually also need to assume something
about the unknowr©(g®) term, since the numerical factor

We start by reviewing briefly how it is believed that the

1 _
EQCDZZFZVFTW"‘ by uD i, (2.2

0556-2821/2003/61.0)/1050089)/$20.00 67 105008-1 ©2003 The American Physical Society
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where B:Til, d:3_2€, /.L,V:O,...d, FZVIO"#A::}I Here kzl,...,d, Fk|:(i/gE)[Dk,D|], Dk:ak_ig_EAk,
—3,A%+gfaPADAL, D,=d,—igA,. A,=A.T y,, and we have used the shorthand notatip=AZT? A,
= Yur {Yu vs}=26,,, andy carries Dirac, color, and fla- = A3T2, whereT? are Hermitean generators of SN} nor-

vor indices. . __malized such that TFaTP= 52%/2. Note that the quartic cou-
Denoting the generators of the adjoint representation b¥)lings)\(l), 7\(52) are linearly independent only foi =4

_ _ifab 1 .
(F®)pe=—1f*"% we define the usual group theory factors: ™ t1q valation in Eq(2.8) contains five different matching

Jp——— _rraTal coefficients,pg,mz,g2, A A2, We are interested in the
Cadap=[FFlap, Croy=[TT;;, 23 expression fopocp(T) up to orderO(g®T#). They will then
b_ arb b_ aTb have to be determined to some sufficient depths, as we will
TAGP=TrFoRS, - Tedm=Tr T, 24 specify later on. Let uszhere notezthat the I((ala)lding ord((azr)mag—
i T4 n2T2 N2 g
da=8%3=N2-1, dp=6;=Trda/Cs. 2.5 Ttgffs arepe=T", Me— g% Ge~ 0T, A"~ 07T, Ae

Apart from the operators shown explicitly in E.10),

' N2 - there are of course also higher order onegin The lowest
oluark ﬂdaVSrS’ZCA_EC’_CF_(NC DIEN), Ta=Ne, Te - gycn operators have been classified[16]. Their general
=N¢/2, da= ’_\'C_l'_ F= NNy . L i structure is that one must add at least two powerB pbr

We use dimensional regularization .through_out this Papely a 1o the basic structures in E(R.10. Since higher order
The spatial part of each momentum integration measure 'gperators are generated through interactions with the scales
written as that have been integrated out2 7T, they must also contain

q e q an explicit factor of at leags?. For dimensional reasons, the

f_ f dp . e’ f d’p
o ) o2md © am) ) (2m)

(2.6) schematic structure is thus
where u= u(e?/47)Y2 and the expression in square brack-

ets has integer dimensionality. From now on we always as- . ) o
sume implicitly that the factop ~2¢ is attached to some rel- 10 estimate the largest possible contributions such operators

evant coupling constant, so that the ¢Bis dimensionless, could give, let us assume the most conservative possibility
while the dimensionalities Ogé,)\gl)')\l(;) and gf,,, to be thatthe only dynamical scale in the effective theory-igT.

ObviouslyT,=C, . For the standard normalization, wil

MZE

DD,

SLe~g? Le.
=9 a2 E

(2.11

introduced presently, are GeV. By dimensional analysis, we then obtain a contribution
The basic quantity of interest to us here is minus the free ) T T)2
. , Paco(T) , (gT) 3 7.3
energy density ocp(T), or the pressurpqocp(T), defined by —T - E~0 W(QT) ~g'T. (212
a
Poco( T)= lim Imj DA? Dy DZex[{ — ESQCD)’ Therefore, all higher dimensional operators can be omitted
v V a h from the action in Eq(2.10), if we are only interested in

(2.7 computingpocp(T) up to orderO(g°T?).

) ) The theory in Eq.(2.10 contains still two dynamical
whereV denotes thel-dimensional volume. Boundary con- gcalesgT,g?T. All the effects of the “color-electric” scale,
ditions over the compact time-like direction are periodic forgT' can be accounted for by integrating @y [13]. Specifi-
bosons and anti-periodic for fermions. Moreover, we assumey|ly,

Poco(T) renormalized such that it vanishesTat 0. To sim-

plify the notation, we do not show the infinite volume limit T

explicitly in the following. V2
At high temperatures and a small coupling, there are para-

metrically three different mass scales in the problem,

~27T,gT,g%T [13]. All the effects of the hard mass scale

~27T can be accounted for by a method called dimensional

Inj DA DAG exp(— Sg)=pw(T)

T
+ vlnf DA exp(—Sw),

reduction[13,15. Specifically, (2.13
T = f d Ly, (2.14
PacalT)=pe(T)+ yIn | DATDAText(~S0), (28 S :
1 2
»CMZ ETr Fk|+ ey (213
Se= f d% Lg, (2.9
where Fy=(i/gu)[Dk.Di], Dx=dk—iguAx, and Ay

=AJT.

The relation in Eq.(2.13 contains two matching coeffi-
i 2221 (2) 4 cients,py ,gf,,, which again have to be determined to suffi-
TAEA(TrAD A TrAgt ... . (210 cient depths. At leading ordepy~meT, g5,~g2. In addi-

Le= TTr P2+ Tr [Dy AgJ2+ mETr A
E- 5 Tk r[Dy.,Aol“+mETr A

105008-2
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tion, there are also higher order operators in €415. The T 6 1
. . .. . pG( ) 3 gM M
lowest ones can be obtained by imagining again that we — =dACA—4 ag|l —+8In—|+ Bg+0(e) |,
apply at least two covariant derivatives to H@.15), to- T = (4m) € 2my
gether with at least one factgré brought in by the interac- (3.1

tions with the massive modes. This leads to an operator
where mMECAng. Now, because of the super-
renormalizability ofZy, , the coefficientzg can be computed
5£M~g’éD"_|33'£M. (2.16  In 4-loop perturbation theory, even if the constant pagt
mg cannot[29].

Of course, if we just carry out the 4-loop computation in
strict dimensional regularization, then the result vanishes, be-
cause there are no perturbative mass scales in the problem.
Fhis means that ultraviolet and infrared divergen@sone-
ously) cancel against each other. Therefore, we have to be
more careful in order to determines.

The only dynamical scale in the effective theory being
~g°T, dimensional analysis indicates that we then obtain
contribution of the order

SPoco(T) ,(g°T)? To regulate the infrared divergences we introduce by hand
— 7 ~OLw~OE 3 (0°T)°~0°T°. (217 4 mass scalanZ, into the gauge fieldand ghost propaga-
E tors. This computation is described in detai[®]. Individual

diagrams contain then higher order poles, like?1/as well
Therefore, higher dimensional operators can again be omits a polynomial of degree up to nine in the gauge parameter
ted, if we are only interested in the ordé€¥(g®T#) for & However, terms of both of these types cancel in the final
Paco(T).- result, which serves as a nice check of the procedure.
After the two reduction steps, there still remains a contri- As a result, we obtain
bution from the scalg?T:

Pa(T) 2 9u (1 b
- ) e TACAL, | %o Z+8In2_me +Bc(§)+0(e) |,
TE—Inf DAexp(—Sy), 2.1
Pa(T) v keXp(— Su) (2.1 (3.2
where “~" is used to denote that only the coefficients

with Sy in Egs. (2.14), (2.15. Since Ly only has one pa-

rameter, and it is dimensionful, the contribution is of themulnplylng L/e is physically meaningful, as it contains the

desired gauge independent ultraviolet divergence, defined in

form Eq. (3.1). The value of the coefficient, obtained by extensive
use of techniques of symbolic computatidéimplemented
pa(T)~Tay. 2.19  [17]in FOrRM[18)), is [9]
43 157 ’
The coefficient of this contribution is, however, non- @6=95 " g1aa™ ~ 0-195715. (3.3

perturbative[ 1,2].

In the following sections, we proceed in the opposite di—On =

. . . the contrary, the constant paBi(¢) depends on the
rection with regard to the presentation above, from the “bot- . .
tom” scale gz.? producing po(T), through the “middle” gauge parametef, because the introduction cmhé breaks

scalegT, producingpy(T), back to the “top” scale 2T, gauge invariance, and has nothing to do wathin Eqg. (3.1).

producingpg(T). We collect on the way all contributions up
to orderg®T? to obtainpe(T) = Pe(T) + p(T) + Pe(T). IV. CONTRIBUTIONS FROM THE SCALE gT

We next proceed to include the contribution from the
scalegT, contained inpy(T), as defined by Eq2.13. By
construction, Eq(2.13 assumes that all the infrared diver-

The contribution topgcp(T) from the scalep~g?T is  gences of the expression on the left-hand side are contained
obtained by using the theorg,, in Eq. (2.19 in order to  in pg(T), defined in Eq(2.18), and determined in Eq3.1).
computepg(T), as defined by Eq2.18. As is well known  Therefore, if we compute the functional integral
[1,2], the computation involves infrared divergent integrals,(T/V)In[fDA? DA exp(—Sz)] using strict dimensional
starting at the 4-loop level. This is a reflection of the fact thatregularization(i.e., without introducing by hand any mass
Ly defines a confining field theory. Therefopyy(T) cannot  mg for the gauge fieldd;), wherebypg(T) vanishes due to
be evaluated in perturbation theory. the cancellation between infrared and ultraviolet divergences

What can be evaluated, however, is the logarithmic ultramentioned above, we are guaranteed to obtain just the infra-
violet divergence contained ipg(T). For dimensional rea- red insensitive matching coefficiepy,(T). This is exactly
sons, the nonperturbative answer would have to be of théhe computation we need, and carry ouf10,19. It may be
form mentioned that we have checked explicitly the infrared in-

lll. CONTRIBUTIONS FROM THE SCALE g°T
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sensitivity of the result, by giving an equal mass to bAth
and A; in the 4-loop expression for the functional integral,
and then subtracting the graphs responsiblepf(iT), with

the same infrared regularization. This result is also indepen-

dent of the gauge parameter.
Keeping terms up to orde?(g®T*), the full outcome for

pm(T) is

pm(T) 1 a1
TM725_(47T) dAmE § +O(€)
1 n
+(4w)2dACAgEmE{ Ze 7 In2mE+(9(e)
1 24
+mdACAgEmE
89 1 ) 11I 240
X —ﬂ—gw +€n + (6)
SIS 1+8In£ +Bu+O(e)
(4m)* A“AGE @m| 2me M €
+Ld (dpy+2)APm2 1 +0O(€)
(4m)? Alla EWE T3

1 2d,—1 1
oLl e xg)mg[—z +(’)(e)} (4.1)
C
where[10]
43 491 ’
~(0.555017. 4.2

W3 6144"

The finite constanB,, can be expressed in terms of a num-
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4
agi+ g gt O(€)]+ (497)2[0‘53+ O(e)]

|

p2ope(T)=T*

6

S Bt O(&)]+0(g®)

’ (4m)*

(5.9

2_T2< 0 agqt apse+ O(€%)]

me=
4
MT)Z[QE6+EE25+O(52)]+O(96)>a (5.2
4
9%21—(924' (47T)2[C“E7+,3|536+ 0(62)]"‘0(96)),
(5.3
B=T o’ +0(e)]+0(g® 4
NE (477)2[,3E4 (e)]+0(g°) |, (5.9
(2):T 9_4 +0 +0O(g°
Ag (47T)2[BE5 (e)]+0(9) |, (5.9

whereg? is the renormalized coupling. We have named ex-
plicitly (ag,Bg) the coefficients needed up to ord8¢g®).
The actual values for those needed at orédg®Iin(1/g)],
denoted byag, are given in Appendix A. The additional
coefficients needed at the full ordé}g®) are denoted by
Be: some of these are also knowfor Bg,4,BEs, €.0., see
[21]). The rest of the terms contribute only beyo@ig®).

The expression fopg(T) is simply the functional integral

ber of finite coefficients related to 4-loop vacuum scalar in-in Eq. (2.7), calculated to the 4-loop level in the modified

tegrals[10], but we do not need it here.

In addition topy(T), we also need to specify the effec-
tive parametelgf,I appearing inly,, to complete contribu-
tions from the scalgT. It is of the form

o=9d 1+ O(ge/me)], (4.3

where the next-to-leading order correction is knoyaee,
e.g.,[20]), but not needed here.

V. CONTRIBUTIONS FROM THE SCALE 2 =T

The contributions from the scaler” are contained in the

minimal subtraction MS) scheme, but without any resum-
mations. The only physical scale entering is thusT2 The
calculation has so far been carried out only to three loops
[6,11] so thatBg; is not known. Even when performed with
the fully renormalized theory, the results in general contain
uncancelled ¥ poles, as explicitly seen in the 3-loop ex-
pression in Eq(A3) for agz. These only cancel when a
physical fully resummed quantity is evaluated, i.e., in the
SUM Pocp=Pe+Pw+ Pe. Similarly, m2,gZ A& can be ob-
tained, for instance, from suitable 2-, 3-, and 4-point func-
tions, respectively.

VI. THE COMPLETE RESULT

expressions for the parameters of the previous effective theo- Combining now the results of Secs. lll, IV, V and expand-

ries, as well as ipg(T). We write these as

ing in g, we arrive at
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Paco(T) — Pe(T)+pw(T)+pa(T)

T4M—26_ T4M—25

3=

)

0 g° da 232 g d.C 1 | w 1
et leed i | S| | 00 e g+ § g e

+ 9° deat? Lo c2( 205 ™ o) 9° L Aot 2) Byt 2OA~
(4)2 AQE4| 5E6~ “Al 5p T e T g ! (4m)? Bei~ z0aaeq (da+2)Beq N, Bes
L _
—daCp Z(a’E6+ apsert 3apsaprt Beot apaBes) T (et @paer) EHnZgTaé’f
; 1 K 1 K ,
+daCh| But Bst am -|—8|H—1/2 +ag +8|”—29 10 +0(g")+0O(e). (6.1
gy

Utilizing the expressions in Appendix A, the terms up towhereag, is in EqQ. (A4), agg is in EQ. (AB), ag; is in Eq.
order O(g®) reproduce the known result [i7]. (A7), ay is in Eq. (4.2, and ag is in Eq. (3.3. Note that

For the contribution at orde(g*), the 1k divergence in  there are logarithms of two types, with different non-analytic
ags [cf. Eq. (A3)] and the 1¢ divergence frompy(T), dependences on group theory factors inside them. Equation
shown explicitly in Eq(6.1), cancel. This must happen since (6.3) is our main result.

Poco(T) is a physical quantity. The assomat,e& also can- Following[7,11], let us finally inserN.=3, and give also
cel, but a physical effect [me/(27T)]~In(ga?) remains the numerical values for the various coeff|C|ents for an arbi-
[5]. trary N;. We obtain

For the contribution at orde®(g®), a number of un-
known coefficients remaitthe B¢'s, Bu . Bg), but a similar

6
cancellation is guaranteed to take place. In addition, the re- Poco(T) = 2 “S(“) (6.4)
sult must be scale independent to the order it has been com- Qcp =0 ’
puted. The first point can be achieved By, (the otherB¢'s
are finite, so that it has to have the structure
where
1 3 1
Bei=daCalaget aE4aE7)E_dACA(aM“‘aG);"‘ﬁEe, 1
(6.2 po=1+ 32N (6.5

where Bgg does not contain any d/poles. The latter point
can be achieved by adding and subtractingul(2#T)]'s, p,=0, (6.6)

such that; gets effectively replaced by+2T in the loga-
rithms visible in the O(g®) term in Eq. (6.1). The

In[ /(27 T)]'s left over, together with those coming from the _ 15 14 EN 6.7
Be's, serve to cancel the effects from the 2-loop running of 27 4 12°1) '
g?(w) and 1-loop running ofj*(w) in the lower order con-
tributions, without introducing large logarithms. oo
This general information is enough to fix the contributions —30 14 =N 6.9
of order O(g°In(1/g)) to pocp(T). Indeed, after inserting Ps= 6 ) '
Eq. (6.2 and reorganizing the logarithms appearing in the
BE's as mentioned, there remains a logarithmic 4-loop term,
p,=237.2+ 15.96N;— 0.4150N?
Poco(T) 6 daCa 12
ey = {(aget apqaer)In(gags) 135 1 1 )
T4,LL 2 $Fin(L) (4 )4 2 1+ 6Nf |n 1+ 6Nf
—8Ci[ auIn(gagy) +2agn(gCRA) 1}, 165 5 V(1 20 | 6
6.3 =g | 1 g 1 g ing ©9
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pend sensitively, even qualitatively, on this uncomputed

1/2]
ps=| 1+ %Nf [—799.1— 21.96\lf—1.926\|$ term. One choice will be seen to agree with 4D lattice data
down to abouflf/Ays~2...3. Since, however, dimensional
495 1 2 ; reduction, that is, an effective description of QCD via the
+ - 1+ ENf> ( 1- ﬁNf Inm , (6.10  theory in EQ.(2.10, is known to break down at about this

point, and we have only kept a finite number of terms in the

expansion following from Eq(2.10, this cannot really be
pez[_659_2_ 65.89\lf—7.653\1$+—1485 1+ }Nf) considered a prediction, even if the eventual computation of
2 6 the O(g®) term gave just the appropriate value. It is just an

1— 2Nl 214 2 lidity of our results to a domain of different approximations
33 ) "2t " 6 :
™ ™ should be possible.
— — A standard procedure in the discussion of perturbative re-
o . .
—475.6In—+ qa(Nf)an% + Qb(Nf)In% sults would be to take the expansion in E84) and to study
whether its scale dependence is reduced when further orders
+qu(Ny) (6.11) of perturbation theory are included. As is well known since
ot [6], this fails for the pressure, unle3s>Ays. Related to

where q,(N¢), qu(N¢), q«N;) are agindependent polyno- this, the numerical convergence of the perturbative expan-
mials in N;. Two of them,q4(Ny), g,(N¢), can already be sion is known to be quite poor for any fixed scale choice, at
written down because they just cancel thedependence !I‘?:St for temperatur:es below the (;:-Igctroweak ﬁmm’lr?-

L = 2,7A. e new term we have computed does not change this gen-
arising from the terms of ordeisy(), as(w): eral pattern. But the culprit is known: it igy(T) + pg(T)

5 2 2 emerging from the 3D sector of the theory, where the expan-
+1—2Nf>(1 3 Nf> , (6.12  sion parameter is onlygZ/(7mg)~g/m. In contrast, for
pe(T) as well as for, say, jet physics, the expansion param-
eter isa/7r, and there are good reasons to expect numerical
6.13 convergence to be much better.

' For these reasons, we will only discuss the sensitivity of
the result on the so far unknow®(g®) coefficient, as well as
the slow convergence of the 3D sector, in the following. For
simplicity, we only consider the ca$¢.=3, N;=0 here.

As in [14], the actual form we choose for plotting con-

This section is devoted to a numerical discussion of théains pu(T)+pg(T) [Egs. (4.D)+(3.1)] in an “un-
result. Since theé)(g®In(1/g)) term cannot be given an un- expanded” form, that is, withmg, g2 inserted from Egs.
ambiguous numerical meaning until ti¥g®) term is speci- (5.2, (5.3), and gf,l from Eq. (4.3). This means that we are
fied, we have to present the result for various choices of theffectively summing up higher orders: th@(g®) term is
latter. In the relevant range Gf/ Ays the outcome will de-  really O(g?+g*)®? while the®(g®In(1/g)) term contains a

observation that a smooth transition from the domain of va-
» Nf)}

1815
Qo Ng)=— T 1

Ou(N¢)=2932.9+ 42.83N;— 16.48N?+0.276 N3 .

The third onegy(N;), remains, however, unknown.

VII. THE NUMERICAL CONVERGENCE

1.5 T

RS

P/Pgy
&
~
Y
Y

o, --- un/g)+1.5)|1
sl S == gn(1/g+1.0)| ]
Lo N °(In(1/g)+0.5)] |
/i -==- (n(1/g)+0.0)

[ ¢ (In(1/g) -0.5)|
[ = o 5 4 lattice b

n(1/g)+0.7)| -
= = » 4d lattice b I

1 10 100 1000 1 10 100 1000

T/Ag T/Ag

} }
e S R I W UL

FIG. 1. Left: perturbative results at various ordétise precise meanings thereof are explained in Sed, ¥fitluding O(g®) for an
optimal constant, normalized to the non-interacting Stefan-Boltzmann pajueRight: the dependence of t#(g®) result on thenot yet
computed constant, which contains both perturbative and nonperturbative contributions. The 4D lattice results d4&2from
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resummed coefficient, being then effectively)((g? 0.8 vy
+9*)3In(1/g)). We proceed in this way because then a com- - g 1
parison with numerical determinatiorj44] of the slowly I - ¢ e
convergent parpy(T) + pe(T) is more straightforward, and 0.6 | _.._ g o 7
also because the resummations carried out reducg ttie- o b |— ¢ n(1/2)+0.7) //’ 1
pendence of the outcome. However, we have checked that ;" i el 1
the practical conclusions remain the same even if we plot S:D 041 L 7
directly the expression in Eq&6.4)—(6.11) (but with a larger g L //’ i
scale dependenge N L 1
To be specific, the genuin®(g®In(1/g) +g®) contribu- © g2l DR L -]
tion, which collects the effects from all the terms involving [ _’?,f.’_’- -------- =
the Be’s, Bu» B, am, andag in Eq. (6.1), is now written |20 e S
in the form (specific for N.=3, N;=0, where mE/gé _ ]

~1/g), -0. il ll | 2. | 3. | 4. e 5. L1 6
10 10 100 100 100 100 10

T/Az
S5 pQCD(T) _ 8dA03 gg FIG. 2. The absolute values of the various terms of the slowly
TM*ZE $Sin(1/g) A(47,-)4 convergent expansion fgny(T) +pe(T), normalized byng.

Mg
(ay+ 205(3,)|n—2 +6
E

X

that a logarithmic term coming from the scaler®, ~
7. — 0% ay+ ag)IN[w/(27T)], was missed. With the scale

choice;E,uEz gé within results obtained witlfg, this con-

- - 6 - - 6
verted to a missingO(g°In(1/g)) contribution g°(2«
yvh|le the remaining?(g®) terms of Eq.((i.l) are contained 1 2a0)In(llg). With the same scale choice the
in the resummed lower order contributions. The results are . .
N . nonperturbative part, on the other hand, contributed
shown in Fig. 1 for various values af. The power ofg

_ g i}
labelling the curves indicates the leading magnitude of the g°awin(1/g) and led to the wrong curvature of the pres

highest order resummed contribution appearing. The scale RT€ Seen at small/Ays. Adding the missing part, which
— . now has been computed, leads to a total gff(ay,
chosen asu~6.7T, as suggested by the next-to-leading or- . o .
. 2 . +2ag)In(1/g), with the opposite sign and the corrdce.,
der expression fogg [12]. We observe that for a specific : i I
. the one seen in 4D lattice measuremgntgvature in Fig. 1
value of §, the curve extrapolates well to 4D lattice data.

While Fig. 1 looks tempting, the question still remains (for small values ofs). Therefore theO(g’In(1/g)) terms

whether the good match to 4D lattice data with a specificare indeed physically very relevant.

value of the constant is simply a coincidence. This issue can

be fully settled only once the constant is actually computed.

However, we can already inspect how the slowly convergent VIIl. CONCLUSIONS
part of the pressureyy + pg, really behaves.

The different finite terms in gy, + pG)/(TgE) are plotted
in Fig. 2. Then{) contributions are negligible. The results
depend then essentially only omZ/gg, which for N,
=3, N;=0 ismZ/gg~0.32log(T/Ays) + 0.29. We observe
that the leading 1-loop terr®(g®) is dominant forT/Ays
=10, the 3-loop tern®(g®) is rather big, bigger in absolute
value than the 2-loop terr®(g*) within the T-range of the

figure, while the 4-loop term is always very small. Therefore, .; t of th ; ted 19 d qi in Ea(3.3
while it is quite possible that there is again a big “odd” Co . Of tese is computed (8], and given in Eq(3.3)

. 6 ._
O(g") contribution, it is perhaps not completely outrageous _. (2) Logarithms of the typg In[(2#T)/(gT)]. The coefli

; cient of these is computed [10], and given in Eq(4.2).
either to hope that the convergence could also already bé (3) Logarithms related to the running of the coupling con-

reasonable, once the fuld(g®) contribution is included. If . . 2
this were the case, then all higher order contributions wouldtant in the 3-loop expression of ordB(g”In[(27T)/(gT)D.

have to sum up to a small number. Their MS coefficient can be seen in the first term in Eq.
Finally, it is perhaps interesting to remark that at the time(6.3), but it depends on the scheme, and can in principle even

of the numerical lattice Monte Carlo study in REf4], noth- ~ be chosen to vanish.

ing was known about the coefficieg;, which was there- Logarithms of the first and second types can be written in

fore set to zerdcf. Eq. (4) in [14]], while the partpy(T) many ways: it may be more intuitive, for instance, to reor-

+pg(T) was determined nonperturbatively. But this meansganize them as

We have addressed in this paper the 4-loop logarithmic
contributions to the pressure of hot QCD. Physicabular-
ization independeptogarithms can only arise from a ratio of
two scales. Since there are three parametrically different
scales in the system,72T,gT, g°T, there are then various
types of perturbatively computable logarithms in the 4-loop
expression for the pressure:

(1) Logarithms of the type®In[(2#T)/(g°T)]. The coeffi-
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expressions can be extracted frotd,15,28:

60 | 27T Pl 27T
agin| —— ayln| —
g ag 2T g ay 9T ,
a
5 ayy+ )| k| + gPargln| 2L 1= 1gg(4dat 7dr), AD
= o o n| ——— acin| —— 1.
g(antag 9T 9 ag 2T
(8.1 aer=— 55| Cat ETF>’ (A2)
The existence of three kinds of logarithms is somewhat spe-
cific to non-Abelian gauge theory. In QED, in patrticular,
none of the logarithms appear. This is due to the fact that the da| ,(12 194 w116 220¢'(—1)
effective theories we have used for their computation, Eqsa53=174 A ?Jr Tlner ?+47+ 3 ﬁ

(2.10, (2.19, are non-interactinfapart from a terrﬂvAa1 in
Eq.(2.10, which does not lead to logarithmd herefore we 38 g/(_3))

have nothing to add to the know®(g®) QED result ob- 3 (=3
tained in[23]. In the ¢* scalar theory, on the other hand,

there is a logarithm of the second type, and also one some- 12 169 ; 1121 157
what analogous to the third type. Their coefficients were al- +CATg| —+ = In-—=+————In2+8y
ready computed ifi24]. e 3 4T 60 5

There are interesting checks that can be made on the vari- 146¢'(-1) 1 '(-3)
ous logarithms mentioned, using methods completely differ- — — )
ent from those employed here. For instance, logarithms of 3 4=1) 3 43
;che_flrst and second types could in principle be_ seen with 3D 20 1 88 16 /(= 1)
attice Monte Carlo method£5,26, as well as with stochas- FT St = — —In2+4y+ = — =
tic perturbation theon[27]. A very interesting analytical Fl3 47T 3 5 3 ¢(-1)
check would be to compute the 4-loop free energy directly in ,
4D in strict dimensional regularization, but without any re- _ § ¢ (_3)) 4 <1—05—24In2) (A3)
summation. By definition, this computation produces the co- 3 (-3 PR a '

efficient Bg, in Eq. (5.1) [11], and one check is that the result
must contain the ¥ divergences shown in Eg@6.2). 1
To complete the free energy from the current level, - (Cc,+Tp), (A4)
0O(g®In(1/g)) to the full level O(g®) would require signifi- 3
cantly more work than the computation presented here. More

specifically, there are contributions from all the scales in the (1

problem, ranging from 2T (the coefficientg8g,, . . . ,Bes), ags== | Cal In K g ))

through gT (the coefficient By), down to the non- 3 AnT  {(—1)

perturbative scalg?®T (the coefficientBg). This then re- — ,

quires carrying out 4-loop finite temperature sum-integrals, T, |nL+ E —In2+ ¢ (_1)” (A5)
4-loop vacuum integrals id=3—2¢, 4-loop vacuum inte- 4nT 2 (=1

grals in 3D lattice regularization, and lattice simulations of
the pure 3D gauge theory in E€R.15. Nevertheless, given

the potentially important combined effect of all these contri- ~ _ 2(2_2| ne’ 4 E T (EI ne’ _ 1_| 211
butions, as indicated by Fig. 1, such computations would"E® CalgNazr tg | TCaTe| glng s~ gn
clearly be well motivated. _
,[ 8 ume’ 16
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APPENDIX: MATCHING COEFFICIENTS 4 — _

(o)
g il (ag)
(4m)°  uo

— — 2
In Egs.(5.1)—(5.5) we have defined a number of matching 92%(u)=9%(umo) — 3 (11CA—4T§)
coefficients, theag's and B¢’s. For the ag’s, the following
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ABSTRACT: We compute the dimensionally regularised four-loop vacuum energy density
of the SU(V.) gauge + adjoint Higgs theory, in the disordered phase. “Scalarisation”, or
reduction to a small set of master integrals of the type appearing in scalar field theories,
is carried out in d dimensions, employing general partial integration identities through an
algorithm developed by Laporta, while the remaining master integrals are evaluated in
d = 3 — 2¢ dimensions, by expanding in € < 1 and evaluating a number of coefficients.
The results have implications for the thermodynamics of finite temperature QCD, allowing
to determine perturbative contributions of orders O(g%In(1/g)), O(¢%) to the pressure,
while the general methods are applicable also to studies of critical phenomena in QED-like
statistical physics systems.
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1. Introduction

The theory we study in this paper is the euclidean SU(N.) gauge + adjoint Higgs theory,

defined in continuum dimensional regularisation by the action

SE = /ddazEE, (1.1)
1
Le =5 Tr Fjjy + Tr[Dy, Ao)? + m?® Tr A§ + A(Tr 47)?, (1.2)

where k,l = 1,. .. ,d, Dk = 8k - ZgAk, Ak = AzTa, AO = AgTa, Fkl = (Z/g)[Dk,Dl], and
T are the hermitean generators of SU(N.), normalised as Tr 79T® = §%/2. Summation
over repeated indices is understood. We could have taken the scalar potential also in the
form A (Tr Ag)2 + Ao Tr A3, but the two quartic terms are independent only for N, > 4 and
thus, to avoid further proliferation of formulae, we will set Ao = 0 here, denoting A = A;.
For the moment we keep d general, but later on we write d = 3 — 2¢, and expand in € < 1.



The observable we would like to compute for the theory in eq. ([.2) is its partition
function, or “vacuum energy density”,

1
fm? g%\ = — Vlim Vln /DAkDAO exp(—Sg) - (1.3)

Here V is the d-dimensional volume. The phase diagram of the system described by Sg
has a “disordered”, or symmetric phase and, depending on N, various kinds of symmetry
broken phases [l B]. Our aim is to determine the perturbative expansion for f up to 4-loop
order in the symmetric phase, expanding around A§ = A} = 0; the 3-loop result is known
already [J, fi]. The result will depend on N, through d4 = N2 —1,C4 = N...

The main motivation for the exercise described comes from finite temperature QCD. In-
deed, the simplest physical observable there, the free energy density or minus the pressure,
has been computed perturbatively up to resummed 3-loop level [f], [f], but the expansion
converges very slowly, requiring probably temperatures T' > TeV to make any sense at
all (B, B, B, @. Moreover, at the 4-loop level the expansion breaks down completely [l PJ.
Multiloop computations are not useless, though: these infrared problems can be isolated
into the three-dimensional (3d) effective field theory in eq. ([.2) [[L0], and studied non-
perturbatively there with simple lattice simulations [fl. However, to convert the results
from lattice regularisation to 3d continuum regularisation, and from the 3d continuum the-
ory to the original 4d physical theory, still necessitates a number of perturbative multiloop
“matching” computations.

The way our computation enters this setup has been described in [[[]. Combining
our results with those of another paper [[[2] allows one to determine, as explained in [[L1],
all the logarithmic ultraviolet and infrared divergences entering the 4-loop free energy of
QCD. This not only fixes the last perturbatively computable contribution to the free energy
of hot QCD [[]], of order O(g®In(1/g)T*), but is also a step towards renormalising the
non-perturbative contributions, as determined with lattice methods [ff] [J. Some other
applications of our results are discussed in section Bl

2. Outline of the general procedure

The first step of the perturbative computation is the generation of the Feynman diagrams.
At 4-loop level, this is no longer a completely trivial task. In order to make the pro-
cedure tractable, we employ an algorithm whereby the graphs are generated in two sets:
two-particle-irreducible “skeleton” graphs, as well as various types of “ring” diagrams, con-
taining all possible self-energy insertions. The resulting sets, with the relevant symmetry
factors, were provided explicitly in [[[4].

It actually turns out that some of the generic graphs shown in [[4] do not contribute
in the present computation. There are two reasons for this. First, once the Feynman
rules for the interactions of gauge bosons and adjoint scalars are taken into account, some
of the graphs vanish at the point of colour contractions. This concerns particularly the
“non-planar” topologies [[[5]. Second, all vacuum graphs which do not contain at least
one massive (adjoint scalar) line, vanish in strict dimensional regularisation. In some



Figure 1: The skeleton diagrams contributing in eq. (B), after subtraction of those which obvi-
ously vanish because of colour contractions or specific properties of dimensional regularisation. Solid
lines represent the adjoint scalar Ay, wavy lines the gauge boson A;, and dotted lines the ghosts.
The complete sets of skeleton diagrams have been enumerated and written down in ref. [@], whose
overall sign conventions we also follow.

cases such a vanishing may be due to an unphysical cancellation between ultraviolet and
infrared divergences, as we will recall in section [], but for the moment we accept the
vanishing literally. The remaining skeleton graphs are then as shown in figure ] For the
ring diagrams, which by far outnumber the skeleton graphs, we find it simpler to treat
the full sets as shown in [[[4], letting the two types of cancellations mentioned above come
out automatically in the actual computation. For completeness, the ring diagrams are
reproduced in figure P}

The Feynman rules for the vertices and propagators appearing are the standard ones.
We employ covariant gauge fixing, with a general gauge fixing parameter, denoted here by

5 = ghere =1- Estandard ) (21)

where &gtandard 1S the gauge fixing parameter of the standard covariant gauges. Therefore,
Feynman gauge corresponds here to £ = 0, Landau gauge to £ = 1. We keep everywhere &
completely general, however, and verify explicitly that it cancels in all the results.

The graphs having been identified and the Feynman rules specified, we program
them [[[§] in the symbolic manipulation package FORM [[L7], for further treatment.

After the colour contractions, the next step is to “scalarise” the remaining integrals.
That is, we want to remove all scalar products from the numerators of the momentum in-
tegrations, such that only integrations of the type appearing in scalar field theories remain.
This problem can be solved by using general partial integration identities [L8]. The full
power of the identities can be conveniently made use of through an algorithm developed by
Laporta [[9]. We discuss some aspects of our implementation of this algorithm, together
with the results obtained, in section [
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Figure 2: The ring diagrams contributing in eq. ([.3) [l4]. The notation is as in figure [i]

After the reduction to scalar integrals, we are faced with their evaluation. At this point
one has to specify the dimension d of the spacetime, in order to make further progress. We
write d = 3 — 2¢, expand in € < 1, and evaluate the various scalar integrals appearing to a
certain (integral-dependent) depth in this expansion, such that a specified order is achieved
for the overall result. For the new 4-loop contributions, the overall order for which we have
either analytic or numerical expressions is O(1). The scalar integrals needed for this are
discussed in section .
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Figure 3: The 15 general types of 4-loop integrations remaining, in terms of momentum flow
(momentum conservation is assumed at the vertices), after taking into account that colour con-
tractions remove the non-planar topologies. Any line could contain a propagator to some power
n > 1, and there is also an unspecified collection of scalar products of the integration momenta in
the numerator.

There is one remaining step to be taken before we have the final result: the renormal-
isation of the parameters m?, g2, X in eq. ([:2). In other words, the results presented up
to this point were in terms of the bare parameters, and we now want to re-expand them
in terms of the renormalised parameters. This step is also specific to the dimension, and
turns out to be particularly simple for d = 3 — 2¢, since only the mass parameter gets
renormalised. The conversion of the bare parameters to the renormalised ones is discussed
in section [, and the final form of the results is then shown in section fj

Having completed the straightforward computation, we discuss the conceptual issue
of infrared divergences in section [l We mention in this context also some checks of our
results, based on largely independent computations. We end with a list of some applications

in section .

3. Scalarisation in d dimensions

After inserting the Feynman rules and carrying out the colour contractions, there remains,
at 4-loop level, a 4d-dimensional momentum integration to be carried out. The different
types of integrations emerging can be illustrated in graphical notation in the standard way.
Without specifying the fairly complicated numerators, involving all possible kinds of scalar
products of the integration momenta, the graphs are of the general types shown in figure fj|

There are a few simple tricks available in order to try and simplify the scalar products
appearing in the numerators [[[§]. For instance, one can find relabelings of the integration
variables such that the denominators appearing in the graph remain the same, while the
scalar products in the numerators may get simplified, after symmetrising between such
relabelings. Some scalar products in the numerators can also be completed into sums
of squares, such that they cancel against the denominators. Furthermore, we can make
use of various special properties of dimensional regularisation: any closed massless 1-loop
tadpole integral vanishes; and any 1-loop massive bubble diagram with at most one external
momentum is easily scalarised explicitly, in the sense of removing the loop momentum from
all the scalar products appearing in the numerators. However, while such simple tricks are
sufficient at, say, 2-loop level, this is no longer the case at 4-loop level.
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Figure 4: The 1-loop, 3-loop and 4-loop “master” topologies remaining after “scalarisation”. There

are no numerators left in these graphs. A solid line is a massive propagator, 1/(p? + m?), and a
dotted line a massless one, 1/p?, where p is the euclidean momentum flowing through the line. Note
that no independent 2-loop representative appears.

To scalarise the 4-loop integrations, we have to make full use of the identities provided
by general partial integrations [[§]. To systematically employ all such identities, we imple-
ment the algorithm presented by Laporta [[J using the “tables” routines of FORM [[[7].
This leads to a complete solution of our problem. The main technical details of our imple-
mentation were discussed in [[L§].

After the scalarisation, the master integrals remaining are those shown in figure [l
This basis is, of course, not unique. As an example, one could have chosen a different basis
for the 3-loop master integrals, employing identities following from partial integrations [R0],

(O-=O ' a5w—s]Dlars): o
@O |y Hn] G 28],
Q / dp +m2’ (3.3)

and correspondingly for the higher loop mtegrals. Therefore, the 3-loop master integrals

where

we are using, appearing on the right-hand-sides of egs. (B.1)), (B.2), could be exchanged in
favour of the 3-loop integrals on the left-hand-sides of eqs. (B.1), (B-2).
To display the full result after scalarisation, we introduce the shorthand notations

Ada +2)
¢*Cyx

f(m?,¢*,\) = —dy Z(gQCA)g_lﬁg, A (3.4)
=1

We then obtain the following expressions:

b =m Q [__] (3.5)
p2 = (Q) [% - EX} , (3.6)
e ()

(d — 2)(608 — 1064d + 654d? — 155d° + 12d*)
X{[_ 8(d — 6)(d — 4)(2d — 7)(3d — 8)




A5

Bl ([@d=2) (d—2)?
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(d—2)*(3d —11)
(D [ o ais)
...... (16— 18d+3d2) < (d_4)
‘Dl : |

d—6)(d—4)(3d —8) (da +2)(3d —8)

(3.7)

1 4
pi=0a (O)
X{ (d— 2)041
96(d — 9)(d — 7)(d — 6)(d — 5)(d — 4)2(d — 3)
1
d—1)(2d—9)2d—T)(3d - 13)3d —11)(3d —10)(3d —8)
(d —2)(2904 — 7150d + 7097d? — 3581d3 + 964d* — 131d® + 7d°)
[_ 8(d — 6)(d — 4)(d — 3)2(2d — 7)
5(d —5)(d —2)3
T A(da 1 2)(d—4)%(d—3)(3d - 11)] *
Y [(d —2)(d—1)(2d —5) (d—2)%(—32+ 56d — 25d> + 3d3)]

3><

X

> —~

+

8(d — 3) 4(da +2)(d — 4)(d — 3)2(3d — 8)
[ (d—2)(2d - 5) (d —2)?
X [‘ 20 A{dat2)(d- 3)] } *

HONOE
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X{ [_24(d —5)(d —4)%(d — 3)(d — 1)(2d — 9)(2d — 7)(3d — 11)(3d — 10)(3d — 8) ] *

A S )
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X
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5(20 — 10d + d?)

A(da +2)(d - 4)} }

_ (d —2)(—=2656 + 5672d — 4072d” + 1302d* — 186d" + 9d°)
16(d — 4)(d — 1)(3d — 11)(3d — 10) ]

_ 4(d — 2)(—9482 + 13225d — 7306d° + 1992d° — 267d" + 14d5)]

9(d — 4)2(2d — 7)(3d — 11)(3d — 10)
1
2 ()
(d —2)(2d — 5)as

X{ [_24(d “4)2(d — 3)(d — 1)(2d — 9)(2d — 7)] *

: (d - 2)(2d — 5)
X [‘m ) (d—4)(d - 3>} } "

+% [3(d —4)3(d — 3)2(5[_21))((226;—_57))(;;6[ —11)(3d — 10)} *
_ 2 B _
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(3.8)

where

a1 =

a9 =

a3 —

—121583669760 + 2691971008704d — 13463496742176d% + 33122892972480d> —
—50028680189824d* + 51445267135192d° —38155599595406d° + 21131958532365d" —
—8925676618775d° + 2909006141441d° — 734705333783d° + 1434300525194 —
—21428725861d'% + 2402935979d"® — 1955703194 +

+10896768d"° — 371376d' + 583247 , (3.9)
—14081760 + 11237380d + 64451424d? — 140115669d> + 129957772d* —
—69456108d° 4 23323366d° — 5020699d" + 674926d° — 51720d° 4 17284'%,  (3.10)
508742208 — 1725645240d + 2236030380d% — 1426818168d> +

+436152106d* — 14158652d° — 36636937d° + 13713052d" —



—2491870d® + 254770d° — 13967d° + 3184'! (3.11)
oy = —1266048 — 122112d + 1785942d% — 1171982d° +

+307185d* — 35512d° 4 1400d° + 6d" + d°, (3.12)
a5 = 5112 — 11321d + 10618d? — 5358d° + 1489d* — 212d° + 12d° , (3.13)
o = 171232 — 492404d + 584218d* — 380046d° +

+149811d* — 36924d° + 5595d° — 480d" + 18d° . (3.14)

It is worth stressing that eqgs. (B.5)~(B.14) were obtained with an arbitrary &, which
just exactly cancelled once all the graphs were summed together, for a general d, and before
inserting any properties of the master integrals. This is a consequence of the fact that the
master integrals constitute really a linearly independent basis for the present problem.

4. Integrals in d = 3 — 2¢ dimensions

A set of master scalar integrals having been identified, the next step is to compute them.
As already mentioned, we do this by writing d = 3 —2¢, expanding in € < 1, and evaluating
a number of coefficients in the series.

In order to display the results, we first choose a convenient integration measure. To
this end, we introduce an MS scale parameter i, by writing each integration as

/(;ijr])gd ”_26[“%(%)6/%]7 (4.1)

where p = fi(e”/4m)'/?, and the expression in square brackets has integer dimensionality.

This square bracket part of an ¢-loop integration is then written as

1) [ 2| -

i=1

:@mw2k<%>2d{ilj[M(%)E/é;%}g(m,m,pg,1)}, (4.2)

where k£ counts the number of propagators, or lines, in the graphical representation of the
function g. From now on we assume that the loop integrations are computed with the
dimensionless measure in the curly brackets in eq. ([L.2), while the constants in front of the
curly brackets, together with the explicit powers of m as they appear in eqs. (B.5)—(B.5),
are to be provided in trivial prefactors (cf. eq. (f.14) below).

With such conventions, the loop integrals remaining are functions of € only, and read:
1
Q — 12— ¢ <4 + sz) + ey + 0N, (4.3)

7.(.2
= T e+ 0, (44)
...... 12
QD =In2+ey3 + O(?), (4.5)



2

-+t 0(e), (46)

2

T

— 4.
35c T+ 0(), (4.7)
G 48
374'764'0() (4.8)
s o 4.9
374")’74‘ (€), (4.9)

41—81n2—|—21—{—6’}/8—|—0(62), (4.10)
€

39, (15 1y oo

8€—|—2 e<2—|—87r)+e 9 + O(€’), (4.11)

Y10 + O(e), (4.12)
(1). (4.13)

As we will see, the terms shown explicitly are needed for determining the 1/e-poles in
the 4-loop expression for f, the constants -, are needed for determining the finite 4-
loop contribution to f, and the higher order terms only contribute at the level O(e).
Analytic results for ~1,...,79, as well as a numerical determination of =g, are presented
in appendix [A].

It is now convenient to combine the conventions in eqs. (B.4), (1), (£2) and write

_26 00 — 2¢el ,U_QEQQCA -1
— a-t _— Dy - 14
f(m?, g% ) dA Zm <2m> ( y ) Dr (4.14)

Substituting eqs. ([.3)-(E13) into egs. (f(@) and expanding in €, the results then
read, up to O(e) corrections:

1

1/1 -
By = __<— +3+)\> , (4.16)
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L[l ™ (da+8) )
e\8da+2 102(da+2)
1 1 1(d,4+8)
e (1-Im2)— AT
TRITP P L) 6(d,4+2)274]

(4.18)

It is interesting to note that while single diagrams contributing to p3 do have 1/e-poles (cf.
appendix [B)), they sum to zero in the term without A, but not in the terms proportional
to A\, A2, This structure is related to counterterm contributions from lower orders, as
discussed in the next section. Similarly, single diagrams contributing to p4 have both 1/¢2
and 1/e-poles, but the former ones sum to zero in the term without any \’s.

Of course, single diagrams contain also é&-dependence. In our computation £ cancelled
at the stage of eqs. (B-H)—(B.14), but one could alternatively express single diagrams in
terms of the same basis of master integrals, this time with £-dependent coefficients, and
let the &’s sum to zero only in the end. For completeness, we again illustrate the general
structure of such expressions at the 3-loop level, in appendix B}

5. Counterterm contributions

The computation so far has been in terms of the bare parameters of the lagrangian in
eq. ([.2). As a final step the result is, however, to be converted into an expansion in terms
of the renormalised parameters.

The conversion is particularly simple in low dimensions such as close to d = 3, since
then the theory in eq. ([[.7) is super-renormalisable. In fact, the only parameter requiring
renormalisation is the mass parameter m2. We write it as

m? = mi,. = m2(i) + om?, (5.1)
2 1o 2 2
o = 2da+2) {55 (—g AC4 + A ) . (5.2)

This exact counterterm [R1], guarantees that all n-point Green’s functions computed
with the theory are ultraviolet finite. Note that as far as dimensional reasons and single
diagrams are concerned, there could also be divergences of the form g*/e, but they sum to
zero in the counterterm appearing in eq. (f.9).

Inserting now egs. (p.1]), (F.2) into the 1-loop and 2-loop expressions for f(m?, g2, \), we
get contributions of the same order as the 3-loop and 4-loop vacuum graphs, respectively,
from dm? - 9,2 f(m?(1), g%, ). We need to use here egs. (B.5), (B-6), since O(e)-terms,
not shown in eqgs. (f:19), (1), contribute as well, being multiplied by the 1/e in dm?2.

Explicitly, the terms to be added to egs. (f.17), (E-1§), once the prefactors in eq. (f.14)) are
expressed in terms of the renormalised parameter m(f) rather than m, are

s = (mﬁm)%i - %> <_A * dA1+ 2A2> ) (5.3)
<2mﬂ(m>4e<—é> <Ei2 - %(1 +A) + %(4+7r2) +2,\> <—/\+ dA1+2)‘2> . (5.4)

0p4
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The 3-loop 1/e-contributions in eq. (5.3) cancel against the 1/e-terms in eq. (JL17)). Indeed,
genuine vacuum divergences can only appear in po,p4, since such divergences must be

analytic in the parameters m?, g2, A\ appearing in the lagrangian, while p3 comes with a
coefficient ~ (m?(1))'/? (cf. eq. (fE14)). Another point to note is that 1/e2-terms appear

in 0p4 only with coefficients A, A2, just as in eq. (fE1§), although there is no complete

cancellation.

6. The final result

We can now collect together the full result for f(m?

parameters of the theory. For dimensional reasons, its structure is,

—2e

f(m?, g% A) =

where fg’i

[F10|m? () +
:f2,o 9+ fan A] m®(p) +

f309 + F31 PN+ fa2 )\2] m(p) +

and 7 the number of \’s appearing;:

F109° + fa1 g* A+ Fr2 9N + fus )\3} +

,g%,\), in terms of the renormalised

. (6.1)

= foile, iym(f)) are dimensionless numbers, with ¢ indicating the loop order,

. 1
fio = dA(—— + 0(6)) (6.2)
foq = da(da + 2)( +O(e )) (6.4)
2
T
fao = dACA(——E ln2+E+(’)(e)) (6.5)
_ A d
Far = daCa(da + 2)( gt 0(6)) , (6.6)
A _k 3 a(_1
far = dalda +2)(In s T3 2 0(9) +dalda+2* (-5 +0() . (67)
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3 2
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+@’74+64('75+'76)+9’774‘@’78‘{‘679—7104'0( |, (6.8)
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5 15 115 , 5

- 12 —



1 m 1 i
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FdaCi(da+ )< 16€2 +in 2m(f) * 2 n2m(/j)
43 11 1,
1 32 — 7T2 i 36 — 72 i
= daCu(ds +2 — —In? - 1 —
Fua = aCalda +2) g~ gz gt = (5 g
183 23
-5t 21H2—4—87T + 273+ 744-4784'0()}
1
daCald 2 — =40 6.10
+da A(A+)< 2m( 8+ ()>, (6.10)
Fis = da(da+2)(da+38) s +31 + 0@ +
= —_— n - €
4,3 AlQA A 192 QW(M) 674
da(da+2? (=2 Lty
+da(da + )( 2m(7) 4+ n +(9()>
tda(da +2)° (24 + (’)(e)> (6.11)
In particular, following the notation of ref. [[1]] and writing
fa0=—daC%|a Ligm P + (6.12)
4,0 - A A M € 2m(ﬂ) M ) °
we read from eq. (B.§) that
43 491
= — - —7"= 1 1
o = 53— g~ 0555017, (6.13)
By = 85291 _ 1259 Ing 4 2093 5653 2 1 n § _ B _
MT 7768 32 153 4173”0
T3 T 10 T
192 64 Y5 T V6 977 4878 679 Y10
311 77 491 1793
:————12——122 72— 72 1n2
256 32 T 516" ~ 1536 + 512 6B + 0
~ —1.391512. (6.14)

In eq. (6.14)) we used values for 71, ..., 710 from appendix [A.5 and appendix [A.6. The coef-
ficient ayy gives a contribution of order O(g® In(1/¢)T*) and By a perturbative contribution
of order O(g®T*) to the pressure of hot QCD [[LT].

The expression in eq. (p.1]), with the coefficients in eqs. (p.2)—(p.11)), contains a number
of 1/€% and 1/e-poles. Once our computation is embedded into some physical setting, such
as in [, a vacuum counterterm is automatically generated (denoted by pg(T) in [L]),
which eventually cancels all the UV-poles, such that physical observables remain finite for
¢ — 0. The nature of the poles in eqgs. (f.2)—(p.1]]) is analysed in detail in the next section.

7. Infrared insensitivity of the results

The result shown in the previous section contains a number of 1/e? and 1/e-divergences.
Since dimensional regularisation regulates at the same time both ultraviolet (UV) and

,13,



infrared (IR) divergences, we may ask of what type are those obtained? The purpose of
this section is to show that the divergences are of purely UV origin, and the result is thus IR
insensitive, if interpreted properly. There are two ways of showing this, firstly an effective
theory approach in which one understands that all the IR divergences are contained in
the SU(N.) pure Yang-Mills theory obtained by integrating out the Ag-field, secondly a
pragmatic one in which one shields away the IR divergences by giving the gluon and ghost
fields a mass.

Conceptually the best way to analyse the IR sensitivity is to dress the problem in an
effective theory language. In the present context, such an analysis was carried out in [[L0].
The idea is that since the field Ay has a mass scale, it can be integrated out. The integration
out is an ultraviolet procedure, thus by construction not sensitive to IR physics. The
effective low-energy theory that emerges is a 3d pure gauge theory. Its partition function,
on the other hand, does contain IR divergences, starting at 4-loop level [B], fJ.

Therefore, we expect that all results up to 3-loop level should be IR insensitive. At
4-loop level there is a part of the result, that is the diagrams which can be constructed
fully inside the pure SU(N,) theory, which can be both IR and UV divergent. Since in di-
mensional regularisation, however, these graphs are set to zero, the non-zero result we have
obtained should again be insensitive to any mass scales in the gluon and ghost propagators.

Apart from the issue mentioned, there is also another possible source of IR problems,
namely that of overlapping divergences. Indeed, while IR divergences appear for vacuum
graphs at 4-loop level only, they appear for self-energy graphs already at the 2-loop level
(see, e.g., [[0]). However, 2-loop self-energy insertions do appear also as subgraphs in
the 4-loop “ring diagrams”, making the divergence structure of such 4-loop graphs “dou-
bly” problematic. We return to this issue presently, but first finish the discussion of IR
divergences at lower than 4-loop level.

To be very explicit, let us introduce a fictitious mass parameter mq for all massless lines
(gluons and ghosts), hence giving the function f(m?2, g%, \) a further functional dependence
on the mass ratio = mg/m. Let us denote by AH (“Adjoint Higgs”) graphs with at least
one Ap-line, and by YM (“Yang-Mills”) graphs with none at all. The general structure of
the bare f(m?, g%, \) can then be expressed as (cf. eq. ({.14)))

—2¢

Font, 20 = 30 (B ) () ()t [ (e 6 3) 2 M )]

47 2m
=1

(7.1)
where fZAH, fZYM are dimensionless functions. While the treatment above corresponds to
setting x = 0 first and then computing the expansion in €, we now keep a non-zero x
through the entire calculation, being interested in the limit of small z only in the end:

MS : lim 1imOﬁAH(m,e,§, A, (7.2)
IR-regulator : lin% lin% fA (6,6, 0). (7.3)

These two limits do not in general commute for single diagrams, but should commute for
the sum. Possible power IR divergences in single diagrams would show up as poles in x,

while logarithmic ones correspond to In x.
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The main technical differences in the IR regularised procedure with respect to the
MS computation are a more complicated scalarisation, in the absence of low-level routines
specific to the presence of massless lines, such as the so-called “triangle rule”, and an
enlarged set of master integrals. Furthermore, some additional diagrams contribute, which
were set to zero from the outset in the MS calculation, due to the absence of any mass
scale (in some subdiagram).

As a roundup, it turns out that, starting at the 3-loop level, individual diagrams do
indeed contain logarithmic as well as powerlike IR divergences, which then cancel in the
sum, proving a posteriori the validity of the dimensionally regularised MS calculation. For
completeness, we illustrate this issue in appendix Bl.

We now return to the 4-loop level. According to the discussion above, the full set
of graphs can be divided into four sub-classes, having potentially different IR properties:
pure Yang-Mills graphs (YM) and those with at least one Ap-line (AH), with both sets
further divided into skeletons (figure fl) and ring diagrams (figure ). The properties of the
pure Yang-Mills diagrams are discussed in [[J], and we only state here that they contain
both logarithmic UV as well as IR divergences, which however exactly cancel in strict
dimensional regularisation (but not in regularisations which only regulate the UV, such
as lattice regularisation). Here we then just discuss the skeletons and rings containing at
least one massive Ag-line. For simplicity, we discuss explicitly only terms without a quartic
coupling A.

We have computed the 1/e-divergence in the sum of such AH-skeletons with in total
three different mass spectra:

1. As described above, whereby the Ag-lines carry the mass parameter m?, while the
gluon and ghost lines are massless.

2. By giving an equal mass to all the fields: Ay, gluons, and ghosts. The computation
proceeds in complete analogy with the one described in [[[2].

3. By setting all masses to zero, picking some line in the 4-loop vacuum graph, inte-
grating the massless 3-loop 2-point function connected to that line in d dimensions, !
and regulating the remaining single integral by shielding the IR with a mass and

regulating the UV via dimensional regularization.

All three methods give the same result for the 1/e-pole in AH-skeletons, confirming its
expected IR finiteness. Expressed as a contribution to ps in eq. (1), the divergence
appearing in the result reads

2

Olpa] = 355 |3(696 — 56¢ 662 — 5¢3) — %(832 — 144€ + 81€% — 1563 + 3¢Y)| . (7.4)
€

For the AH-rings, on the other hand, the third method does not work. This is due

to the overlapping divergences mentioned above: a 2-loop 2-point function of gluons alone

IThis problem has been solved a long time ago via integration by parts; for a discussion as well as an
algorithmic implementation, see [E]
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leads to logarithmic UV and IR divergences, and trying to carry out the final integration
by some recipe, gives generically an outcome ~ 1/¢2, but with a coefficient dependent
on what the recipe precisely was. To cancel the 1/e2-pole, not to mention to get the
correct coefficient for the remaining 1/e-pole, is a very delicate problem, which can only
be guaranteed to have been solved by employing a fully systematic procedure. Our non-
abelian case is therefore qualitatively different from a pure scalar theory, where the problem
of overlapping divergences does not emerge [P4]. For a discussion of the cancellation of the
analogue of the 1/e2-pole in cutoff regularisation in the pure SU(N,) theory, see [[L].

On the contrary, the AH-rings can be systematically computed with the 1st and 2nd
types of mass spectra. Both procedures give the same result, confirming its IR insensitivity.
Summing together with eq. (7.4), we recover the &-independent 1/e-pole on the first row
in eq. ([.19).

In summary, we have verified explicitly that the only possible IR divergence appearing
in our computation is that of the pure SU(NV,.) gauge theory, contained in the YM-graphs.
It is addressed further in ref. [[J].

8. Discussion and conclusions

The main point of this paper has been the discussion of formal analytic techniques for,
and actual results from, the evaluation of the 4-loop partition function of the 3d SU(N,)
+ adjoint Higgs theory using dimensional regularisation. The final result is shown in
egs. (B-1)—(p-11)). We have also demonstrated that if interpreted as a matching coefficient
— that is, if the pure Yang-Mills graphs, without any adjoint scalar lines, are dropped, as
is automatically the case in strict dimensional regularisation — then the result is IR finite.
Therefore, all IR divergences are contained in the pure Yang-Mills theory. We would now
like to end by recalling that such techniques and results have also practical applications.

Perhaps the most important application is that our results provide two specific new
perturbative contributions to the free energy of hot QCD, of orders ¢%1In(1/¢)T*, ¢57* [[L1].
Similarly, they provide also new perturbative contributions to quark number susceptibili-
ties [R5). Once the parameters of the 3d theory are expressed in terms of the parameters of
the physical finite temperature QCD via dimensional reduction, and once other contribu-
tions of the same parametric magnitudes are added, this allows for instance to re-estimate
the convergence properties of QCD perturbation theory at high temperatures [[L1] R5, p6].
Our present computation also contributes to the MS scheme renormalisation of the sim-
plest 3d gauge-invariant local condensates, obtained by partial derivatives of the action
with respect to various parameters [PI]], and thus in principle helps in non-perturbative
studies of the pressure of high-temperature QCD [E, . It may also allow for refined
analytic estimates such as Padé resummations [R7 for the observable in eq. ([.3).

Let us mention that there has recently been significant interest in somewhat more phe-
nomenological approaches to QCD perturbation theory at high temperatures (for reviews
see, e.g., [2§]). As far as we can tell our results are of no immediate use in such settings.

Another application is that our general procedure is relevant for studies of critical
phenomena in some statistical physics systems. In this context one may either study
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directly the three-dimensional physical system, or carry out computations first in d =4 —e¢
dimensions, expand in €, and then take the limit ¢ — 1. For instance, some properties of
the Ginzburg-Landau theory of superconductivity have been addressed in the former setup
up to 2-loop level (see, e.g., [R9-[BZ]), and in the latter setup, in the disordered phase, up
to 3-loop level [BJ]. The integrals arising in the disordered phase are “QED-like” just as in
our study, so that scalarisation and the sets of master integrals are essentially the same as
the present ones [[§]. Moreover, in the case d = 4— ¢, the master integrals can be evaluated
to a high accuracy utilising the techniques introduced in [@], while for d = 3 — 2¢ most
master integrals have been evaluated in this paper. Our methods could therefore help in
reaching the 4-loop order.
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A. Master integrals

We discuss in this appendix the determination of the scalar master integrals of eqs. (J.3)—
(B.13)). They depend on one mass-scale m only and are thus “QED-like” in the generalised
sense that the number of massive lines at each vertex is even. Since the dependence on
m is trivial and has been absorbed into the coefficients, see eq. ([.2), m = 1 in most of
what follows. One obtains particularly simple expansions in 3 — 2¢ dimensions by using
the integration measure fp = % f d3~2¢p, in accordance with eq. (E2).

We first discuss briefly the various general techniques we have employed for the evalua-
tion of these integrals. The list of techniques includes: partial integration relations between
various scalar integrals, in analogy with those derived at 3-loop level in [R(] (appendix A-T));
graphs with only two massive lines, which can often be evaluated exactly (appendix [A.2));
graphs with two or three vertices, which can be evaluated to a sufficient depth in € us-
ing configuration space methods (appendix [A.3); and some remaining graphs, which were
evaluated in momentum space (appendix [A.4). We combine the results from the various
techniques in appendix [A.§, showing the actual expansions for the master integrals to the
depths specified in eqs. (.3)—(f.11). There is one finite integral remaining which we have
not been able to evaluate analytically, corresponding to eq. (.12)); its numerical value is
determined in appendix [A.6.

A.1 Partial integration identities

Implementing systematically all identities following from partial integrations, as discussed
in section [, allows not only to express all integrals in terms of a few scalar ones, which do
not contain any non-trivial numerators, but produces also a set of relations between the
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scalar integrals. As a simple example, we may recall that the identity

d
= i Pk — qk
" _lcz:/P,q Opy, [(p2+m2)(q2+m2)(p_q)z]7 (A1)

1

leads to the relation

1 1 1 1
/p,q (p? +m2)(q2 + m2)(p — q)2 - d—3 /p (P2 + m?)2 /q @ +m?) (A.2)

Taking furthermore into account that in dimensional regularisation the two integrals on
the right-hand-side of eq. (A.2) are related, we obtain

1 2 (d—2)
_ S Sl I A3
2O 23] (43)
Examples of similar relations at 3-loop level were shown in eqs. (B.1)), (B.2), and a complete
3-loop analysis can be found in [R{] (see also [f]).

At 4-loop level, there are obviously many more identities than at 3-loop level. Rather
than showing a complete list we give here, as an example, one of the relations:

1 d—2 1 2d -5
— = - = Sl —. A4
O @ larg) w@lsis) @
It turns out that this relation is convenient for the determination of the 4-loop integral on
the right-hand-side.

A.2 Integrals known exactly

A few of the integrals appearing can be evaluated exactly in d dimensions. This holds
particularly for cases where only two massive propagators appear. As an example, we show
how this can be done in configuration space. The massive propagator can be written as

Glesmi) = / @m) 2 P2t m? (o)

p_¢ (ﬂ) Ki_ (mi), (A.5)

T

where K is a modified Bessel function, and = denotes, depending on the context, either a
d-dimensional vector or its modulus. On the other hand, the massless part of the graph
converts in configuration space to

(271')3726 p” F(%) 2Vﬂ-%—5w3—y—26 ’ )
We can then employ the identity
o0 A2 14+ X+ 2u 14+ A 1+X—2u
P) 2
K2(z) = r( )r ( )r( ) . A.
/0 dea™ K@) = 5 2 2 2 (A7)
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With this result, the following expressions are easily derived (using the integration measure

inside the curly brackets in eq. ([L.2))):

0 - (_g) (4e)* T( + OT(2 = P +39T2 (1 + 20 )
) 2¢ (1 —2€)(1 —6€)3(3)I (1 + 4e) '
— _2i€ —4- (26 + §772> <160 2 %g@)) E+0(E3), (A9
sFe o W T2G + o33 —or?(3 + 3e)r(% — 36)I (1 + 4e)
T 32 (7)™ (1 26)r8(%)r2(1 — 2¢)T (1 + 6e) (A.10)
— 7;; [1 +24+4In2+ <4+ g# +8In2(1 +1n2)> €+ 0(62)] : (A.11)
3 2 T2(3 — eT2(2 +3e)I (1 +2€) T (1 + 4e)
8¢ (47) (1 —2€)(1 — 4€)(1 — 6¢)I4(3)T (1 + 6¢) (A.12)
3 9 7511 33
=t t (7 + §w2> (270 + 77# — —g( )> e+ 0(3).  (A13)
Obviously we also know ( fp is again according to the curly brackets in eq. ({£.2))):
_ 1 (4e) F(%—i—e)
Q _/pp2+1__1—26 r(3) (A1)
2 7
= —1—2— <4 + Z)EQ — <8 +5 - g<(3)>e3 + O(eY) . (A.15)

A.3 Configuration space evaluations

Even when configuration space does not allow for an exact evaluation of the integral, like
in appendix A9, it may allow for the most straightforward way of obtaining a number of
coefficients in an expansion of the result in e. This is the case particularly if there are only
two vertices in the graph.

At f-loop level, the graphs in this class are of the form

1€+1_ [471-(71) ]ZFQ(%.*Q—Z)/O dz 2%~ 26ﬁG (z;my), (A.16)

where G(x;m;) is from eq. (A.5). The idea (see, e.g., [R4]) is to split the integration into
two parts: [ da(...) = [5 da(...)+ [ da(...). The first part is performed in d = 3 — 2¢
dimensions but by using the asymptotic small-z form of G(x;m;),

) = ot [ () TR (B R ] e

while the latter part, which is finite, is performed by expanding first in € and then carrying

out the remaining integrals is d = 3 dimensions. For instance,

—m;x 2.,y %)
G(x;m;) = c [1 — e(ln er + mlgv/1 dyIn(y* — l)e(l_y)m””> + (’)(62)] . (A.18)

4y T

When the two parts are summed together and the limit » — 0 is taken, the dependence on
r cancels, and we obtain the desired result.
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In the evaluation of such integrals, dilogarithms will in general appear. Their properties
have been summarised, e.g., in [BY]. For completeness, let us recall here that one can shift

the argument of

) B T o Im(1-1t) "
ng(x)——/o dt —— _;;:]n? (A.19)
from the intervals [—oco... —1], [-1...0], [1/2...1] to the interval [0...1/2] via
Lip(x) = Li ! —In(1 — )1(—)+112(1— )—”—2 (A.20)
i2(2) = Liz  7— n z)In(-z) + 7 In x 5 .
Lig(z) = —Tig [ ——2—) = Lm2(1 — ) (A.21)
12(X) = 19 1—x 5 n xT), .
2

Lig(xz) = —Lisg(1 —2) —In(1 —z)Inz + R (A.22)

respectively. As follows from here, the dilogarithms satisfy, for = > 0,

1 1 2
Lis(— Lis ([—= ) = == Inz — —. A.23
io(—z) + Lis < x) 5 T ( )
Special values include
2 1 | 2
Lig(—1) = —— Liz(0) =0 Lip (=) == —=In?2, Lix(1)=—. (A.24
b-D=-To La0)=0,  Lo(5)=T-3m b(1)= T (A20

Using these identities, and denoting M = m1 + my + ms, we obtain for the 2-loop case

@:(%)4{ T3 *E[l‘—+ZL12<1—2;Z’)}+O( )} (A.25)

For the 3-loop case, now denoting M = m1 + my + ms + my, we obtain

O =) e e 3 o +
+e[13+3w2+§;<(

2m; m; M
Li ( ) 4
) 12 ) T o,

2m;

;’]\’2’1 2 M >] +0(62)}. (A.26)

In particular, if all masses are equal,
@:———8+4ln2—4e<13+ﬁﬂ —8ln2+n 2)+(’)(e). (A.27)
€

The case of two massless and two massive lines can be checked against eq. (A.9).
The 4-loop case has only been worked out to order O(1), rather than O(e). Denoting
now M = my + ma + mg3 + myg + ms,

1(]))s = M%%)ge [%&Jrzjtz?;;\%](; +g+ln ;Z) +O(e)]. (A.28)
it

(2
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The case of three massless and two massive lines can be checked against eq. (A.13). The
next order, O(e), could also be worked out and is indeed needed for g in eq. ([.1(), but
we choose to use another way to determine it, based on eq. (A.4).

When there are more than two vertices in the graph, the configuration space technique
gets rapidly more complicated, due to the difficult structure of the angular integrals. There
is one graph we are interested in, however, whose divergent and, most incredibly, also the
constant part [B] can still be obtained analytically:

2 e 6= [47r<g>5]4 / d3~2¢, / d37%y G(z — y;m) ﬁ G(x;m;) ﬁ G(y;m;) . (A.29)
" =2 =4 ’

Employing the angular integral [B7]

T — m)AM
[aa, B B fo— @) + 0 - 0 Kai)] . (430

where A = 3 —¢ and on the right-hand-side z = ||, y = |y|, one is left with two independent
radial integrations which can be handled as above [Bf], by splitting the integrations as
fooo dz(...) = for dz(...)+ froo dz(...). Denoting Miss = my + ma + ms, Magsse = ma +

ms + my + ms + mg, the outcome is

1 8e
2 11 38 Mgz 2my  2my > ]
) 6= +=+4 : , “1)+06)|, (A3l
% <M123> 32[ ¢ <M23456 Mgz Migs © ( )

where

7
o(x,y,z) = 13+ E?TZ — 41’z +

+2Lig(1 — y) + 2Lia(y + 2) + 2Liz(—2) +8ﬁ1ﬂ2( ) +
2
+8 <1 + ﬁ) <Li2(—xz) +Inzln(l + z2) — %) . (A.32)

In particular,

G’) 312 [ +2 8 4 <13 —8ln22 — g#) T 0(6)] , (A.33)

A.4 Momentum space evaluations

When the graph has more than two vertices, the configuration space method is in general no

longer practical. Some of these graphs are, however, rather easily evaluated in momentum

space. This is the case particularly for the “triangle” topology, shown in eq. (A.38) below.
The triangle graph consists of three consecutive 1-loop self-energy insertions,

3—2¢ (L
/ (d q ! = (2 ha 6) B(p7m1,m25 6)7 (A34)

2m)32 (¢ +mil[(g +p)2 +m3]  (4r)3cpii2e
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where B(p,my,ma,€) is a one-dimensional integral over a Feynman parameter. It has the

properties
B(0,m1,ma,€) =0, (A.35)
r2(} - o)
B = lim B =2 = A.
(p70707 6) pl{glo (p7m17m276) F(l — 26) ’ ( 36)
B(p,m1,m2,0) = 2arctan R (A.37)

mi1+ mo
The triangle graph is then just a one-dimensional integration over the modulus of p. Car-
rying out one partial integration and expanding in €, one obtains [B

N = (L)&7T [ +24+4In2 -y <m3+m4 m5+m6>+0(e)}, (A.38)

mi + meo 32 ml—i—mg’ml—i—mg
where
4 o
x(z,y) = % /0 dplnp dip [arctan(p) arctan <§> arctan (g)] , (A.39)
84 56

A.5 Summary of expansions for master integrals

Given the results of the previous sections, we can collect together the expressions for the

constants 71, ..., 79 defined in eqs. (f.3)—([L11)). From eq. (A.1H),

T 7
n=-8-o+ 34(3)- (A41)
Combining eq. (B.1)) with eq. (A.9),
7=t = 5(03). (A.42)
Combining eq. (B.2) with eq. (A.27),
Y3 = —%7‘(’2 — ln22 . (A43)
From egs. (A.38), (A.40) (or, for g, from eq. (A.11])),
2
vy = 3_2(2+41n2——<( )) (A.44)
2
0
5 = 3—2(2+4ln2——C( ) (A.45)
2
T
% = 33 (2+4m2), (A.46)
2
T
7 =5 (2 +12In2 — —c( )) (A.47)
Combining eqgs. (A.39), (@)7
Y8 =175 — 962 + 161n%2 + % : (A.48)
Finally, from eq. (A:13),
Y9 =270 4+ B2 52—54(3) : (A.49)
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A.6 Numerical evaluation of g

It can easily be verified that the integrals in eqs. (f.12), (E13) are both infrared and
ultraviolet finite. They can therefore be evaluated directly in d = 3 dimensions. For the
present application we only need 719, defined by eq. (f.12).

There is no obvious partial integration relation whereby 719 could be reduced to a
simpler integral. Due to the fact that there are four vertices, it is also not easily treated in
configuration space. The most straightforward approach seems then to be to combine the

self-energy of eqs. (A.34), (A.37) with the 2-loop self-energy

D 50

for which a one-dimensional integral representation has been given in [B§]. This leads to a
simple two-dimensional integral representation:

2 [ D
V1o = —/ dp p arctan = - Ila(p) , (A.51)
™ Jo 2

I (p) = . /1 dr

- .3 X
P* Jo_) /22— (1 — 22)?
X {1 _pr [(1 + %) arctan%9 —2(1 — x + z?) arctan 1ix + %(1 —2)?| +
P2
! {1 7] 7 A.52
+xIn|l+ (1—1—3:)2 } ( )

and z_(p) = (1 —{—p2/4)% — p/2. We may note that in eq. (A.52) it is numerically advan-
tageous to change the integration variable from z to y = /& — z_(p). The final result
reads

10 & 0.171007009753(1) , (A.53)

where the number in parentheses indicates the uncertainty in the last digit.

B. Three-loop results with and without an IR cutoff

As discussed in section [, starting at the 3-loop level single graphs are considerably more
infrared sensitive than the total sum: the limits in eqs. (F.2), ([.3) commute only for the
latter. Let us recall that there x = mg/m, where mg is a fictitious mass given to the

gluons and ghosts:

5ab
2
p2 + mg

5ab

(AR (P)A?(—p» m

<5m —pmm> L E D) = . (BY)

where Af,c%, ¢ b are the gluon, ghost, and anti-ghost fields, respectively. We illustrate the

general structures appearing here with a few specific examples.
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Figure 5: A possible choice for 1-loop, 2-loop and 3-loop “master” topologies, in the case that
gluons and ghosts are treated as particles with a mass mg. There are no numerators left in these
graphs. A solid line is a propagator of the form 1/(p? + m?), and a dashed line of the form
1/(p? + mQG), where p is the euclidean momentum flowing through the line. A line with a blob on
it indicates a squared propagator, 1/(p? 4+ m?)2.

In the presence of the two mass scales m,mqg, the set of master integrals is more
complicated than when gluons and ghosts are massless. The master integrals that can

appear in principle are shown in figure [, up to 3-loop level.

It turns out that the skeleton diagrams are better behaved in the IR than the ring
diagrams: power and logarithmic IR divergences appear only in single rings, but they cancel
in their sum. A rather typical example, with both an UV pole 1/¢ and an IR divergence
In(mg/m), is given by the gluon ring with a scalar and ghost bubble attached to it.
Carrying out scalarisation to the master integrals shown in figure f| denoting z = mg/m,

and normalising as in eq. (B.7), we obtain

SO RS =rk
+L (O ) [ 2] -
X<54+54d+185—18d2£—14£2+14d§2—d2§2+d3g2>+
O ()[Rt
(O * -9 [0~

x (1134 — 459d + 54d® + 108€ — 90dE — 18d3¢ — 84€2 +

+

+ 76dE? + 5d2€2 + 24362 + d4§2> +
@ (32 — 12d — 62% + 3dx?)
i 2(d—1)x? +
2 _ (-1+2?)
m @[ 2(d—1)x2} *

o U [ (44 — 8d — 142” + 5da?)
fo- . B.2
m Q [ 32 (d—1) (B-2)

According to eq. ([.9), the first step is now to expand in € < 1. The integrals emerging
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are all known [fi, B§]. Changing the normalisation to be according to eq. (.17)), we obtain

1 20 + 22 3x T
3l g = ——— (£ —1)? “Lig (22— ) —Liy (- -
Pslazo = —35. (€~ U7+ g, [ 2 (2(1+x)> 12( 2—|—m>

T 3x 1 1 x 922
1 (1——)1 ST | <1 —)1 N
n(l=3)msaygy ~ata)+aln{l+g)nga=s
4 — 322 x (1+2z)(3xz—4) 3x

1 <1 —)— In(1 o

n(l+ 39 n(l+x )+32+

32z 2
1 3r 837 — 954¢ + 409¢2
+ 3—2(25—3)(25 — l)ln? — 5500 + O(e). (B.3)

The second step is then to expand in = < 1:

2 —2¢ 4 £2 1y 3% 1080 — 954 + 409¢2
8 2 2592

- 1
0Psleq. () = 35 (€~ 1+ +O(z,¢). (BA)

We observe that there is a gauge-parameter dependent UV-divergence in the form of 1/e,
and a gauge-parameter dependent logarithmic IR divergence in the form of Inx.
Proceeding according to eq. ([.2), on the other hand, leads to

_i q:" T # <Q>3 {_ 16(d — 3)%; —2>72)(3d - 8)] *
m .[ 2d 7 )]’ (B:5)

in terms of the master integrals in figure @ Expanding in € < 1,

Ol (3 = 55 + 5 + 0. (B.6)

Clearly egs. (B4), (B.6) do not agree.? Summing all the graphs together, however, both
procedures lead to the gauge-parameter independent and UV and IR finite ps on the first
row in eq. (f.17): in other words, £, 1/e and Inx all cancel.

Some other rings lead also to 1/z-divergences. Let us show, as an example,

1 124—12§+5§2 5 1
— op —— — — 4+ —-1In2 B.
while
1@ = ops| 2 o0, (B.8)
16 o P3leq. () = o4 "3 :

Again, the 1/x-divergences of the type in eq. (B.7) cancel when gluon rings with all possible
1-loop scalar insertions are summed together.

As a comparison of eqs. (B.4)) and (B.6G), or egs. (B.1) and (B.§) shows, the computation

carried out with an IR cutoff leads in general to a more pronounced gauge-parameter

2The first two terms in eq. (@) can be written as (2 — 2¢ + ¢2)[In(3x/2) — 1/(4¢)]/8 + 1/(32¢), showing
that the result of eq. (@) arises after a cancellation of IR and UV divergences in dimensional regularisation.
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dependence for single graphs than the computation carried out according to eq. ([.2)), just
because the introduction of a mass according to eq. (B.1]) breaks gauge invariance. The
results of egs. (B.§), (B.§) are anomalously simple, however: in general there is certainly
gauge-parameter dependence left over in single graphs also with the procedure of eq. (F.9).
For example,

(AD

and £ cancels only in the sum.

40 — 28¢ + 5¢2

D) +O(e), (B.9)

N 1
= Ml [ = gy (1B E)

r=
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Perturbative calculations of corrections to the behavior of an ideal gas of quarks and gluons, the limit that
is formally realized at infinite temperature, are obstructed by severe infrared divergences. The limits to com-
putability that the infrared problem poses can be overcome in the framework of dimensionally reduced effective
theories. Here, we give details on the evaluation of the highest perturbative coefficient needed for this setup, in

the continuum.

1. INTRODUCTION

The theory of strong interactions, Quantum
Chromodynamics (QCD), is guaranteed to be ac-
cessible to perturbative methods once one of its
parameters, the temperature 7', is increased to-
wards asymptotically high values. This general
statement relies solely on the well-known prop-
erty of asymptotic freedom.

In practice, however, calculations of corrections
to the behavior of an ideal gas of quarks and glu-
ons, the limit that is formally realized at infinite
T, are obstructed by severe infrared (IR) diver-
gences [1]: for every observable, there exists an
order of the perturbative expansion to which an
infinite number of Feynman diagrams contribute.
No method is known how {0 re-sum these infinite
classes of diagrams, a fact that seriously obstructs
progress in the field of thermal QCD.

It is known how to evade this obstruction us-
ing dimensionally reduced effective theories. The
key idea is to map the infrared sector of thermal
QCD onto a three-dimensional pure gauge theory
[1-4], whose contribution, being a pure number,
could be extracted numerically by Monte-Carlo
simulations. While the expansion of the QCD
pressure in the effective theory framework, up to
the order where IR contributions are relevant, is
now known analytically [4], realizing the numeri-
cal extraction of the yet-unknown number emerg-
ing from the IR sector is a challenging open prob-
lem, with the main complication that high-order
matching between lattice and continuum regular-
ization schemes is necessary [5].

2. SETUP

Let us now switch gears and focus on one of
the main building blocks of the procedure, while
for a detailed description of the setup as well as
notation and further references, we refer to [4].
In particular, we want to compute the (negative)
3d vacuum energy density of a pure SU(N) gauge
theory,

Vlgnw% ln/’DAi exp (—/ddm %TrFfJ) , (D
which in a weak-coupling expansion can be writ-
ten as the sum of all connected vacuum graphs
containing gluons and ghosts. Since the theory
is confining, the computation involves IR diver-
gent integrals (starting at the 4-loop level here),
forbidding a perturbative evaluation of the full
vacuum energy. One can however obtain its log-
arithmic ultraviolet divergence.

Note that in 3d the coupling constant g is di-
mensionful, hence the full answer must be of the
form

6

g 1 B
dACi—(élT)‘i [ac; (; +8In 2mM) +f8a +O(6)J ,

where my = Cag? is a dynamically generated in-
frared scale in the confining theory, and C4 = N
and d4 = N? — 1 are the Casimir and the dimen-
sion of the adjoint representation, respectively.
Because of super-renormalizability, the coefficient
ag can then be computed in 4-loop perturbation
theory, even if the constant part fg cannot.

If we just carry out the 4-loop computation in
strict dimensional regularisation, the result van-

0920-5632/$ — see front matter © 2004 Elsevier B.V. All rights reserved.
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ishes, because there are no perturbative mass
scales in the problem. This means that UV and
IR divergences (erroneously) cancel against each
other. Therefore, we have to be more careful in
order to determine ag. To regulate the IR diver-
gences, we introduce by hand a mass scale, m?,
into the gauge field (and ghost) propagators. One
has to keep in mind, however, that now only the
coefficient ag multiplying 1/€ is physically mean-
ingful, as it contains the desired gauge indepen-
dent ultraviolet divergence. On the contrary, the
constant part depends on the gauge parameter
&, because the introduction of m? breaks gauge
invariance, and has nothing to do with fg.

Note that e.g. diagrams with self-energy inser-
tions can have IR sub-divergences, since IR diver-
gences are known to be present in the 3d 2-loop
gluon propagator. To avoid the problem of over-
lapping IR divergences from the outset, we have
hence chosen to employ the mass parameter rigor-
ously, i.e. by rewriting every 1/p* as 1/(p?> +m?).

This leaves us within the class of fully mas-
sive integrals. The computation can be divided
in three parts. Roughly, those are (1) diagram
generation [6], specification of Feynman rules and
color algebra, (2) reduction to master integrals
[7.,8], (3) expansion in d = 3 — 2¢ dimensions.

We will refrain from commenting on the first
two parts of the computation here, since they are
well documented in the references given above.
Due to the complexity of the computation, both
steps are automatized, allowing for the handling
of a large set of diagrams.

3. MASTER INTEGRAL REPRESEN-
TATION

Let us now give a little more detail on part (3)
of the computation. At this point, all diagrams
are expressed in terms of 19 scalar master inte-
grals, which are enumerated in [8]. The general
structure is

6 19
5 9 poly;(d, ) ,
daCy @) ;Zl poly.(d) Master;(d) , (2)

where d is still an arbitrary (space-time) dimen-
sion. Only now do we need to specify d = 3 — 2e.
While it is trivial to expand the polynomial

prefactor in €, considerable effort has to be put
into obtaining the expansion for the master inte-
grals to the depth required. Since we need the
e-poles only, it would seem sufficient to compute
the divergent parts of all master integrals. It
turns out, however, that the prefactor develops
poles as well around 3 dimensions, having terms
proportional to 1/(d — 3) multiplying 10 of the
master integrals, and even double poles in 4 of
those cases.

A crucial simplification can be made by exploit-
ing the freedom of choosing the basis of master in-
tegrals to represent the sum of diagrams Eq. (2).
Going back to the tabulated relations between in-
tegrals that were derived by partial integration
and used in part (2), we found two most useful
relations:

__8d-3)
@ (d%@@@
L 2d-7)(2d~5) 72d 5) @
(d12 (Q)@
@ - 1@ D
A o

Notation: each line represents a massive scalar
propagator, a dot on a line means an extra power,
vertices have no structure. Trading the two mas-
ter integrals on the lhs of the above equations
for the first ones on the rhs respectively (all oth-
ers are already included in the basis), the d-
dimensional representation Eq. (2) of course still
holds, albeit with a ‘primed’ version of the basis,

i9 1
s g° poly;(d, §) )
daCy )3 Z ol (d) Master;(d) . (5)

i=1

In this new basis, none of the prefactors has a
double pole in 3d, while only 7 members of the
new ‘primed’ basis are multiplied by a single pole.
It is not excluded that there exists a choice of
basis for which the prefactors never get singular,
but this choice is currently not known to us.
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4. EXPANSION

It turns out that (almost) all integrals are
known analytically to the order needed for obtain-
ing the poles in the sum of all diagrams. Lower
loop cases have been treated in [10], while ana-
lytic results for the divergences of all 3d 4-loop
master integrals as well as numerical and some
analytic results for their constant parts as well as
the O(e) term of the 2-loop sunset integral can
be found in [11]. By an amusing relation specific
to 3d, namely the fact that the leading term of
the 3d 1-loop scalar 2-point integral is an arctan,
whose derivative with respect to a mass looks like
a propagator with double mass, it is furthermore
possible to relate the leading term of one of the
4-loop master integrals to a 3-loop case [12]:

1 2m

& 2 ©

There are however 2 master integrals (out of
the 7 which get multiplied by a 1/e from the pref-
actor) whose constant term we do not yet know
analytically. Let us denote their leading parts by
z2 and z3 (by naive power-counting, it is easy to
see that both are UV finite),

@=m2+0(e) , @=m3+0(e) )

Filling in the known expansions for the mas-
ter integrals as well as expanding the prefactors,
higher poles cancel in the sum of diagrams, and
we are left with a single pole only:

()" (%2 L0@) . ®

2m

const const

03 96

U Ty
The polynomial p is of order 6 in the gauge pa-
rameter £ and contains, besides a collection of
numbers like 72, In2 and dilogarithms, the two
unknowns zs and z3. Clearly, in order for the
result to be gauge independent, all {-dependence
has to vanish once z5 and z3 are known. We can
now reverse the argument and try to fix these
constants by requiring gauge independence. In-
specting the polynomial, it turns out to have a
very simple structure:

6
pf) = ag+(z2—623—b) Y cif (9)

=0

43 157
96 6144
where the ¢; are pure numbers and b = Lizi +
Lizt — 3LisZ + 2(In2)? — 3 (In3)? — (In5)* -
2In2n5 +3n3nb + %. We have checked by
numerical integration that

x93 —6x3 = b =~ —0.00200966335... (11)

to nine significant digits, hence establishing
Eq. (10) as our main result for the logarithmic
divergence of 3d pure gauge theory.

ag 7? & 0.195715..., (10)
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Abstract

In this letter we present a high-precision evaluation of the expansions in € = (3—d)/2 of (up to) four-
loop scalar vacuum master integrals, using the method of difference equations developed by Laporta.
We cover the complete set of fully massive master integrals.

PACS numbers: 11.10.Kk, 12.20.Ds, 12.38.Bx

1 Introduction

Higher-order perturbative computations have become a necessity in many areas of theoretical physics, be
it for high-precision tests of QED, QCD and the standard model, or for studying critical phenomena in
condensed matter systems.

Most recent investigations employ a highly automated approach, utilizing algorithms that can be im-
plemented on computer algebra systems, in order to handle the growing numbers of diagrams as well as
integrals which occur at higher loop orders.

Computations can be divided into four key steps. First, the complete set of diagrams including symmetry
factors has to be generated. For a detailed description of an algorithm for this step for the case of vacuum
topologies, see [I]. Second, after specifying the Feynman rules, the color- and Lorentz-algebra has to
be worked out. Third, within dimensional regularization, massive use of the integration-by-parts (IBP)
technique [2] to derive linear relations between different Feynman integrals in conjunction with an ordering
prescription can be used to reduce the (typically large number of) integrals to a basis of (typically a few)
master integrals [3]. Practical notes as well as a classification of vacuum master integrals is given in [4].
Fourth, the master integrals have to be solved, either fully analytically, or in an expansion around the
space-time dimension d of interest.

It is the fourth step that we wish to address here. While most work has been and is being devoted to
d = 4, perturbative results in lower dimensions are needed for applications in condensed matter systems,
as well as in the framework of dimensionally reduced effective field theories for thermal QCD, where recent
efforts have made four-loop contributions an issue [A].

A very important subset of master integrals are fully massive vacuum (bubble) integrals, since they
constitute a main building block in asymptotic expansions (see e.g. [6]). They are also useful for massless
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theories, when a propagator mass is introduced as an intermediate infrared regulator [7].

The main purpose of this note is to numerically compute the complete set of fully massive vacuum master
integrals in terms of a high-precision e-expansion in d = 3 — 2¢ dimensions, in complete analogy with the
four-dimensional work of S. Laporta [J].

The plan of the paper is as follows. In Section B, we give a brief review of the method of difference
equations applied to vacuum integrals. In Section B, we discuss the actual implementation of the algorithm.
In Section Hl we display our numerical results for the truncated power series expansions in e of all fully
massive master integrals, up to four-loop level, in d = 3 — 2e.

2 The evaluation of master integrals through difference equations

The method we have chosen to compute the coefficients of the truncated power series expansions of the mas-

ter integrals is based on constructing difference equations for the integrals and then solving them numerically

using factorial series. This approach was recently developed in Ref. [B], and below we briefly summarize its

basic concepts following the notation of the original paper, which contains a much more detailed presenta-

tion on the subject. While the method is completely general as it applies to arbitrary kinematics, masses

and topologies [9], our brief summary is somewhat adapted to the specific case of massive vacuum integrals.
The main idea is to attach an arbitrary power x to one of the lines of a master integral U,

1

where the D; = (p? + 1) denote inverse scalar propagators. In our case all of these share the same mass m,
which we have therefore set to 1, noting that it can be restored in the end as a trivial dimensional prefactor
of each integral. The original integral is then just U = U(1). Depending on the symmetry properties of
the integral, there can be different choices for the ‘special’ line with the arbitrary power x, but in the limit
2 =1 they all reduce to the original integral U. This degeneracy can (and will later) be used for non-trivial
checks of the method.

Employing IBP identities in a systematic way, it is possible to derive a linear difference equation obeyed
by the generalized master integral U(z),

R
S @U@ +j) = Fla), (2)
7=0

where R is a finite positive integer and the coefficients p; are polynomials in = (and the space-time dimension
d). The function F' on the r.h.s. is a linear combination of functions analogous to U(z) but derived from
simpler master integrals, i.e. integrals containing a smaller number of loops and/or propagators.

The general solution of this kind of an equation is the sum of a special solution of the full equation, Uy(z),
and all solutions of the homogeneous equation (F = 0),

R
Ux) = Uo(x)+ ) Uj(x), 3)
j=1
where each (j =0, ..., R)
e = 5 o ey 0

is a factorial series!. Substituting into Eq. (@), one obtains the coefficients p and K (the latter being a

function of d), as well as recursion relations for the z-independent coefficients a(s) (being functions of d as

1For a rigorous definition of the concept as well as a motivation for this kind of an ansatz, we refer the reader to Ref. [].



well) for each solution. For the homogeneous solutions, these recursion relations relate all coefficients to
their value at s = 0, a;(s) = ¢;(s) a;(0), where the ¢;(s) are rational functions (of d as well). For the special
solution, the ag(s) are completely fixed in terms of the inhomogeneous part F(z), consisting of ‘simpler’
integrals which are assumed to already be known in terms of their factorial series expansions.

What remains to be done is to fix the - and s-independent constants a;(0), j # 0, in order to determine
the weights of the different homogeneous solutions. To this end, it is most useful to study the behavior of
U(z) at large x, where the first factor in

1
Ulz) = / W g(p1) (5)
peaks strongly around p? = 0. Hence, the large-z behavior of the modified master integral is determined by
the small-momentum expansion of the two-point function g(p1), which has one loop less than the original
vacuum integral. In fact, for all cases we cover here, the first coefficient in the asymptotic expansion suffices.
This is furthermore particularly simple, since it factorizes into a one-loop bubble carrying the large power
2 and a lower-loop vacuum bubble ¢(0), which corresponds to U(x) with its ‘special’ line cut away,

in U6) = | [ e | % [s0)] ~ @000 (6)

w00 (p+1)
A comparison with the large-z behavior of Eqgs. (@), @), proportional to 3, ufaj(O)xKﬂ', can now be used
to fix the a;(0), of which maximally one will turn out to be non-zero for our set of integrals.

Having the full solution at hand, we have in principle completed our entire task, as in the limit z = 1
we recover from U(x) the value of the initial integral. Let us, however, add a couple of practical remarks
here. What is still to be done is to perform the summation of the factorial series of Eq. @), which means
truncating the infinite sum at some spax. Studying the convergence behavior of these sums, one notices
that even in the cases where they do converge down to « ~ 1, their convergence properties usually strongly
decline with decreasing x. This means that in practical computations, where one aims at obtaining a
maximal number of correct digits for U(1) with as little CPU time as possible, the optimal strategy is to
evaluate the integral U(z) with the factorial series approach at some Zyax > 1 and then use the recurrence
relation of Eq. @) to obtain the desired result at = 1. The price to pay is, however, a loss of numerical
accuracy at each ‘pushdown’ (z — x — 1) step due to possible cancellations, which makes the use of a very
high 2. impossible. In practice the strategy is to determine an optimal value for the ratio Smax/Zmax-
To give an example, for the four-loop integrals of Section Bl we have found that smax/Tmax ~ 50 is a good
value, while we used a range of syax ~ 1350...2000.

3 Implementation of the algorithm

As is apparent from the preceding section, there are three main steps involved in obtaining the desired
numerical coefficients in the e-expansion of each master integral: deriving the difference equations obeyed
by each integral, solving them in terms of factorial series, and finally performing the e-expansion and
numerically evaluating the sum of Eq. @) (truncated at smax) to the precision needed. We will briefly
address each of them in the following.

For the first step, we slightly generalized the IBP algorithm we had used for reducing generic 4-loop bubble
integrals to master integrals, which follows the setup given in [3], and whose implementation in FORM [I0]
is documented in [4]. The main difference is an enlarged representation for the integrals, keeping track of
the line which carries the extra powers x, as well as the fact that there are now two independent variables
(d, ), requiring factorization (and inversion) of bivariate polynomials, as opposed to univariate polynomials
in the original version.

Second, staying within FORM for convenience, we implemented routines that straightforwardly solve
the difference equations in terms of factorial series, along the lines of [3]. This is done starting with the



simplest one-loop master integral, and working the way up to the most complicated (most lines) four-
loop integral, ensuring that at each step, the ‘simpler’ terms constituting the inhomogeneous parts of the
difference equation are already known. The output are then plain ascii files specifying each solution in the
form of Eq. @) as well as containing recursion relations for the coefficients a(s). Note that these first two
steps are performed exactly, in d dimensions.

Third, once the recursion relations for the coefficients a(s) were known, we used a Mathematica program
to obtain their numerical values at each s to a predefined precision, and to perform the summation of the
factorial series. While this procedure is in principle very straightforward, there are some twists that we
employed to help reduce the running times significantly, most of which are probably quite specific to our
use of Mathematica. To avoid a rapid loss of significant digits in solving the recursion steps that relate each
a(s) to a(0), especially those for the homogeneous coefficients, we first solved the relations analytically and
only in the end substituted the numerical value (actually the truncated e-expansion) of the first non-zero
coefficient. In fact, we found Mathematica to operate quite efficiently with operations like multiplication of
two truncated power series, so that we relied heavily on it. Furthermore, since — not surprisingly — the
most time-consuming part in the summation of the series turned out to be the e-expansion of I'-functions,
we achieved a notable speed-up by substituting the I'-functions with large arguments by suitable products
of linear factors times I'-functions of smaller arguments. Finally, a vital step in avoiding an excessive loss in
the depth of the e-expansions when going from one integral to the next, was to apply the ‘Chop’ command
to remove from the results and coefficients excess unphysical poles, whose coefficients were of the order of,
say, 107°0 or less.

4  Numerical results

Below we list the Laurent expansions in € = (3 — d)/2 of the 1+143+413 fully massive vacuum master
integrals up to four loops. We use an intuitive graphical notation, in which each line represents a massive
scalar propagator, while dot on a line means it carries an extra power. The integral measure we have chosen

here is
1 d3—26
/ - / -~ (7)
» r'3/2+e¢) J «

In each case® we provide the first 8 e-orders keeping the accuracy at 50 significant digits for the 1-, 2-, and
3-loop master integrals and at 22-25 for the 4-loop ones. To obtain more e-orders and significant digits is
merely a matter of additional CPU time.

2

Q = —4.0000000000000000000000000000000000000000000000000
— 16.000000000000000000000000000000000000000000000000 €>
— 64.000000000000000000000000000000000000000000000000 ¢*

— 256.00000000000000000000000000000000000000000000000 €® + O (68) (8)

@ = 4 4.0000000000000000000000000000000000000000000000000 ¢ ~*
— 14.487441729730630111648209847429586185151846775400
+ 41.495035953369978394225958244504121655360756728405 €
— 107.49752321579967383991953818365893067117808339742 ¢*

2With the exception of the last two integrals, for which we were at this time able to produce only the first 6 and 5 e-orders,
respectively.



+ 263.49878761720606330238135348797499506915058750280 €
— 623.49940078392000186832902635721463645559035022216 €*
+ 1439.4997026869879573968449524699557874962297882621 €

— 3263.4998520860644726225542919399943895943491031166 ® 4+ O (67) (9)

— 64.00000000000000000000000000000000000000000000000 € ~*
+ 49.44567822334599921081142309329320142732803439623

— 1981.207736229513534030093683214422278348416661525 €
— 235.7077170926718752095474374908098006136204356228 2
— 63521.71508871044639640714223746384514019533126715 ¢*
—33675.11111780076696716334804652776927940758434016 ¢*
— 2213147.071275511251113640247844877948334091419700 €°

— 1414250.728717593474053272387541196652013773984236 €5 + O (67) (10)

+ 32.859770043923503738827172731532536947448547448996

— 365.41238154175547388711920818936800707879030719734 €
+ 2803.7940402523167047150293858439985472095966118207 €
— 18727.187392108144301607279844058527418378836943988 ¢*
+ 117794.35873133306139734878960626307962150043480498 ¢*
— 721386.63300305569920915438185951112611780543107044 ¢°
+ 4366100.1639736899128559563097848872427318803864139 €°

+ 26291285.708454833832306242766439811661977583440814 ¢ + O (68) (11)

+1.391204885296021941812048136925327740910466706390
— 4.898152455251800666032641168608190942446944333758 €
+ 12.98842503803858164353982398007130232261458098462 2
— 30.39637625288207454078370310227949470365033235457 €3
+ 66.67957617359017942652215661267829752624475575093 ¢*
— 140.9974945708845413812214824315460314748605690042 ¢°
+291.7287632268179138442199742398614147733926624689 €5

— 595.7006275449402266695675282375932229509102799733 ¢ + O (68) (12)

+ 720.0000000000000000000000 € ! — 52.13034199729620858728708

+ 33748.69042965137616701638 € + 10819.60558535024688749473 €2
+ 1311729.690542895866693548 ¢ + 615270.7589383441011319577 ¢*

+ 48899219.67276170476701364 ¢° + 24885879.11003549349511900 ¢ + O (67) (13)

— 32.00000000000000000000000 ¢ ~* 4 21.28521367989184834349148

— 945.4764617862257950102533 ¢ — 500.9879407913869195081538 ¢
— 29027.99548541518650323471 € — 34796.65982174097113175672 ¢*



s & 9 8 8 o o €

— 993306.5068744076465770453 ¢> — 1406349.173668893367086333 €® + O (67)

+ 8.000000000000000000000000 €~ — 25.94976691892252044659284 ¢~
— 152.5193565764658289654545 + 2653.873458838396323815566 €
— 23471.05910309626447406639 €* + 169839.2007120049515774452 €

— 1124117.877397355450165203 €* + 7116455.837989754857686241 € + O (¢°)

+ 78.95683520871486895067593 ¢ ! — 1062.608419332108844057560

+9340.076804859596283223881 € — 68699.47293187699594375521 €
+ 462145.6926820632806821051 ¢ — 2963063.672524354359852913 ¢*

+ 18494675.22629230338091457 ¢® — 113673206.9834859509114931 ¢ + O (67)

+ 33.05150971425671642138224 — 358.4595946559340238066389 €

+2451.469078369636793421997 € — 13564.14170819716549262162 €
+ 66602.55178881628657891800 €* — 303915.1384697444382333780 €

+ 1323370.670112542076081095 b — 5589978.086026239748023404 " + O (68)

+ 27.57584879577521927818358 — 291.4075344540614879796315 €

+1956.162997112043390446958 €2 — 10678.5639091187201818981 €3
+ 51925.3888799007705970928 €* — 235296.36309585614167636 ¢

+1019555.9650538012793966 ¢° — 4202011.3101269758990557 €7 + O (%)

+ 19.84953756526739935782082 — 200.9768306606422068619864 €

+ 1308.883448000100198800887 €2 — 6990.22562100063537185149 €3
+ 33456.8326902483214417013 €* — 149903.697032731221510018 €°

+ 644404.61801211590204150 €® — 2697912.0878890801856234 ¢” + O (68)

+ 3.141336279450209755917806 — 19.78740273338730374386071 €

+ 83.81604328128850410126511 €2 — 295.3496021971085625102731 €
+934.2247995435558122394582 ¢ — 2751.31852347627462886909 ¢

+ 7700.18972963585089750348 €® — 20740.9769474365145116212 €7 + O ()

+ 2.012584635078182771827701 — 10.76814227797251921324485 €

+ 39.40636857271936487899035 €2 — 121.0015646826735646109733 ¢
+ 335.6942965583773421544251 €* — 872.009773755552224781319 €°

+ 2163.88707221986880315576 €5 — 5193.51249188593850483093 ¢” + O (68)

+1.27227054184989419939788 — 5.67991293994853579036683 €

+17.6797238948173732343788 ¢? — 46.5721846649543261864019 €
+ 111.658522176214385363568 ¢! — 252.46396390100217743236 €5

(15)

(16)

(17)

(20)



+549.30166596161426941705 €° — 1164.5120588971521623546 €” + O (%) (22)

@ = 4 0.297790726683752651865168 — 0.709896385699143430126726 €

+ 1.40535549472683132370135 ¢* — 2.45721908509256673440117 €
+ 4.00998036005764459707090 ¢* — 6.2518071963546459390185 €5

+9.4402506572040685160665 €° — 13.924465979877416801887 ¢” + O (%) (23)
@ = +0.233923932580303206470057 — 0.48523164074102176840584 €

+ 0.88555744401503729577888 €2 — 1.438019871368410241810 ¢

+2.198725350440790755608 €* — 3.231974794381719679729 €* + O (°) (24)
@ = 40.195906401341238799905792 — 0.37006152907989745845214 ¢

+ 0.65228273818146302130509 €2 — 1.029288152514143871118 ¢

+ 1.542484509438506710808 ' + O (€°) (25)

We have performed various checks in order to test the correctness of our recursion relations as well as to
verify the number of exact digits contained in our results Eqs. ([8)-(@H). The first task we have completed
by exploiting the fact that the recursion relations are not specific to d = 3 — 2¢, but can easily be applied to
any dimension, such as d = 4 — 2e. We have successfully verified the results of Ref. [8] to somewhat lower
accuracy and depth in e. Note that our choice of a basis for 4-loop master integrals differs slightly from the
one made in [§]. The relations needed for a basis transformation are listed in [4]. An immediate advantage
in the light of difference equations is that with our choice, the above results Eqs. (@), 20) and 3) follow
‘for free’ from their counterparts without dots.

The accuracy of our three-dimensional results we have on the other hand examined in three independent
ways:

e by comparing the numerical results to existing analytic calculations; they can be found in [I1] (diver-
gent and constant parts of Egs. [@)-()), [I2] (leading term of Eq. (IA)), [13] (divergence of Eq. (IH))
and [T4I1H] (all divergences and some constant parts of 4-loop integrals, as well as some O(e) terms of
lower-loop cases).

e by comparing the results obtained by raising topologically inequivalent lines to the power x,

e by analyzing the convergence properties of the factorial series, i.e. by checking the stability of our
results with respect to varying smax-

The first method is of course exact, but is only available for a few low (in €) orders for approximately
half of the integrals considered. The second one, on the other hand, has the advantage of covering all the
different powers of ¢, but is inapplicable for those integrals, in which all propagators are equivalent (e.g. the
basketball-topology). The third method is then the most widely applicable one, but has the downside of
providing no evidence for the correctness of our results, rather giving only the number of digits stable in the
variation of the cut-off of the factorial series. For the integral of Eq. (23) only the last method is available,
but in addition we have verified the leading term in the result to 3 digits using a Monte Carlo integration
of an 8-dimensional integral representation derived for this integral in Ref. [14].

One might be concerned about the rapid growth with increasing e-orders of most of the coeflicients. This
is, as was pointed out in [8], caused by poles that the integrals (seen as functions of d) develop near d = 3,
e.g. at d = 7/2,4, etc. It is to be expected that factoring out the first few of these nearby poles in each case
will improve the apparent convergence in € considerably.



In principle, having a method at hand that is capable of generating coefficients to very high accuracy,
even to a couple of hundred digits, one could now use the algorithm PSLQ [16] combined with an educated
guess of the number content of some of the yet-unknown constant terms, in order to search for analytic
representations of the numerical results. These could then in turn be used as an inspiration to find useful
transformations of the integral representation of the original integral, which might allow for a fully analytic
solution in those cases where it could not yet be achieved. We have not made any attempts in that direction,
since the numerical accuracy of the results Egs. [®)-(E3) should be sufficient for all practical purposes.
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1. Introduction

The QCD free energy density (or the pressure of the quark-gluon plasma) is a good observ-
able to study the deconfinement phase transition [[J. The goal is to study the transition
between the realm of low-temperature hadronic matter, where confinement is the main
physical phenomenon, and the quark-gluon plasma phase that is realized at high temper-
atures, which in turn is governed by asymptotic freedom. In the latter phase the pressure
is given by the Stefan-Boltzmann limit of an ideal gas of non-interacting particles, p oc T4.
Ideally, one would like to undertake lattice simulations across the phase transition up to
temperatures at which the pressure exhibits a purely perturbative behavior. In practice,
however, the convergence properties of the perturbative expansion are poor at temperatures
which are not asymptotically large [B], while on the other hand computational resources
limit the highest temperatures at which lattice simulations can be performed (a fair limit
is some 4 + 5 times the transition temperature T, ~ 200 MeV).

Dimensional reduction is a strategy to fill the gap one is facing, and in fact has
been applied to the problem in question [ffl. The setup is as follows. One starts with the
full theory (4d QCD) and as a first step matches this to a 3d SU(3) gauge theory coupled
to a Higgs field in the adjoint representation. This theory can then be matched to 3d pure
gauge SU(3), which captures the ultrasoft degrees of freedom. Both these reductions have
been successfully performed in a continuum (perturbative) scheme, i.e. MS. 3d pure gauge
SU(3) then has to be treated non-perturbatively, the only practical method being lattice
measurements.

In order to incorporate these lattice measurements into the reduction setup, it is essen-
tial to know the relation between the two regularization schemes. This is the point where
Lattice Perturbation Theory (LPT) comes into play. Due to the superrenormalizable na-
ture of the 3d theory, all divergences can be computed perturbatively. This allows a clean
matching of the schemes in the continuum. Computing at high orders in LPT is not a
simple task (in the present case we need g® order — note that this means four loops for the
free energy, but three loops for the plaquette), and that is why we make use of Numerical
Stochastic Perturbation Theory (NSPT) [f].



We recall the definition of the free energy density f

Z = /DU e Swlll = =17 (1.1)
where the (Wilson) pure gauge action reads
Sw =00 (1-Tp), (1.2)
P

with By = 2N../(a*~?g2) denoting the standard dimensionless (bare) lattice inverse coupling
in d dimensions, while IIp is the basic plaquette

1
IIp = ERe(TrUp), (1.3)
which is to be computed at any point on any independent plane according to
Up=Uu(n) = Uﬂ(n)Ul,(n—{—u)U;i(n—{—y)Uj(n). (1.4)
To compute the free energy one can now revert to the computation of the plaquette
2a 0 2¢¢ 0 (1
1-Tp)=2z"' [ DUe WV 1-p)=——"—— ImZ=—————"(=F).
(1-1lp) / ‘ U =1e) = =g v ag, % = aa-1 o5 \ 7’
(1.5)

Hence, given a weak-coupling expansion of the plaquette
Cl(Nwd) + CQ(N&d) 03(N07d) c4(NC7d)

U =te) == 2 e G 0
it follows that
Qad 1 . CZ(Nwd) 03(N67d) c4(N07d)
m(?f) —CO(Nc,d)‘FCl(NCad)lnﬁO_ BO - 253 - 3B3 e (17)

We now specialize to N, = 3 and d = 3 dimensions, where g3 ~ a~! and hence 3y = 6/(ag?).
The previous formula reads (from here on, ¢; = ¢;(N. = 3,d = 3))

% %f =a 3 (co+c1lnfy) — a*2%2g(2] - ail%gé - (574898 + O(a). (1.8)
In order to control the matching to continuum one then needs the first four coefficients in the
expansion of the basic plaquette. Note however that it is already known from a computation
in the continuum that at four loop level there is a logarithmic infrared (IR) divergence [B].
One of the aims of our computation is to recover the scheme-independent coefficient of this
logarithm, while fixing the lattice constant which is left over once an IR regulator has been
chosen. In eq. ([.§) we have put a tilde on c4 to denote that the IR divergence has to be
isolated and subtracted in a convenient scheme. Later on, the lattice size L will act as the
IR regulator. Going back to the lattice coefficients themselves, the first and the second ones
are already known [[f]. We will give them in section B The third and the fourth ones are the

goal of the present work, a task which one can manage within our computational scheme.!

'In 4d the expansion of the plaquette is known via NSPT up to a much higher order. It is interesting
to compare the two different situations. In 3d there is the additional subtlety of the IR divergence. On
the other hand, the dimensionful nature of the coupling in 3d makes it possible to single out the different
divergent contributions in Perturbation Theory. The situation is much more involved in 4d (see [E])



2. Computational setup

Our computational tool is NSPT. Computing to 5, 4 order requires to expand the field up
to 3% order [f], that is

8 i A
Uu(n) =1+ B, 2UP(n). (2.1)
i=1

We write the expansion in terms of the U, field. One could also express everything in terms
of the Lie algebra field A,(n) = Zle ﬂO_%AEf) (n), the relation being U,(n) = exp(A,(n)).
Whichever one uses, one should keep in mind that perturbation theory amounts in any
case to decompactifying the formulation of lattice gauge theory. The expansion in terms
of the U,(f) (n) is easier to manage from the point of view of computer data organization.
Eq. (B.J) is the expansion to be inserted in the Langevin equation

aU, = [—iVS[U,] — in)U,, (2.2)

7 being a gaussian noise. The equation has to be integrated in a convenient (time) dis-
cretization scheme. Our choice is the Euler scheme as it was proposed in [f]. This amounts
to introducing a time step e. As usual, the solution is recovered by working in a region
where the time step corrections are linear (Euler scheme is a first order scheme) and extra-
polating to e — 0. We computed the expansion in eq. ([.6]) for (1 — IIp) on different lattice
sizes ranging from L = 5 to L = 16 (up to three loops we also performed the computations
on a L = 18 lattice)

o_dP &0 P

We then extrapolated the infinite lattice size results according to

d

4D o+ O
Ji 1—1 k
i In” L

) =+ Y Y d—= (i=23)

Jj=7ji k=0

RN )

Cz(lL) = Cglln) ll’l L3 —|— Cq —|— Z Z dl(l.]’k)T . (24)

Jj=Jja k=0

These asymptotic forms are basically dictated by Symanzik’s analysis [[(]. In particular
they include the contribution from subleading logarithms (they are suppressed by inverse
powers of L). For each i the index k runs up to i — 1, which equals the number of loops
(remember that in terms of the plaquette we are computing up to three loops, i.e. i = 1
is the tree level). The index j counts the subleading contributions coming from inverse
powers of L. As it appears from the last line of the previous formula, the finite volume
also acts as the IR regulator needed at order 3; 4 (this is instead a leading logarithm).
Some comments are in order at this point. The final errors on infinite volume results are

dominated by this extrapolation process.



Trying to assess the effect of the subleading logarithms, it turns out that both the
range of our data and our statistical errors do not allow to distinguish between a logarithm
and a constant. Hence we will only give (effective) extrapolations based on pure power-like
fits. The spread of the results comes from the indetermination on the (inverse) powers to be
included in the fit. This is not surprising, since in NSPT there is no control on what in the
language of Feynman diagrams would be contributions coming from different diagrams (i.e.
sums). We then try different choices of the powers and then compare the corresponding
x%’s. This process does not select a definite set of powers: the better choices (see figure P)
turn out to be comparable with respect to the resulting x2. The quoted values for the ¢;
(1 > 1) together with the associated errors embrace the range of the outcomes.

Most of the computer simulations have been performed on a PC cluster the Parma
group installed one year ago. This is made of ten bi-processor Athlon MP2200. A pro-
gramming environment for NSPT for Lattice Gauge Theory was set up in C++4. This was
in part inspired by the TAO codes we use on the APE machines and for a large fraction
based on the use of (C++ specific) classes and methods to handle lattice and algebraic
structures. Needless to say, this part of the work will be useful in other applications of
NSPT. The results we report come out of 6 months of runs on the above mentioned cluster.
Some more statistics came from another PC cluster more recently installed in Parma. The
latter is a blade system based on 14 Intel Xeon 2.0 GHz.

3. Results

(L)

In table [I| we present the results we obtained for the coefficients ¢, at various values of

L. As in eq. (L.§) and eq. (R.3), we only give the coefficients of order B;": the coefficients

By (@n 1)/ 2) were verified to be zero within errors. In the last line

odd in go (i.e. of order
one can read the values extrapolated to infinite volume. For the fourth order we present
both the bare coefficients cgtL) and the subtracted ones cgtL) — cgn) In L3; the latter is the
finite quantity one is interested in at L = oo.

In figure fI] we plot the values of the coefficients at the various lattice sizes together
with the interpolating finite size corrections. Again, for the fourth order we plot both the

bare coeflicients cz(lL) and the subtracted ones cz(lL) - cflln)

(L)

our computations is the first order, whose value is ¢; ” = 8/3 * (1 — 1/L3). In this (trivial)

In L3. An obvious benchmark for

case one knows the result both at finite and at infinite volume. That is why in figure f] we
also plot the known finite size corrections for c;.

Another benchmark is the second coefficient, which is also found in agreement with
the diagrammatic studies in [[f]. From ref. [[[1] one reads ¢y = 1.9486, however without an
error estimate.

As it was already pointed out, for orders higher than the trivial one, the quoted
errors of the infinite volume-extrapolated values are dominated by the form of the fitting
polynomials in eq. (R.4)). Still, the final errors are acceptable. Note the asymmetric error
for c3. The more conservative lower bound takes into account a choice for the subleading
powers of L which results in a worse x2, see figure P It is interesting to compare the result



) ) ) 03 O 0, 3

L ¢ Cy cy 9 c,

5 | 2.6455(13) | 1.8682(45) | 5.990(26) | 25.99(18) 21.28(18)
6 | 2.6536(8) | 1.8968(31) | 6.200(19) | 27.66(14) 92.41(14)
7 | 2.6580(8) | 1.9095(30) | 6.307(21) | 28.68(15) 22.98(15)
8 | 2.6615(6) | 1.9226(23) | 6.408(16) | 29.66(14) 23.57(14)
9 | 2.6630(6) | 1.9288(22) | 6.484(18) | 30.44(16) 24.00(16)
10 | 2.6638(4) | 1.9340(15) | 6.519(13) | 30.91(13) 24.16(13)
11 | 2.6645(4) | 1.9381(14) | 6.574(11) | 31.53(14) 24.51(14)
12| 2.6650(3) | 1.9413(12) | 6.591(11) | 31.67(15) 24.39(15)
13 | 2.6653(3) | 1.9423(12) | 6.621(11) | 32.27(18) 24.76(18)
14 | 2.6656(3) | 1.9436(12) | 6.288(11) | 32.37(16) 24.64(16)
15 | 2.6662(2) | 1.9455(10) | 6.652(10) | 32.84(19) 24.91(19)
16 | 2.6657(2) | 1.9442(8) | 6.658(9) | 33.28(19) 25.16(19)
18 | 2.6663(2) | 1.9489(7) | 6.715(8) - -

oo | 2.6666(1) | 1.955(2) | 6.907) 25.8(4)

Table 1: The coefficients cz(-L) at the various lattice sizes and their infinite volume extrapolations
¢;. For the last order we report both CSLL) and cflL) - cfll") In L3; the latter is the quantity to be
extrapolated. For the error on c3 see text and figure E

cs (our first original result) with the one conjectured in [[L1] from the hypothesis of the
dominance of a given contribution: c3 = 7.02. This conjecture turned out to be not too
far from the result.

Let us now discuss the IR divergence at order 3, 4. As is well known, it is difficult to
recognize the presence of a logarithm. Still, we obtain some evidence for it. By this we
mean the following. One can take different approaches to the fit of the last line of eq. (-4).
One possibility is to include no logarithmic correction at all. A second one is to include a

(in)

logarithmic correction whose prefactor ¢, ’ is a fitting parameter. A third possibility is to
include a logarithmic correction whose prefactor ciln) equals the result which has already
been obtained in the continuum computation of [f]: ciln) = 81(688 — 15772 /4)/(4m)* =
0.9765. By varying the choice of the inverse powers included in the fit, the first case (no log)
yields values of x? which are only slightly, but systematically worse than in the other two
cases (of the order of 0.5 vs 0.4). By fitting both ¢4 and cflln) we obtained ¢4 = 24.5(2.0) and

cflln) = 1.1(2), a result fully consistent with [f], which gives us some more confidence in the
presence of the log. In the third case (see figure f)) we obtain ¢4 = 25.8(4), getting a smaller

error like expected. For the meaning of the quoted errors, see the discussion in section P

4. Conclusions and perspectives

We computed the first four coefficients in the expansion eq. ([L.8) of the plaquette in 3d pure
gauge SU(3) theory, from which one can trivially obtain the expansion of the free energy
at four loops. For the first two coefficients the already known results have been correctly
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Figure 1: The coefficients CEL) together with the interpolating finite size corrections (solid lines).
For the first order we also plot the (known) analytic finite volume corrections (dashed line). For
the last order we plot both ¢{ and () — ¢{"™ In 2.

reproduced. The third coefficient (the first original result of this paper) is connected
with the mildest power divergence to be subtracted from simulations data for a lattice

determination of the free energy.

The fourth coefficient was known to be logarithmically divergent, a result that was
reproduced. Let us further comment on this point. A priori one can use any IR regulator
in order to extract a finite part for the four loop contribution: the finite volume (the
one we used in the present work), a mass (a very popular IR cutoff in the continuum)
or the coupling itself (since it is dimensionful in 3d). Notice that the latter is in a sense
the natural choice for computer simulations. Obviously each choice defines a scheme of
its own. While the coefficient of the logarithm is universal, there are of course specific
constants relating the different schemes. As already pointed out, the coupling itself is
the most natural regulator for computer simulations, even if there is no simple way to
take it as the cutoff in perturbation theory. Ultimately, we are interested in the matching
between the lattice and a continuum perturbative scheme (to be definite, MS). The idea
is to take the same IR regulator both in continuum and in lattice perturbation theory,
which most naturally would be a common mass for all tree-level propagators. Since the
same mismatch will be present in both computations with respect to the data coming from
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the infinite-volume result (open square). The
upper curves take 1/L as the leading power,
while the lower (dashed) one takes 1/L?. The
latter results in a higher x? (0.7 vs 0.55).

showing the infinite-volume result. In these

fits the value for cfll")

is fixed to be the ana-
lytically known one. Within the range of the

data the fits almost coincide.

computer simulations, that mismatch will cancel in the matching. Employing massive
propagators in NSPT will therefore be the natural extension of the approach presented
here.
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ABSTRACT: In three dimensions, the gluon condensate of pure SU(3) gauge theory has
ultraviolet divergences up to 4-loop level only. By subtracting the corresponding terms
from lattice measurements of the plaquette expectation value and extrapolating to the
continuum limit, we extract the finite part of the gluon condensate in lattice regularization.
Through a change of regularization scheme to MS and (inverse) dimensional reduction, this
result would determine the first non-perturbative coefficient in the weak-coupling expansion
of hot QCD pressure.
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1. Introduction

As non-abelian gauge theories in three and four dimensions are confining, their properties
need, in general, to be studied non-perturbatively. If the observables considered involve
momenta or masses (M) large compared with the confinement scale, however, then the
conceptual framework of the operator product expansion [[[] may allow to isolate the non-
perturbative dynamics into only a few (gluon) condensates, while the rest of the answer
can be computed by perturbative means. A classic example is the mass of a heavy quark—
anti-quark bound state [f]. The task faced by numerical lattice simulations might then
get significantly simplified, as local condensates are simpler to measure with controlled
systematic errors than correlation functions of heavy states.

On the other hand, the physical interpretation of a “bare” lattice measurement of a
gluon condensate is non-trivial. The reason is that the condensate is represented by the
expectation value of a dimensionful singlet operator and, in general, contains ultraviolet
divergences of the same degree as its dimension. Operator product expansion type relations
are often derived employing dimensional regularization, since the system then only contains
one large parameter (M) rather than two (M and the momentum cutoff), which simplifies
the derivation considerably. Making use of lattice results in such a context requires then a
transformation from lattice to continuum regularization. While in principle a well-defined
perturbative problem (see, e.g., refs. [B]), this is in practice somewhat problematic in four
dimensions, given that there are contributions from all orders in the loop expansion.

The observable we consider in this paper is the (lowest-dimensional) singlet gluon
condensate in three dimensions (3d), measured with pure SU(3) gauge theory. As 3d
pure Yang-Mills theory is super-renormalisable, the problem of changing the regularization
scheme becomes solvable: there are ultraviolet divergences up to 4-loop level only [ff].
Furthermore, as we will elaborate in the following, all the divergences have been determined
recently. These advances allow us to obtain a finite “subtracted” continuum value for the
gluon condensate in lattice regularization. A conversion to the MS scheme, amounting to
the (perturbative) computation of the constant ¢ in eq. (R.19) below, remains however a
future challenge.



There might be various physics settings where the 3d gluon condensate finds prac-
tical applications. The one that motivated us, is that this condensate appears in high-
temperature physics, where the temperature T plays the role of the mass scale M men-
tioned above. Indeed 3d pure Yang-Mills theory determines the leading non-perturbative
contribution to the weak-coupling expansion of the pressure (and a number of other quan-
tities) of physical QCD [, fi], through a conceptual counterpart of the operator product
expansion, called finite-temperature dimensional reduction [}, §, P]. Other applications
might exist as well.

The plan of this paper is the following. In section B, we specify the observables consid-
ered and discuss the theoretical setting of our study. Numerical results from lattice Monte
Carlo simulations are reported in section fJ, and we conclude in section [}

2. Theoretical setting

We start this section by formulating the observables that we are interested in, in the
formal continuum limit of the theory. The ultraviolet (UV) divergences appearing in loop
contributions are at this stage regulated through the use of dimensional regularization.
Later on we go over to lattice regularization, in order to give a precise non-perturbative
meaning to the observables introduced, allowing for their numerical determination.

The euclidean continuum action of pure SU(NN.) Yang-Mills theory can be written as

S — /ddx Ce,  Lp= -0 Tr[F3]. (2.1)
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Here d = 3 — 2¢, g3 is the gauge coupling, k,l = 1,...,d, Fy = i[Dy, D;], Dy = O — i Ay,

Ay = A{T, T are the hermitean generators of SU(N,), normalised as Tr[T°T°] = §%/2,

and repeated indices are assumed to be summed over. Leaving out for brevity gauge fixing

and Faddeev-Popov terms, the “vacuum energy density” reads

fus = — lim —1n [/DAk eXp(—SE>] , (2.2)

Voo V S

where V' is the d-dimensional volume, DAy a suitable (gauge-invariant) functional integra-
tion measure, and we have assumed the use of the MS dimensional regularization scheme
to remove any 1/e poles from the expression. We note that fi= has the dimensionality
[GeV]?.

In strict dimensional regularization, f5g of course vanishes order by order in the loop
expansion, due to the absence of any mass scales in the propagators. This behaviour
is unphysical, however, and due to an exact cancellation between UV and infrared (IR)
divergences; for an explicit discussion at 3-loop level in a related case, see appendix B of
ref. [I{]. In fact non-perturbatively the structure of fys is rather

daN2 [ /43 157 i

6 c 2

MS = — — == \ Bg+0O 2.3
fMS 93 (471')4 |:<12 7687T > n QNng + bg + (6) ’ ( )
where d4 = N2 — 1, and we have introduced an MS scheme scale parameter ji. The

coefficient of the logarithm in eq. (R.3) has been determined in ref. [[1]] with a perturbative



4-loop computation, by regulating all the propagators by a small mass scale mg, and
sending mg — 0 only after the computation (see also ref. [I]). The non-perturbative
constant part Ba,! which actually is a function of N, is what we would ultimately like to
determine.

One direct physical application of Bg is that it determines the first non-perturbative
contribution to the weak-coupling expansion of the pressure p of QCD at high temper-
atures [, fl. To be precise, this contribution is of the form ép = daN3¢®T*Bg/(4m)%,
where g2 is the renormalised QCD gauge coupling. Terms up to order O(¢%In(1/g)) are,
in contrast, perturbative, and all known by now [[L2].

For future reference, we note that given fys, we immediately obtain the gluon conden-
sate:

0
2z (DR = —di o fs (2.4)

dAN3 43 157 7} 1
6 c 2

45 T o) (4 —Z)+Bg+ L2
393 (4m)4 [(12 768 ) ( . 2Ncg§ 3> G 0(6):| (2.5)

We now go to the lattice. In the standard Wilson discretization, the lattice action, S,

corresponding to eq. (B.1)), reads

— 5 Y (1 ReTRu)] ) 26)

x k<l
where Pyy(x) = Uy (x)Uj(x + k)U, *(x + 1)U, (x) is the plaquette, Ux(x) is a link matrix,
X + k = x 4 aéy, where a is the lattice spacing and €, is a unit vector, and

2N,

g3a

6=

(2.7)

Note that the gauge coupling does not get renormalised in 3d, and the parameters g3
appearing in eqs. (R.1]), (R.7) can hence be assumed finite and equivalent. The observable
we consider is still the vacuum energy density, eq. (R.J), which in lattice regularization
reads

fo=— lm — ln [/DUk exp )} (2.8)

where DU}, denotes integration over link matrices with the gauge-invariant Haar measure.

Now, being in principle physical quantities, the values of fiz and f, must agree,
provided that suitable vacuum counterterms are added to the theory. Due to super-
renormalizability, there can be such counterterms up to 4-loop level only [f], and cor-
respondingly

Af = fo— fus (2.9)
7
=C1— <1ﬂ 3 +C1> +C2 +C3 +C493 <1ﬂ— +C4> +O(g5a), (2.10)

In ref. [@], Bg was denoted by B, but we prefer to introduce a new notation here, in order to avoid
confusion with the coupling constant 3 appearing in eq. @) The subscript G might refer to gluons.



where the C; are dimensionless functions of N.. The values of C, Csy, C3, Cy are known, as
we will recall presently; C7 is related to the precise normalisation of the Haar integration
measure and void of physical significance; and C is unknown as of today.
Correspondingly, the gluon condensates, i.e. the logarithmic derivatives of fxg, fo With
respect to gg, can also be related by a perturbative 4-loop computation. Noting that three-
dimensional rotational and translational symmetries and the reality of S, allow us to write

—93=—5 ag2 Ja= 3ﬁ<1 - Ni Tr[P12]> : (2.11)

and employing egs. (2.), (P.10), we obtain finally the master relation

dAN6 (6] Cg

Syt Pe = Jim 54{<1—NLCT1~[P12]>Q— [cﬂl ot (1n5+c4)”. (2.12)

The values of the constants c1, . .., ¢ are trivially related to those of C1, ..., C} in eq. (2.1().

Now, a straightforward 1-loop computation yields

d
¢ = ?A ~ 2.66666667 , (2.13)

where the numerical value applies for N, = 3.
The 2-loop term is already non-trivial: it was first computed in four dimensions in
ref. [IJ], and in three dimensions in ref. [[4]. The 3d result can be written in the form

2dAN? ( 472 »? w2
Cy =

2
— —nx—-—+44 - = 1.951315(2 2.14
73 {an)? 3N2+4 s 2+/<a1+3/£5> (2), (2.14)

where the coefficients 3, x1 can be found in refs. [f], [5], and we have defined

B S sina;sin? (z; + y;)sin?y;
4 /2 Z sin?z; >, sin®(@; + y;) Y, siny;

= 1.013041(1). (2.15)

The numbers in parentheses in eqs. (R.14), (R.1§) indicate the uncertainties of the last
digits.

The 3-loop term is well known in four dimensions since a long time ago [E], but the
same computation has been carried out in three dimensions only very recently [[[7]:

3 = 6.8612(2) . (2.16)

This value improves on a previous estimate c3 = 6.9070:%3 [[§], obtained through the eval-
uation of the 3-loop graphs with the method of stochastic perturbation theory [[[9].

The value of ¢4 follows by a comparison of eqs. (R.3) and (R.10): there is no ji-
dependence in f,, so that the one in fys determines the coefficient of the logarithm in
A f. Consequently,

Cqy =

daN$S (43 157
12 768"

2
=0 22002 ) & 2.92042132. 2.17
(4m)* > 210



‘ I} volumes

12 243, 323, 483

16 243, 323, 483, 643

20 243, 323, 483

24 {123, 143, 163, 203, 243}, 323, 483, 643
32 {143, 163, 203, 243, 323}, 483, 643, 963
40 {323}, 483, 643, 96°

50 {203, 243, 263, 283, 323, 483}, 643, 963, 1283, 3203
64 {483, 643}, 963, 1283, 3203

80 {643}, 1283, 3203

[100 1283, 1923, 3203]

[140 {1283}, 1923, 320°]

[180 {1923}, 3203

Table 1: The lattice spacings (parametrised by 3, cf. eq. (@)) and the volumes (in lattice units,
N3, so that V = N3a?) studied. On each lattice we have collected ~ 10%...10° independent mea-
surements. The lattices in curly brackets have been left out from the infinite-volume extrapolations,
while for the lattices in square brackets the significance loss due to the ultraviolet subtractions in
eq. (R.12)) is so large (six orders of magnitude or more) that the subtracted values have little effect
on our final fit (see below).

The knowledge of c1, o, c3, ¢4 allows us to subtract all the divergent contributions from
the gluon condensate. A finite 4-loop term, parametrised by ¢/ in eq. (R.13), however still
remains. It could in principle be determined by extending either the method of ref. [[7]
or of ref. [[I§] to 4-loop level. There is the additional complication, though, that interme-
diate steps of the computation require the use of an IR cutoff, which then cancels once
the lattice and MS results are subtracted, in eq. (B.10). This computation has not been
carried out yet, and therefore we will not be able to determine Bg in this paper. We
can determine, however, the non-perturbative input needed for it (cf. eq. (B.1)) below), the
purely perturbative determination of ¢/, then remaining a future challenge.

3. Lattice measurements

The goal of the numerical study is to measure the plaquette expectation value, (1 —
L Tr[Pio])q, as a function of 8, such that the extrapolation in eq. (BIZ) can be carried
out. For each 3, the infinite-volume limit needs to be taken. Given that the theory has a
mass gap, we expect that finite-volume effects are exponentially small, if the length of the
box L is large compared with the confinement scale, ~ 1/ gg. Writing L = Na, where N is
the number of lattice sites, the requirement L > 1/g3 converts to 8/N < 6 (cf. eq. (B-I7)).
Detailed studies with other observables show that in practice the finite-volume effects are
invisible as soon as /N < 1 [R(]. The values of 8 and N that we have employed are shown
in table [I. Earlier lattice measurements of the same observable were carried out with a

volume N3 = 323 with values of 3 up to 8 = 30 [R1]].
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Figure 1: The plaquette expectation value, “plaq” = (1 — %Tr[P12]>a, as a function of 1/8.
Statistical errors are (much) smaller than the symbol sizes. The dotted curve contains the four
known terms c1/8 4 ca/3% + 3/ + caln B/3* from eq. (R:19), together with terms of the type
1/6%,1/3% and 1/3% with fitted coefficients.

It is important to stress that the subtractions in eq. (R.12) lead to a major significance
loss. Essentially, we need to evaluate numerically the fourth derivative with respect to 5!
of the function (1 — % Tr[Pi2])a, at the point S~! = 0. Another way to express the problem
is that as the numbers ¢y, ..., cq are of order unity (cf. eqs. (B.13)—(R.17)), the dominant
term, c1//3, is about six orders of magnitude larger than the effect we are interested in,
~ 1/B% if B ~ 100. Therefore the relative error of our lattice measurements should be
smaller than one part in a million. We also need to know the coefficients ¢; with good
precision.

Lattice-measured values of (1 — 1 Tr[Pys]), are shown in figure [], as a function of
1/B3. In order to demonstrate the accuracy requirements we are faced with, figure P shows
B4(1 — £ Tr[Pi2])a, before and after the various subtractions. It is observed from figure f
that after all the subtractions, this function indeed appears to have a finite limit for 3 — oo,
or1/8 — 0.

For each 3, we have carried out simulations at a number of different lattice extents IV;
examples are shown in figure Bl No significant volume dependence is observed for 3/N < 1,
and we thus estimate the infinite-volume limit by fitting a constant to data in this range.

Given the infinite-volume estimates, we extrapolate the data to the continuum limit,
B — oo. In figure [ we show the functions 34{(1 — %Tr[P12]>a —[c1/B8 + c2/B% + ¢3/83]}
and BH(1 — 2 Tr[Pro])a — [c1/B + c2/B* + ¢3/B8% + caln 8/B4]}. 1t is observed how even
the 4-loop logarithmic divergence is visible in the data, as some upwards curvature for
1/8 < 0.06. On the other hand, for 1/8 < 0.01 the significance loss due to the subtractions
grows rapidly and the error bars become quite large, so that these data points have little
effect on the fit.

The continuum extrapolation is carried out by fitting a function dy + dg/8 + d3/3?
to the infinite-volume extrapolated data for f4{(1 — %Tr[P12]>a —le1/B+ca/B% +c3/8 +
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Figure 2: The significance loss due to the subtractions of the various ultraviolet divergent contri-
butions in the gluon condensate. Here again “plaq” = (1 — 1 Tr[Pys])q, and the symbols ¢; in the
curly brackets indicate which subtractions of eq. () have been taken into account.
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Figure 3: Finite-volume values for *{(1 — 3 Tr[P12])q — [c1/B + c2/B* + ¢3/B° + caln 3/B]},
as a function of the physical extent 3/N = 6/g3L of the box. The solid symbols indicate the
infinite-volume estimates, obtained by fitting a constant to data in the range /N < 1.

c4In 3/B3%]}, in the range 0.01 < 1/3 < 0.10. We find that this functional form describes the
data very well. The fitted values are d; = 19.4...20.7, do = 110...63, d3 = 717...1101,
with x?/dof = 5.8/6, where the intervals indicate the projections of the 68% confidence
level contour (i.e. the surface where x% = x2. +3.53) onto the various axes, from one end
of the elongated ellipse to the other.? We have also estimated the systematic errors from
the effect of higher order terms in the fit ansatz, and found that they are of the same order
as these intervals, which we thus consider as our combined error estimates. Returning back

2If the three largest B’s are included in the fit, the parameters remain essentially the same, dy
19.4...20.8, do = 107...62, d3 = 733...1117, while x?/dof = 7.0/9 has decreased due to the large error
bars at these (’s.
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Figure 4: The infinite-volume extrapolated data, plotted as in figure E The effect of the 4-loop
logarithmic divergence is to cause additional upwards “curvature” in the upper data set. The lower
set includes all the subtractions, and should thus have a finite continuum limit. The continuum
extrapolation (as described in the text) is indicated with the dashed line. The gray points have
error bars so large that they are insignificant as far as the fit is concerned.

to eq. (R.13), we then obtain our final result,

43 157 272\ 2
B = = r2) = = 20.0 +£0.7) =10.7+04 3.1
G+<12 768 " >C4 <27> x( ) ’ (3.1)

where we have inserted N, = 3.

4. Conclusions

The purpose of this paper has been to study the expectation value of the elementary
plaquette in pure SU(3) lattice gauge theory in three dimensions, as well as to outline how
the MS scheme gluon condensate of the continuum theory can be extracted from it. To
achieve this goal, we have carried out high precision numerical Monte Carlo simulations
close to the continuum limit, corresponding to lattice spacings 0.05 < ag% < 0.5, where g%
is the gauge coupling.

When the leading perturbative terms, up to 4-loop level, are subtracted from the
plaquette expectation value, and the result is divided by (ag§)4, a finite quantity remains
(the right-hand side of eq. (R.19), without ¢}) which can be taken as the definition of a
renormalised gluon condensate in lattice regularization (in certain units). We have carried
out the subtractions and the extrapolation ag% — 0, and shown that our data appear to
be precise enough to determine the remainder with less than 5% errors, cf. figure f] and
eq. (B.1).

To relate this number to the gluon condensate in some continuum scheme, say MS,
a further perturbative 4-loop matching computation remains to be completed, fixing the



constant ¢ in eqs. (R.12), (B.1). Our study should provide a strong incentive for finalising
this challenging but feasible task, and there indeed is work in progress with this goal. The
MS scheme conversion is also needed in order to apply our result in the context of finite
temperature physics, particularly for determining the O(g%T*) contribution to the pressure
of hot QCD, since the other parts of that computation have been formulated in the MS
scheme [[[2.
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Abstract

In this Letter, we extend the known results for the QCD potential between a static quark and its antiquark by computing the
two-loop corrections to the colour-octet state.
0 2004 Elsevier B.V. All rights reserved.

PACS 12.38.Bx; 12.38.-t

The QCD potential between a static quark and its high-order corrections to the heavy-quarkonium spec-
antiquark has for a long time been used as a probe oftrum and decay rates through the so-called ultrasoft
the fundamental properties of the strong interactions contribution[2]. Moreover, it determines the proper-
such as asymptotic freedom and confinenjthtHis- ties of glueballinos and is necessary for the analy-
torically, the potential for a quark—antiquark pair in sis of gluino—antigluino threshold producti@®4]. It
the colour-singlet state attracted the most attention be-is also used in lattice QCD for studying the behav-
cause it is a basic ingredient in the theory of heavy ior of strong interactions at long distances and the
quarkonium and, therefore, of primary phenomeno- interplay between perturbative and non-perturbative
logical interest. Nowadays, however, there is grow- physics[3]. This requires knowledge of the corre-
ing interest in its colour-octet counterpart. The latter sponding perturbative corrections which, in contrast
naturally appears in effective-theory calculations of to the colour-singlet case, are not available beyond one
loop. Inthe present Letter, we fill this gap and compute
the O(af) correction to the colour-octet static poten-
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(M. Steinhauser).
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The perturbative expansion of the colour-singlet
potential reads
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where the first term corresponds to the Coulomb po-
tential. The one-loop coefficient,

B 31C 20T
al = 9 A 9 Fni,
has been known for a long tini8,6], while the two-
loop coefficientaz, has only recently been fourid—
9]. In Ref.[9], the result of Ref[8] was confirmed,
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where¢ is Riemann’s zeta function, with valyg3) =
1.202057.... Here,C4 = N andCr = (N2—1)/(2N)
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where the one-loop coefficient is the same as in the
colour-singlet caseqf = a;. The two-loop coeffi-
cient, however, differs by a finite renormalization-
independent term,

a3 =az+8ay. Q)
Our resultis
,3d—11
Moo TGl
d—5
= (n* - 127%)C3 + O - B, (6)

whered is the space—time dimension, and we have
introduced a graphical notation for the two master
two-point integrals, where single and double lines rep-
resent the propagatorgk? +ic) and ¥/ (ko +i¢), re-
spectively. The non-logarithmic part of the three-loop
coefficientas, is still unknown. Itis instructive to look

at the numerical size of the corrections. Roe= 3 one

are the eigenvalues of the quadratic Casimir operatorsobtainsSa; = —1892. At the same time, we have =
of the adjoint and fundamental representations of the 1558(2111, 2688) anda; = 4.778(5.889, 7.000) for

SU(N) colour gauge group, respectivelyr = 1/2

n; = 5(4, 3). Thus, in the colour-octet case, the two-

is the index of the fundamental representation, and loop correction is significantly smaller than for the

n; is the number of light-quark flavours. The modi-
fied minimal-subtractionNIS) scheme for the renor-
malization ofa, is implied. The logarithmic term of
O(af) in Eq. (1) reflects the infrared divergence of
the static potentia]10]. The particular form of the
logarithmic term corresponds to dimensional regu-
larization[11]. The corresponding infrared-divergent
term is cancelled against the ultraviolet-divergent one
of the ultra-soft contributiofi2] in the calculation of
the physical heavy-quarkonium spectrii,12] The
non-logarithmic third-order ternag, is still unknown.

The perturbative expansion of the potential for the
colour-octet state can be cast in the form

colour-singlet configuration. Depending on it even
changes sign.

In the remaining part of this Letter, we wish to
describe two independent ways that have been used
to evaluateSay. The first method proceeds along the
lines of the analysif9,11] based on the threshold ex-
pansion[13]. In general, the threshold expansion is
the proper framework for performing calculations in-
volving a heavy quark—antiquark system. It provides
rigorous power-counting rules and natural definitions
of the formal expressions obtained in the perturbative
analysis of the non-relativistic effective theory. The
corrections to the static potential only arise from the
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soft regions of the loop integrals, which are charac-
terized by the following scaling of the loop momenta:
lo ~ |l ~|q|. Thus, the calculation of the coefficients
a; and al can be performed in the static limit of
NRQCD,m, — oo.

Due to the exponentiation of the static potenit|
the coefficients:; of the colour-singlet state only re-
ceive contributions from the maximally non-Abelian
parts, leaving aside the terms involving. The se-
lection of these parts effagely retains the contri-

butions of the soft region, as the appearance of the

Abelian colour factorCr indicates the presence of

B.A. Kniehl et al. / Physics Letters B 607 (2005) 96-100

of the quark and antiquark propagators have to be ex-
cluded, and the product in E) should actually be
defined to be its principal value,
1 1 1

= . 9
2[(ko+is)m+” - (ko—ie)m+"] ©)

In the potential region, the quark and antiquark propa-
gator poles produce contributions of the form

Mo |s(k L3 +8k+k2
k2 —ic 0 2my 0 2my ’

(10)

—im

a Coulomb pinch and thus implies that at least one where the 1v Coulomb singularity shows up explic-

loop momentum is potential. The latter contributions
just represent iterations of the lower-order potential

and, therefore, should be excluded from the poten-

tial itself. In the non-relativistic effective theory, these

itly. After integration overkp, Eq. (10) yields the
non-relativistic Green function of the free Schrodinger
equation. Only Eq(9) should be taken into account in
the calculation of the static potential.

At one loop, there is only one diagram involving a

iterations are taken into account in the perturbative so-
lution of the Schrédinger equation about the Coulomb Coulomb pinch, namely, the planar box, which has the
approximation. These contributions refer to dynamical colour factorC2 for the colour-singlet state. Picking

rather than static heavy-quark and -antiquark fields, up the soft contribution, i.e., using the principal-value

and the Coulomb pinch singularities we encounter in

the static-limit calculations are resolved by keeping a

finite mass in the non-relativistic heavy-quark propa-
gator.

The analysis of the colour-octet state is more in-
volved, since, in this caséhe Coulomb pinches come

prescription of Eq(9) to define Eq(8), we find the
planar box to cancel thé?]% part of the non-planar
box, which in total is proportional tG,z, — CrCy/2.
This explicitly demonstrats the exponentiation of the
one-loop colour-singlet static potential in momentum
space. However, we can also turn things around and

with all possible colour factors and cannot be removed express the planar box with Coulomb pinches through

by selecting the maximum non-Abelian ones. Thus,

the well-defined non-planar box by actually requiring

the separation of the Coulomb pinches should be per-the cancellation of theC}% terms in the sum of all

formed explicitly. They appear in the Feynman di-
agrams involving the product of the non-relativistic
quark and antiquark propagators,

1 1
ko — k%/(2my) + i€ ko + k?/(2m,) — ie

@)

one-loop diagrams, as is dictated by the exponentia-
tion. The result for{ as given above is then obtained
by simply replacing the colour-singlet colour factor by
the colour-octet one.

This strategy carries over to two loops. Here,
we have diagrams with zero, one, or two Coulomb

In this case, after expanding the quark propagator in pinches. For the diagrams without Coulomb pinch, the

1/mg, one obtains ill-defined products like

1 1

(ko+ie)™ (ko—ie)

Thus, separating the soft and potential regions is un-

avoidable! In the soft region, the pole contributions

1 Note that, for the diagrams without Coulomb pinches, the sepa-
ration of the soft and potential regions is ambiguous and even gauge

dependent. In such diagrams, then-relativistic quark and anti-
quark propagators can be safely expanded/in L

contribution toa; is obtained by adopting the correct
colour factor. We divide the Feynman diagrams with
Coulomb pinches into those that have two quark and
two antiquark propagators (cFig. 1) and the rest.
The latter ones are treated directly using the principal-
value prescription of E(9). For the former, however,

it is simpler to use the exponentiation, which requires
that the diagrams contributing to the colour factors
CaC% and C3 sum up to zero in the colour-singlet
case. This leads to two equations for the diagrams suf-
fering from Coulomb pinches, namely, those shown in
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Fig. 1. Two-loop Feynman diagrams with ((a) and (b))l aithout ((c)—(e)) Coulomb pinches that contributeSto.

Fig. 1(a) and (b), which can be solved. This provides point to evaluate these four-point functions, since the
a result in terms of the diagrams ig. 1(c) and (d), potential, of course, only knows about the distance
which are free of pinches. After adopting the colour R of the ¢g pair, which in a momentum-space rep-
factors corresponding to the colour-octet configura- resentation translates into the momentum trangfer
tion, one obtains the contributions to the results given between the upper and lower lineshkig. 1 Hence,
in Egs.(5) and (6) We wish to mention that the cal- effectively, we have to compute two-point functions
culation was performed in &éhgeneral covariant gauge with external static quarks, external momentyra-
and that the dependenca the gauge parameter was (0, q), and internal static quarks, gluons, ghosts and
found to cancel out in the final result. light quarks, with the additional occurrence of a sta-
The second method to computé proceeds along tic (anti-)quark—gluon two-point vertex, resulting from
the lines of Ref[8]. While in the above, we had to the special kinematics.
assume exponentiation of the colour-singlet potential,  After performing the colour algebra and exploiting
we will now relax that assumption. The reason is that, symmetries of the integrals occurring in the expansion,
although exponentiation is plausible to all orders of all integrals which might give rise to pinch singular-
perturbation theory, the proof given in R¢5] holds ities, and had to be treated with caution in our first
for the singlet potential i\belian theories only. approach, cancel exactly. Thus, we are left with the
As a starting point, we now expand the logarithm of task of computing a class of two-loop two-point inte-
the(T x R) Wilson loop spanned by the static quark— grals for which there exists a generic algoritf8ri5],
antiquark pair at distanc& throughO(e2). Taking based on integration by parts (IBR)6]. The imple-
the limit 7 — oo (which, in a diagrammatic sense, mentation in Ref[15] (see also Chapter 6 of R¢1.7])
‘cuts’ the Wilson loop twice and restores translational is based on Ref18].
invariance in the temporal direction, hence guarantee-  Having generated the relevant set of diagrams and
ing energy conservation at the vertices and leading reduced the occurring Feynman integrals to the set of
to simple momentum-space Feynman rules) and in- two-point functions described above, we now employ
serting SU(N) generatorsl'® into the purely spatial  the reduction algorithm, which maps them to a (small)
Wilson lines to obtain the colour-octet potential to this  set of so-called master integrals, multiplied by rational
order (for a manifestly gauge-invariant definition, see functions in the dimensiod. At this stage, we observe
Ref. [14]), we now explicitly keep disconnected as cancellation of the gauge-parameter dependence, serv-
well as one-particle-reducible diagrams in our expan- ing as a check for the reduction. As an additional
sion. strong check, we use our implementat{d9] of the
At this point, the general structure of the expansion strategy to solve a truncated set of IBP relations, based
involves (products of) up to two-loop four-point func-  on lexicographic ordering of integrgl&0].
tions of static quarks (cfig. 1). After Fourier trans- The set of (massless, two-point) master integrals is
forming to momentum-space, we can choose a specialknown analytically in terms of gamma functions, for
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generic dimensior/, as given, e.g., in Ref{8]. Ex-

panding prefactors as well as master integrals about

d =4 — 2¢ and renormalizing the gauge coupling, we
again arrive at Eq(6).

To conclude, we have evaluated tii¥«?) cor-
rection to the colour-octet static potential using two

B.A. Kniehl et al. / Physics Letters B 607 (2005) 96-100

[3] G.S. Bali, A. Pineda, Phys. Rev. D 69 (2004) 094001, and ref-
erences therein.

[4] J.H. Kuhn, P.M. Zerwas, Phys. Rep. 167 (1988) 321.

[5] W. Fischler, Nucl. Phys. B 129 (1977) 157.

[6] A. Billoire, Phys. Lett. B 92 (1980) 343.

[7] M. Peter, Phys. Rev. Lett. 78 (1997) 602;
M. Peter, Nucl. Phys. B 501 (1997) 471.

independenttechniques. Both evaluations are in agree- [8] Y. Schréder, Phys. Lett. B 447 (1999) 321;

ment, giving us confidence in our main result, ).
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ABSTRACT: We determine the 2-loop effective gauge coupling of QCD at high tempera-
tures, defined as a matching coefficient appearing in the dimensionally reduced effective
field theory. The result allows to improve on one of the classic non-perturbative probes for
the convergence of the weak-coupling expansion at high temperatures, the comparison of
full and effective theory determinations of an observable called the spatial string tension.
We find surprisingly good agreement almost down to the critical temperature of the de-
confinement phase transition. We also determine one new contribution of order O(g®T*)
to the pressure of hot QCD.
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1. Introduction

Indirect signs for rapid thermalisation after heavy ion collisions at RHIC energies, derived
for instance from the fact that hydrodynamic models assuming local thermodynamic equi-
librium appear to work very well [, have underlined the need to understand the physics
of thermal QCD at temperatures above a few hundred MeV.

Given asymptotic freedom, a natural tool for these studies is the weak-coupling ex-
pansion [f]. Alas, it has been known since a long time that the weak-coupling expansion
converges very slowly at all realistic temperatures [f, {f]. It also has theoretically a non-
trivial structure, with odd powers of the gauge coupling [[] and even coefficients that can
only be determined non-perturbatively [H, {.

On the other hand, the degrees of freedom responsible for the slow convergence can be
identified [§—[L0): they are the “soft” static colour-electric modes, parametrically p ~ gT'
(leading to the odd powers in the gauge coupling), as well as the “ultrasoft” static colour-
magnetic modes, parametrically p ~ ¢g?T (leading to the non-perturbative coefficients in
the weak-coupling expansion). Here p denotes the characteristic momentum scale, g the
gauge coupling and T the temperature. The belief has been that perturbation theory
restricted to parametrically hard scales p ~ 27T alone should converge well, while the
soft and the ultrasoft scales need to be treated either with “improved” analytic schemes,
or then non-perturbatively. As a starting point for these demanding tasks one may take,
however, either the dimensionally reduced effective field theory [[Ld], [J] or the hard thermal
loop effective theory [[[3], which have been obtained by integrating out the parametrically
hard scales.



Quantitative evidence for this picture can be obtained by choosing simple observables
which can be determined reliably both with four-dimensional (4d) lattice simulations and
with the soft/ultrasoft effective theory. This forces us to restrict to static observables
and, for the moment, mostly pure gauge theory. Various comparisons of this kind are
summarised in references [[[4-[[d]. The most precise results are related to static correlation
lengths in various quantum number channels [[7], where good agreement has generally been
found down to T" ~ 2T, where T, is the critical temperature of the deconfinement phase
transition. The thermodynamic pressure of QCD is also consistent with this picture [m,
even though that comparison is not unambiguous yet, due to the fact that the effective
theory approach does not directly produce the physical number, but requires not-yet-
determined ultraviolet matching coefficients for its interpretation [[[§].!

The purpose of this paper is to study another observable for which an unambiguous
comparison is possible. The observable is the “spatial string tension”, os. 4d lattice
determinations of o5 in pure SU(3) gauge theory exist since a while already [P2] but, as has
most recently been stressed in reference [RJ], the comparison with effective theory results
shows a clear discrepancy. In order to improve on the resolution on the effective theory
side, we compute here the gauge coupling of the dimensionally reduced theory up to 2-loop
order. Combining with other ingredients 4, R, to be specified below, allows then for a
precise comparison. We find that once the 2-loop corrections are included, the match to
4d lattice data improves quite significantly and supports the picture outlined above.

The plan of this paper is the following. In section f| we present the 2-loop computation
of the effective gauge coupling of the dimensionally reduced theory. In section § we discuss
the numerical evaluation of this result. In section { we use the outcome for estimating the
spatial string tension, and compare with 4d lattice data. We conclude in section fj

2. Effective gauge coupling

We consider finite temperature QCD with the gauge group SU(N.), and Ny flavours of
massless quarks. In dimensional regularisation the bare euclidean lagrangian reads, before
gauge fixing,

s
Sqcp = / dr / d%z Locp , (2.1)
0
1. . -
Lacp = [ Fu by + Dt (2.2)

where 8 =T7', d =3 —2¢, pv =0,...,d, F}, = 0,A% — 9,A% + gpf**ALAS, D, =
Ou — igpAy, Ay = AT, T* are hermitean generators of SU(N,) normalised such that
Tr [T2T?] = 59 /2, 'yl = Yus { Vs W} = 20, gB is the bare gauge coupling, and ¢ carries
Dirac, colour, and flavour indices. We use the standard symbols Cs = N, Cp = (N2 —
1)/(2N.), Tr = N¢/2 for the various group theory factors emerging.

'For the status regarding a few other observables, see references [Efﬁ]



At high enough temperatures, the dynamics of eq. (R.2) is contained in a simpler,
dimensionally reduced effective field theory [[L1], I3, §]:

SEQCD = / Az Lrqep (2.3)
1
Lrqep = 3 FFS + Tr Dy, Bol® + miTr [B] + AT [B2)? + AP T [BY + -+ . (24)

Herei=1,...,d, F;; = 0;Bf—0;B{ +gg fabCBg’B;., and D; = 8;—igeB;. The fields B% have
the dimension [GeV]'/27¢, due to a trivial rescaling with 7"'/2. Note also that the quartic
couplings )\1(51 ), )\](52 ) are linearly dependent for N, < 3, since then Tr [B] = 1 (Tr [BZ])>.

The theory in eq. (B.4) has been truncated to be super-renormalisable; that is, higher
order operators [27] (see also references [P, P9 and references therein) have been dropped.
The relative error thus induced has been discussed for generic Green’s functions in refer-
ence [BJ], and for the particular case of the pressure of hot QCD in reference [I(f]. In the
following we concentrate on an observable dynamically determined by the colour-magnetic
scale p ~ ¢?T', and it is easy to see that in this case the higher order operators do not play
any role at the order we are working.

The effective parameters in eq. (R.4) can be determined by matching, that is, by
requiring that QCD and EQCD produce the same results, within the domain of validity
of the latter theory. It is essential that infrared (IR) physics be treated in the same
way in both theories at the matching stage and, as outlined in reference [J], the most
convenient implementation of this requirement is to perform computations on both sides
using “unresummed” propagators. We follow this procedure here.

The matching simplifies further by using the background field gauge (reference [B1]
and references therein). As this is essential for what follows, we start by briefly recalling
the basic advantage of this approach. For a concise yet rigorous overview of the technique,
see reference [B2.

We denote the background gauge potential with B}, and the gauge-invariant combina-
tion following from F}j, (B)F;,(B) symbolically as B?+4¢B3+¢>B*. Now, the computation
of the effective Lagrangian by integrating out the hard scales p ~ 27T produces, in general,
an expression of the type

Log ~ caB% +c39B% + cyg?Br + - -+, (2.5)

where ¢; are coefficients of the form ¢; = 1+ O(g?). As the next step we are free to define
a canonically normalised effective field Beg as Bgﬁc = ¢y B2. Then the effective Lagrangian
obtains the form

3/

— 2 _
Lo ~ Begﬁ + ¢3¢y ng’ﬁ« + cacy 2 g2B§H 4 (2.6)

We can now read off the effective gauge coupling from the gauge-invariant structure:

-3/2 1/2 _
Jeff = C3Cy / g= 04/ c 1g. (2.7)

We observe that two independent computations are needed for the determination of g,
but we can choose whether to go through the 3-point or the 4-point function, in addition
to the 2-point function (that is, using c3 or ¢4, in addition to cg).
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Figure 1: The 1-loop and 2-loop self-energy diagrams in the background field gauge. Wavy lines
represent gauge fields, dotted lines ghosts, and solid lines fermions. The 2-loop graphs have been
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The background field gauge economises this setup. Indeed, the effective action is then
gauge-invariant not only in terms of Beg, but also in terms of the original field B [B]].
Writing equation (R.5) as

Lo ~ C [32 + 6362_1ng + 0402_19234] 4+ (2.8)

gauge invariance in terms of B now tells us that ¢3 = ¢2 and ¢4 = ¢o. Combining with
equation (2.7), we obtain

ger =5 g, (2.9)
so that it is enough to carry out one single 2-point computation, in order to obtain geg. In
our case, the role of g is played by gg (cf. equation (P.4)).

The class of background field gauges still allows for a general (bare) gauge parameter,
£. As a cross-check we have carried out all computations with a general £, and verified
that it cancels at the end. To be definite, we denote (§)nere = 1 — (€)standard, SO that the
gauge field propagator reads

(45@)4%(~a) =5a"[‘2‘—;— (qqq)] (2.10)

In order to match the effective gauge coupling, we need to compute the 2-loop gluon

self-energy, I1,,,, (p), for the background gauge potential Bj,. The graphs entering are shown
in fig. . The external momentum p is taken purely spatial, p = (0, p), while the heat bath
is timelike, with euclidean four-velocity u = (1,0), so that v -« = 1,u-p = 0. In this case
I1,,, has three independent components (Ily;, II;o vanish identically),

DbiPj DbipPj
Mo(p) = Ta(p?), T05(9) = (35 - 25 0ap?) + PR ). (20
where 7,5 = 1,...,d. In fact loop corrections to the spatially longitudinal part Il also

vanish, so that only two non-trivial functions, Ilg, IlT, remain.



Since we are carrying out a matching computation, any possible IR divergences cancel
as we subtract the contribution of EQCD. Therefore we may Taylor-expand II,,(p) to
second order in p2. This leads to the nice simplification that the results on the EQCD side
vanish identically in dimensional regularization, due to the absence of any mass scales in
the propagators. Thus we only need to compute unresummed integrals on the QCD side.

After the Taylor-expansion, the 2-loop QCD integrals can all be cast in the form

. . . . . il’riQ . jl Tr- .j2 T j3
1(11,12;]1712733;/?1,162,k3)Eg[ 4% "o (q P (r p)*(q-r) (2.12)

o 68 + @?1F1[rg + 1217 [(q0 +70)% + (@ +1)?]Fs
The indices here are non-negative integers, and the measure is the standard Matsubara
sum-integral (bosonic or fermionic), with the spatial part [diq/(27)? [d%r/(2m)%.

To reduce integrals of the type in eq. (B.1J) to a small set of “master integrals”, we
employ symmetries following from exchanges of integration variables, as well as general
partial integration identities for the spatial parts of the momentum integrations. The
implementation of these identities follows the procedure outlined by Laporta [BJ, in analogy
with reference [@] We are lead both to very simple 1-loop recursion relations, such as

2k1 —2—d

I(2i1,0;0,0,0;k1a170): 2% 2
1 —

I(2i1 —2,0;0,0,0; k, — 1,1,0), (2.13)

as well as well-known but less obvious 2-loop ones [B5], like
I(ana 0707()’ 1ba1b71b) =0, (214)

where the subscripts refer to bosonic four-momenta.
After this reduction, only six master integrals remain:

1 1
Iy(n) = yfbm . In)= g[fm , (2.15)

where ¢, ¢ refer to bosonic and fermionic Matsubara momenta, respectively, and n =
1,2,3. For a vanishing quark chemical potential, as we assume to be the case here, the
fermionic integrals reduce further to the bosonic ones,

Ii(n) = (22"*1 - 1) In(n), (2.16)
leaving only three master integrals. They are known explicitly,

B 2rd/2THA T (n, — d/2)
() = =5~ )

¢(2n—d). (2.17)

This expression is easily expanded in e and, in the following, we need terms up to O(e).
For completeness, the relevant expansions are shown in appendix [A].
Writing now the Taylor-expanded bare 2-point function It of equation (R.11)) as

I (p?) = Ip(0) + p?I(0) + - - -

=) Ta(0)(93)" + P> W (0)(gB)" + -+, (2.18)
n=1 n=1



where gp is the bare gauge coupling, and correspondingly for Ilg, our results read

IIT1(0) =0, (2.19)
(0) = TP 0un @)+ S 1en(2). (220)
HT2(0) = 0, (2.21)
o (0) = e £d2;(z)£d5;(?_ 7 {2(4d2 —21d — 7)C3I3(2) —
8 [40F 4 (d® — 6d + 1)0A] Trly(2)Ix(2) —
- [(d3 —12d% + 39d — 12)Cy —
—2(d® — 12d% + 41d — 14)CF] TFIfZ(2)} +
+%{(d2 — 31d + 144) [4TFIf(1) —(d— 1)CAIb(1)] Caln(3) —
—8(d—1)(d — 6)CpTr [Ib(n - If(l)] Jf(3)} : (2.22)
T (0) = —(d — 1) [4TF1f(1) —(d— 1)cAfb(1)}, (2.23)
I}, (0) = — [dz_i# +(d— 3)5] Caly(2) + 2(d = 1)Tplf(2) , (2.24)
Mis(0) = (d— 1)(d - 3){(1 + &) [4TpI(1) = (d = 1)Caly(1)]Caly(2) +
+ 4CFTF [Ib(n - If(1)]1f(2)}. (2.25)

We leave out the lengthy expression for ITf,(0), as it is not needed in the following.
The bare results need still to be renormalised. The bare gauge coupling is written
as g% = g*(ii)Z,, where g?(ji) is the renormalised gauge coupling, fi is an MS scheme

scale parameter introduced through p? = f2e’E /47, and the combination pu~2¢g%(j1) is
dimensionless. Denoting
—22C'4 + 8T,
fo = % (2.26)
—68C% + 40C ATk + 24CFT,
B = At §F+ Per (2.27)
the factor Z, reads
L Bo 2 2, L [Br, B3, —ac a 6
Zg=1 — € — 4+ —= € @ 2.28
o= 1 ot g(u)+(47r)4 e Tz |h 9 (m) + 00, (2.28)
and the renormalised gauge coupling satisfies, in the limit € — 0,
_d 2/ 50 4/ ,81 6/~ 8
— = O . 2.29
Zrrtd () amz? (1) + 1Y () +0(g°) (2.29)



To proceed, we first cross-check our results for IIg against known expressions. After
the fields B of EQCD are normalised to their canonical form (cf. eq. (R.6)), (B§B3)g p? =
(B3 B&)sa p?[1 + Il (0)] /T, we obtain for the matching coefficient m?,

mg = g5 g1 (0) + g5 [HEZ(O) - H%l(O)HEl(O)} +0(g%).- (2.30)

Inserting eqs. (B-29)—(R-25), the ¢-dependence duly cancels. Re-expanding also g% in terms
of the renormalised gauge coupling, and writing then [[L(]

m = T?{ () [aE4 + OéE56} n (4( ); [aEﬁ + 5Ege] +0O(g° )}, (2.31)

we recover the known values of a4, ags and agg [[d] (for original derivations, see refer-
ence [§] and references therein). We also obtain

e'E ¢'(=1) pelE
264 1n? -1 1 In
PE2 = 360A{ 6 (MT) + [80 76vg + 176 o 1)} (MT +
2 ¢'(=1)
+ 8+ 1172 — 8893 — 40y — 17671 + 40 D) -
20 ¢'(=1)
—2— " In2+4yp—4
) gttt Ty

VB / ie'E
K ) [232 43212 — 11295 + 11255 )}m(“e >+

1 e
—C7Tp{ 1681In? [ ——
gt F{ 081n (47TT ¢(-1) 4nT

428 + 7% +24In2 — 641n% 2 — 5673 — 72vg + 128y 1In2 — 112y, +
¢(=1) C'(—l)}
+ 72 —1281n2 +
¢(=1) ¢(=1)
1 ieE C(-1)] . (EeE
~T#S —241n? 8 —481n2 + 16vg — 16 1
9 F{ n<47rT)+[ ne om0 Ty | M e ) T
+4—7%—-8In2+4 161022 + 8v2 — 8y + 329 In2 + 167, +
¢(=1) C’(l)}
+38 —32In2 . 2.32
() () (232
Here 7 is a Stieltjes constant, defined through the series (s) =1/(s—1)+> 2 Yn(—1)"(s—
1)"/nl. (Note that the Euler gamma-constant is yg = 79.) The result in eq. (R-32), first
obtained in reference [B7 by employing the results of reference [f], contributes to the

pressure of hot QCD at O(¢%T*) [[L0]. We rewrite the expression here, since reference [B7]
employed an extremely compactified notation.

fieTE
47T

+CFTF{—8 1n<

We then move to consider the transverse spatial part, IlT(p?). According to eq. (R.9),
this directly determines the effective gauge coupling:

0 = T{ok — 5101 (0) + 03[ (1, (0)) ~ p(0)] + OB) ). (239)

Re-expanding again in terms of g?(ji), we parameterise the result (following ref. [I(]) as

? = ) g + e + 0] + L8 oy + 00 + 0N . 230
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We recover the known expression [B6, [ for agz,

1 16
) +5Ca— 5 Trin2, (2.35)

fieE
47T

agr = —fo 1H<
and obtain the new contributions

1 i1eVE e E
By = 75Ca [88 In® <ZZ—T) + Sln(iiT> 41172 — 8893 — 176%] -

1 pe’® fieE 2 2 2
——Tp|8In% t— 2In2In( — 161n%2 — 872 — 1 2.
3 F[8n<47rT>+3 n n(47rT>+7r +161n 8y — 1671 |, (2.36)

[ieE peE\ 1 16 2
= -1 1 - = —TrIn2| —
VE1 B1 n(4wT>+[ﬁo n<47rT> BCA+ 5 Irln

—% {03 [—341 + 20§(3)] 4CATR [43 +24In2 + 54‘(3)] +
+ 6CFTF [23 +80In2 — 14@(3)] } (2.37)

The first one, (Bg3, constitutes again an O(g5T*) contribution to the pressure of hot
QCD [[l(], while the latter one is the desired finite 2-loop correction to the effective gauge
coupling.

3. Numerical evaluation

We wish to compare numerically the 1-loop and 2-loop expressions for g%, in the limit
e — 0. When carrying out such a comparison, it is important to specify the definitions of
the Ays-parameters. Following standard procedures, we solve eq. (R.29) exactly at 2-loop
level, and define

_ 2 1
Ass = lim 7 [bog®()] /0 [—7} : 3.1
ws = lim_7i [bog” ()] D |~ o B (3.1)
where by = —3p/2(4m)?%, by = —31/2(47)*. For large fi this leads to the usual behaviour
1 £ b < fi >
— =~ 2bg In 4+ —In{2In . 3.2
9% (1) Ass  bo Asts (3:2)

In the 1-loop case, we set by = 0 in egs. (B.1]), (B.9).
Through eqs. (R.34), (R.35), (£.37) and (B.9), g}% is a function /T and fi/Ass. The
dependence on [ is formally of higher order than the computation. Numerically, of course,

there is non-vanishing dependence, as illustrated in figure P

As usual, one may choose some “optimisation” criterion which should lead to a reduced
fi-dependence and thus reasonable convergence. We fix fiopt to be the point where the 1-
loop coupling g% has vanishing slope (“principal of minimal sensitivity”), cf. figure P}, and
vary then the scale in the range i = (0.5...2.0) X fiopt around this point. Results are shown
in fig. f. The fi-dependence indeed decreases significantly as we go to the 2-loop level. The
numerical 2-loop value is some 20% smaller than the 1-loop value. It is comforting that
the 2-loop value is on the side to which the “error band” of the 1-loop result points, even
though it does not in general lie within that band.
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Figure 3: The 1-loop and 2-loop values for g2 /T, as a function of T'/Agg (solid lines). For each
T the scale i has been fixed to the “principal of minimal sensitivity” point fiopt following from the
1-loop expression, and varied then in the range i = (0.5...2.0) X fiopt (the grey bands).

4. Spatial string tension

The computations in the previous sections can be given a “phenomenological” application,
by considering lattice measurements of the so-called spatial string tension. The spatial
string tension is obtained from a rectangular Wilson loop Ws(R1, R2) in the (z1, x2)-plane,
of size R x Ra. The potential Vz(R;) is defined through

1
V;(Rl) = — Rilinoo —2 In WS(Rl, RQ) s (41)

and the spatial string tension o, from the asymptotic behaviour of the potential,

. Vi(R1)
s= 1 _— . 4.2
o Rllgloo Rl ( )

Since o, has the dimensionality GeV?, it is often expressed [@} as the combination

L oo(2), =

where ¢ is a (decreasing) dimensionless function, and Tt is the critical temperature of the
deconfinement phase transition.



We now turn to how the result for g}% that we have obtained in this paper, combined
with other ingredients, allow us to obtain an independent prediction for the spatial string
tension.

4.1 Three-dimensional prediction

The very same observable as in eq. (L)), exists also in 3d SU(3) gauge theory, or “Magne-
tostatic QCD” (MQCD). Since the gauge coupling 91%/{ of MQCD is dimensionful, o5 must
have the form oz = ¢ X gf{/[, where ¢ is a numerical proportionality constant. It has been
determined with lattice Monte Carlo methods most recently in reference [B4] where, after
the continuum extrapolation, it was expressed as

NG

- = 0.553(1). (4.4)
Im

In order to compare egs. ({-J), (), we need a relation between T and g3;. In the

previous section, we obtained a relation between T and g%. The relation between g}% and

91%/[ is also known, up to 2-loop order [@]:2

1 2Ca 17 [(g2Ca\?
F=g |1 LA ( , (4.5)

48 mmp 4608 \ mmg

where the 1-loop part was determined already in reference [2€].

It is worth stressing that the corrections in eq. (@) are in practice extremely small,
even for values of mp/ g% corresponding to temperatures very close to the critical one. (For
N. = 3 and Nt = 0, (mg/g2)? ~ 0.32 logy((T/Ass) + 0.29.) This seems by no means
obvious a priori, given the observed slow convergence in the case of the vacuum energy
density of EQCD [[I(]. In view of this fact, however, we can safely ignore all higher loop
corrections in eq. ([L5).

Another source of errors in going from EQCD to MQCD are the higher order operators
that have been truncated from the action of MQCD. As discussed in reference [[[(], they
are expected to contribute at the relative order O(gd/m3), i.e. at the same order that
3-loop corrections enter eq. ([L5). From this consideration, one might expect them to
again be numerically negligible. In principle one could avoid this assumption, however:
the ratio \/o,/g3 has been estimated in reference [L7 through direct numerical simulations
in EQCD. Unfortunately the statistical and particularly the systematic errors appear to
be non-vanishing (no continuum extrapolation was carried out for this quantity), so that
we prefer to follow the line starting from eq. ([£4)) in the following. Nevertheless it would
be interesting to learn more about the importance of the higher order operators.

Now, as we know ga/T as a function of T/Agz from fig. f, eqs. (£.4) and (.H) allow
us to obtain /os/T as a function of the same variable. In order to compare with eq. ([L.3)),
however, we still need to relate Ags to T.. This problem has also been addressed with 4d
lattice simulations, as we review in section [£.2

2The 2-loop correction 8g3;/gg = —g2Ca[2(CaCr + 1))\.(E1> + (6CF — CA)A§>]/384(7TmE)2 was ignored
in reference [@], as it is of higher order according to 4d power counting and numerically insignificant.
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4.2 Critical temperature in “perturbative units”

The determination of T /Ass is a classic problem in lattice QCD. Two main lines have
been followed, one going via the zero temperature string tension /o, the other via the
Sommer scale 79 [BY.

Values obtained for T,/\/0 by various lattice collaborations are summarised in ref-
erence [BY], Table 7. Traditionally the values were around T./y/o = 0.630(5) [Ed], but
reference [BY] argues in favour of a slightly larger number in the continuum limit. Indeed
the most precise estimate appears to come from reference [(t1], where Tt /v/o = 0.646(3) is
cited. Combining with Ass/+/@ = 0.555(19) from reference [AJ], we are lead to

T
Ass

= 1.16(4). (4.6)

The error is dominated by the one in Ayg/+/0.

A value for roT;, on the other hand, has been obtained in reference [@] rol, =
0.7498(50). Combining with roAzs = 0.602(48) from reference [#4] (the value 7oAzs =
0.586(48) from a few lines below eq. (4.11) in reference [[5] is well within error bars), one

obtains
Tc

Am

This is consistent, within statistical errors, with eq. ([.6)), if favouring a slightly larger

= 1.25(10) . (4.7)

central value. Again the error is dominated by the zero-temperature part, rgAss in this
case. In general it might be expected, though, that systematic uncertainties are better
under control in the extraction of ry than of /o, since the static potential needs to be
computed only up to intermediate distances.

Apart from going through /& and rg, there is also a third possibility [i6]. It is based
on directly determining a (lattice) A-parameter from the scaling of a suitably defined
renormalised gauge coupling at the critical point, and converting at the end to the MS

scheme. The value obtained is T
C

Asis

=1.15(5), (4.8)

consistent with eqs. (f.6]) and (f.7).
To be conservative, we will consider the interval T /Ay = 1.10. .. 1.35 in the following,

encompassing the central values as well as the error bars of eqgs. (|£.6)—([.8).

4.3 Four-dimensional measurement

The spatial string tension of 4d pure SU(3) gauge theory at temperatures above the critical
one, as a function of T'/T¢, has been measured at N, = 8 in reference [P (cf. figure 11).
There are, of course, systematic uncertainties, both from the lack of a continuum extrap-
olation as well as from how the string tension is extracted by fitting to the large-distance
behaviour of the static potential. Nevertheless, we expect that the results are in the right
ballpark.

Given the considerations in sections [L.1, .9, we can thus compare the 3d and the 4d
determinations of \/as/T. The result is shown in fig. [}, where T'/,/7 is plotted. We observe

— 11 -
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Figure 4: We compare 4d lattice data for the spatial string tension, taken from reference [@], with
expressions obtained by combining 1-loop and 2-loop results for g% together with eq. (@) and the
non-perturbative value of the string tension of 3d SU(3) gauge theory, eq. (@ The upper edges
of the bands correspond to T./Ags = 1.35, the lower edges to T./Ayg = 1.10.

a significant discrepancy at 1-loop level (as most recently pointed out in reference [3]),
but a remarkable agreement once we go to 2-loop level. It is also noteworthy that the
functional form of the 2-loop curve appears to match the behaviour of the lattice data
down to low temperatures.

5. Conclusions

The main purpose of this paper has been the analytic computation of the 2-loop effective
gauge coupling of QCD at finite temperatures, defined as a matching coefficient appearing
in the dimensionally reduced effective theory, EQCD.? The result is given in eqs. (R.34)-
(B-37). We have also determined a new contribution of order O(g®T*) to the pressure of
hot QCD; the information is contained in eq. (R.3(]), and how it enters the pressure is
explained in reference [[[0].

The 2-loop correction we find is numerically substantial, some 20% of the 1-loop ex-
pression. This indicates that while perturbation theory is in principle still under control,
if restricted to the parametrically hard modes p ~ 27T only, it is important to push it to
a sufficiently high order, in order to obtain precise results.

Our expression for the effective gauge coupling has a direct “phenomenological” appli-
cation, in that it allows for a parameter-free comparison of 3d MQCD and 4d full theory
results for an observable called the spatial string tension. We find that the 2-loop correc-
tion computed here improves the match between the two results quite significantly, down

30ther “effective gauge couplings” can of course also be defined; for a recent review, see reference [@
The difference is that in these cases all momentum scales influence the effective gauge coupling, so that
perturbation theory cannot be reliably applied for its computation.
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to temperatures very close to the critical one. A small discrepancy still remains but, given
that no continuum extrapolation was taken in 4d lattice simulations, that the extraction
of the spatial string tension may involve systematic uncertainties due to large subleading
terms in the r-dependence of the spatial static potential Vi(r) [Eg], and that there also has
to be some room for residual 3-loop corrections, as well as improvements in the matching
between EQCD and MQCD, we do not consider this discrepancy to be worrying. We do
believe that the discrepancy can be decreased by improving systematically on the various
ingredients that enter the comparison.

These conclusions support a picture of thermal QCD according to which the paramet-
rically “hard” scales, p ~ 27T, can be treated perturbatively, almost as soon as we are in
the deconfined phase, will the parametrically “soft” scales, p ~ ¢T, g>T, require in general
a non-perturbative analysis within one of the effective theories describing their dynamics.
For the observable we considered here, in fact, even the colour-electric scale p ~ g7 could
be integrated out perturbatively, but it is known that this is in general not the case. We
should like to stress that this conclusion is rather non-trivial, as there numerically is little
hierarchy between the scales 27T, gT, g?T at the realistic temperatures that we have been
considering.
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A. Expansions for master integrals

Using the notation introduced in the text, the master integrals of eq. (R.17) read, up to

O(e):
) )
Ib(z):,ﬂf@ {% + 2l <‘Zf:;> te [2 In2 <%) + %2 - 471] } . (A2)
o e () )
s (oo () s)
s o () v B a8OT) g
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1. Introduction

Higher-order perturbative computations have become a necessity in many areas of theo-
retical physics, be it for high-precision tests of QED, QCD and the standard model, or for
studying critical phenomena in condensed matter systems.

Most recent investigations employ a highly automated approach, utilizing algorithms
that can be implemented on computer algebra systems, in order to handle the growing
numbers of diagrams as well as integrals which occur at higher loop orders.

Computations can be divided into four key steps. First, the complete set of diagrams
including symmetry factors has to be generated. For a detailed description of an algo-
rithm for this step for the case of vacuum topologies, see ref. [[l. Second, after specifying
the Feynman rules, the color- and Lorentz-algebra has to be worked out. Third, within
dimensional regularization, massive use of the integration-by-parts (IBP) technique [f] to
derive linear relations between different Feynman integrals in conjunction with an ordering
prescription [B] can be used to reduce the (typically large number of) integrals to a basis
of (typically a few) master integrals. Practical notes as well as a classification of vacuum
master integrals are given in ref. [{]. Fourth, the master integrals have to be solved, either
fully analytically, or in an expansion around the space-time dimension d of interest. It is
the fourth step that we wish to address here.



A very important subset of master integrals are fully massive vacuum (bubble) inte-
grals, since they constitute a main building block in asymptotic expansions (see e.g. ref. [f]).
They are also useful for massless theories, when a propagator mass is introduced as an in-
termediate infrared regulator [f]. In four dimensions, this class of master integrals has been
given up to the 4-loop level in ref. [[f]. As an application, these integrals are vital for com-
puting the 4-loop QCD beta-function and anomalous dimensions [f]. In lower dimensions,
perturbative results are needed for applications in condensed matter systems, as well as
in the framework of dimensionally reduced effective field theories for thermal QCD, where
recent efforts have made four-loop contributions an issue [ff. We have recently extended
the work of ref. [}, to give the complete set of fully massive vacuum master integrals in
three dimensions, again up to the 4-loop level [[L0].

The next larger set of scalar vacuum master integrals are those in which there is only
one mass-scale m, i.e. the propagators 1/(p? + m?) have masses m; € {0,m}. These
integrals are needed for problems with widely separated mass scales, in which one then
sets the masses of all heavy particles to m and those of all light particles to zero. As a
well-defined subset of these single-mass-scale integrals, we here treat ‘QED-type’ vacuum
integrals, i.e. those with an even number of massive lines at each vertex, at the 4-loop level.
A recent application is in the computation of heavy-quark vacuum polarization [[L1].

The complete set of ‘QED-type’ vacuum master integrals up to the 4-loop level has
already been identified in ref. [[]. The main purpose of this work is to numerically compute
this set in terms of a high-precision e-expansion in d = 4 — 2¢ dimensions, and to present
new analytic results for some low-order (in €) coefficients. Furthermore, we have made
an attempt to collect all presently known analytic results on 4d single-mass-scale vacuum
integrals, up to four loops, in a coherent notation.

The plan of the paper is as follows. In section P, we give a brief review of the method
of difference equations applied to vacuum integrals. In section [, we discuss the actual
implementation of the algorithm. In section [], we display our numerical results for the
truncated power series expansions in € of our master integrals, up to the four-loop level,
in d = 4 — 2. In section [], we discuss one case of a master integral which we needed
to solve via a Laplace transform of its difference equation. In section [, we list analytic

results [[[7).

2. The evaluation of master integrals through difference equations

The method we have chosen to compute the coefficients of the truncated power series
expansions of the master integrals is based on constructing difference equations for the in-
tegrals and then solving them numerically using factorial series. This approach has recently
been developed in ref. [f], and below we briefly summarize its basic concepts following the
notation of the original paper, which contains a much more detailed presentation of the
subject. While the method is completely general as it applies to arbitrary kinematics,
masses and topologies [[3], our brief summary is somewhat adapted to the specific case of
vacuum integrals.



The main idea is to attach an arbitrary power z to one of the massive! lines of a master
integral U,

Ulz) = /m , 2.1)

where the D; = (pf—l—mf) denote inverse scalar propagators. In our case the mass parameter
m; has only two values, 0 and m, the latter of which we set to 1, noting that it can be
restored in the end as a trivial dimensional pre-factor of each integral. The original master
integral is then just U = U(1). Depending on the symmetry properties of the integral,
there can be different choices for the ‘special’ line with the arbitrary power x, but in the
limit = 1 they all reduce to the original master integral U. This degeneracy can (and
will later) be used for non-trivial checks of the method.

Employing IBP identities in a systematic way, it is possible to derive a linear difference
equation obeyed by the generalized master integral U(z),

R

Y pi@)U(z +j) = Fla), (2.2)

Jj=0

where R is a finite positive integer and the coefficients p; are polynomials in 2 (and the
space-time dimension d). The function F' on the r.h.s. is a linear combination of functions
analogous to U(x) but derived from ‘simpler’ master integrals, i.e. integrals containing a
smaller number of loops and/or propagators.

The general solution of this kind of an equation is the sum of a special solution to the
full equation, Uy(x), and the solutions to the homogeneous equation (F' = 0),

R
U(z) = Up(x) + Y _Uj(x), (2.3)
j=1
where each (5 =0,...,R)
i) = 1 3 Ty (2.4

is a factorial series.? Substituting this form into eq. (R.2]), one obtains the coefficients p1; and
K (the latter being a function of d), as well as recursion relations for the z-independent
coefficients a;(s) (being functions of d as well) for each solution. For the homogeneous
solutions, these recursion relations relate all coefficients with s > 0 to their (in principle
arbitrary) value at s = 0, a;(s) = ¢;j(s) a;(0), where the c;(s) are rational functions of d.
For the special solution, all ay(s) are on the other hand completely fixed in terms of the
inhomogeneous part F'(z), consisting of ‘simpler’ integrals which are assumed to be already
known in terms of their factorial series expansions.

!The massiveness is crucial in order to avoid problems with the infrared behavior of the integral.
2For a rigorous definition of the concept as well as a motivation for this kind of an Ansatz, we refer the
reader to ref. [E]



What clearly remains to be done is to fix the z- and s-independent constants a;(0),
j # 0, in order to determine the weights of the different homogeneous solutions. To this
end, it is most useful to study the behavior of U(x) at large x. Writing the integral in the
form

U = | ﬁ o). (2.5)
it is easy to see that its large-x behavior is determined by the small-momentum expansion
of the two-point function g(p1), which has one loop less than the original vacuum integral.

In the case of integrals for which the limit ¢g(0) is well-defined and non-zero, the cal-
culation becomes particularly simple. Then the large-z limit of U(z) factorizes into a
one-loop bubble carrying the large power = and a lower-loop vacuum bubble ¢(0), which
corresponds to U(x) with its ‘special’ line cut away,

i ) = | ﬁ} o] ~ e g0, (2.6)
A comparison with the large-z behavior of eqgs. (R.3), (R.4), proportional to > i K a;(0)x ks,
can now be used to fix the a;(0), of which maximally one will turn out to be non-zero for
our set of integrals.

If on the other hand ¢(0) = 0, the treatment of the small-p; limit of this function
becomes more involved. Fortunately, the massless lines of the sub-diagram — which were
responsible for the vanishing of its value at zero external momentum in the first place —
also make its analytic evaluation more straightforward. Performing a careful analysis of
the subgraph, one always ends up with an integral of the type

lim U(z) ~ / ((’i (2.7)

from which the calculation proceeds just as above providing us with the values of the a;(0).

Having the full solution at hand, we have in principle completed our task, as in the limit
x = 1 we recover from U(x) the value of the initial integral. Let us, however, add a couple
of practical remarks here. What is still to be done is to perform the summation of the
factorial series of eq. (R.4), which in practice means truncating the infinite sum at some large
but finite spax. Studying the convergence behavior of these sums, one notices that even
in the cases where they do converge down to x ~ 1, their convergence properties usually
strongly decline with decreasing x. This means that in practical computations, where one
aims at obtaining a maximal number of correct digits for U(1) with as little CPU time as
possible, the optimal strategy is to evaluate the integrals U(zmax + 1), ..., U(Zmax + R)
with the factorial series approach at some Za.x > 1 and then use the recurrence relation
of eq. (B.2) to obtain the desired result at « = 1. The price to pay is, however, a loss
of numerical accuracy at each ‘pushdown’ (z — x — 1) step due to possible cancellations,
which makes the use of a very high z ., impossible. In practice the strategy is to determine
an optimal value for the ratio spax/Tmax. To give an example, for the four-loop integrals of
section E we have found that spyax/Tmax ~ 20...40 is a good value, while we used a range



of Smax ~ 2000...2500. For a few special cases, for which additional numerical problems
emerged, we were forced to limit the value of the parameters to roughly spax ~ 200 and
Tmax ~ 30, which decreased the accuracy of the results significantly.

3. Implementation of the algorithm

As is apparent from the preceding section, there are three main steps involved in obtaining
the desired numerical coefficients in the e-expansion of each master integral: deriving the
difference equations obeyed by each integral, solving them in terms of factorial series,
and finally performing the e-expansion and numerically evaluating the sum of eq. (P.4)
(truncated at spyax) to the precision needed. We will briefly address each of them in the
following.

For the first step, we slightly generalized the IBP algorithm we had used for reducing
generic 4-loop bubble integrals to master integrals, which follows the setup given in ref. [B],
and whose implementation in FORM [[[4] is documented in ref. [[f]. The main difference
is an enlarged representation for the integrals, keeping track of the line which carries the
extra powers x, as well as the fact that there are now two independent variables (d, x),
requiring factorization (and inversion) of bivariate polynomials, as opposed to univariate
polynomials in the original version.

Second, staying within FORM for convenience, we implemented routines that straight-
forwardly solve the difference equations in terms of factorial series, along the lines of ref. [B].
This is done starting with the simplest one-loop master integral, and working the way up
to the most complicated (most lines) four-loop integral, ensuring that at each step, the
‘simpler’ terms constituting the inhomogeneous parts of the difference equation are al-
ready known. The output are then plain ascii files specifying each solution in the form of
eq. (B-4) as well as containing recursion relations for the coefficients a(s). Note that these
first two steps are performed exactly, in d dimensions.

Third, once the recursion relations for the coefficients a(s) were known, we used a
Mathematica program to obtain their numerical values at each s to a predefined precision,
and to perform the summation of the factorial series. While this procedure is in principle
straightforward, there are some twists that we employed to help reduce the running times
significantly, most of which are probably quite specific to our use of Mathematica. To avoid
a rapid loss of significant digits in solving the recursion steps that relate each a(s) to a(0),
especially those for the homogeneous coefficients, we first solved the relations analytically
and only in the end substituted the numerical value (actually the truncated e-expansion) of
the first non-zero coeflicient. In fact, we found Mathematica to operate quite efficiently with
operations like multiplication of two truncated power series, so that we relied heavily on it.
Furthermore, since — not surprisingly — the most time-consuming part in the summation
of the series turned out to be the e-expansion of I'-functions, we achieved a notable speed-up
by substituting the I'-functions with large arguments by suitable products of linear factors
times I'-functions of smaller arguments. Finally, a vital step in avoiding an excessive loss
in the depth of the e-expansions when going from one integral to the next, was to apply
the ‘Chop’ command to remove from the results and coefficients excess unphysical poles,



whose coefficients were of the order of, say, 107 or less. In some cases we were in addition
able to reduce the loss of precision in the pushdown steps by first analytically solving U (1)
as a function of U(zpax), and only in the very end substituting the numerical value of the
latter.

4. Numerical results

Below we list the Laurent expansions in € = (4 — d)/2 of vacuum master integrals up to
four loops. We use an intuitive graphical notation, in which each solid line represents a
massive scalar propagator 1/(p? + 1) and a dashed line a massless one 1/p%. The integral

/p - F<21+ J / d;%ep’ (4.1)

which implies that the 1-loop tadpole is J = fp pQLH = 6(11162) =—>2 €21 In each

case we provide the results to order €' keeping the accuracy at 50 significant digits for the

measure we have chosen here is

2- and 3-loop master integrals and at 40 for the 4-loop ones. There are two exceptions. For
one of the 3-loop integrals (see eq. ([.§) below) the factorial series does not converge and
hence the integral has to be treated by Laplace transform, see section ] For one of the
4-loop integrals (see eq. (E.14) below) we only give the first seven e-orders to 17 significant
digits. To obtain more e-orders and significant digits for all integrals listed here is merely
a matter of additional CPU time.

We have produced numerical results for all single-mass-scale vacuum master integrals
up to three loops (these are the master integrals entering the package of Avdeev [[L5]
and MATAD [[id]), and for all ‘QED-type’ vacuum master integrals at four loops. Here,
we display only those numerical results which correspond neither to analytically solvable
integrals (1 of 1 1-loop master, 1 of 2 2-loop masters, 3 of 12 3-loop masters, 2 of 10 4-loop
masters, all of which are given analytically in section f] below, and are listed in numerical
form in the appendix), nor to fully massive cases (1 of 2 2-loop masters, 3 of 12 3-loop
masters, which are given in section 9.3.1 of ref. [B]; 1 of 10 4-loop masters, which is given

in eq. (4) of ref. ).

@ = 4 1.0000000000000000000000000000000000000000000000000 € 3 +
+ 0.75000000000000000000000000000000000000000000000000 €~ +
+ 2.8750000000000000000000000000000000000000000000000 €~ +
+ 1.836291287051282503853515149962623405464656 7716807 —
— 26.427828097688527267319254765120590367456377175480 € —
— 35.088051385481306364065961402117419432373775682177 € —
— 512.75537623727044689027104289971864365971796649684 €3 —
— 607.61494953927726782115473332930225595551912885034 €t —
— 5868.5987295458313170081280447224279031237930577453 €5 —



— 6835.6108788455114123641492279253803965001408075543 ¢° —

— 58194.090725773231428299235587057139067942816045554 ¢ —

— 67435.335245041201792055506063164867635607825896649 ¢° —

— 546094.78026628005592146280450252032502449454982782 ¢ —

— 631563.41278231233491152773645513360004834876043263 ¢'* +

+0 (") (4.2)

D = — 0.66666666666666666666666666666666666666666666666667 € > —
— 1.6666666666666666666666666666666666666666666666667 € > —
— 5.1290732088140381005700717333376095855758453867530 €+ —
— 26.359970069205366659319388577532454678949629074714 —
— 27.711175418518951962132692178901111387631205211816 € —
— 293.15661097603756640443665077615751632698451158842 €2 —
— 142.70296384808301760189570443963964069968530061393 €3 —
— 2882.1838924952422595902727649575335612132315437366 €* —
— 801.64629651874722343778241421866459175486305997074 € —
— 26947.975116190322227046885628024191588708203470044 € —
— 5202.1954102253813787831194867097139379256134207497 € —
— 246612.58893683893330836716807041349553641918919392 €5 —
— 38662.312198716830334636275721442722552625311137805 € —
— 2235893.9169450155346378997842831790622571843918826 €0 +
+0 (611) (4.3)

O\ = + 2.4041138063191885707994763230228999815299725846810 ¢ ! —
R — 13.125546202841586242894146861604104971473328745577 +

+ 58.026260003878655576719786597271170572487856789112 € —
— 215.15799420773251496754795359758001229751012774168 € +
+ 741.02167568175382570477503744319405056068 752490840 €* —
— 2422.8745603243623464433277838674972111388328822910 ¢* +
+ 7691.0946660371679072096695375419004253731139722117 €® —
— 23935.477541938694107878632636617038283240279946231 €° +
+ 73567.948130076321368433008921329180208448045889323 €” —
— 224259.22429731742234354745849077250951082319381698 €® +
+ 679949.061856645284825179359723190090536256 73803897 € —
— 2054250.6137900838709156880585181458050495843111626 €'° +
+0 (') (4.4)



‘/I\ = 4 2.4041138063191885707994763230228999815299725846810 ¢ 1 —
o —10.073203643096893062671213536841941862151359216063 +

+ 46.082030897278984204342981632818973100797752268016 € —
— 162.8432157147254960468542799892949524 7564452607777 €2 +
+ 563.02541599052549921690912303391142482056503193963 €3 —
— 1822.8278416039379661792322993085062379900421439244 €* +
+ 5785.9815122286472118701238800303861843636492370028 €5 —
— 17968.847688521304415691142884872355494614421789034 €5 +
+ 55216.376506037509642111329809657803343085975716148 € —
— 168240.56307714987438328576061703042187348961355271 €° +
+ 510052.27830760883492002666904963035268124951366379 € —
— 1540802.7858406456522499592944279183737583148997338 €0 +

+0 (') (4.5)
J/ = +2.40411380631919 ¢ ' — 6.09209302191832 +

+ 35.8130598712514 € — 104.744695525740 € +

+ 394.7643404810 €* — 1200.978166746 €* + O () (4.6)

(L) = + 2.4041138063191885707994763230228099815299725846810 ¢ 1 —
T - 10.239350912945217732184803670827657230740659540460 +

+46.310233388509835938575195677581891346572247104081 € —
— 163.71903666846274587940160817767510251267798801563 € +
+ 564.30910069499791449917891053192483169414448523830 €* —
— 1825.8206691490586101339592917414250683553208417056 €* +
+ 5790.4830503256226500389801844087331481909799175043 €® —
— 17977.329926014373828927297954140399343188401436964 €° +
+ 55229.228709840982549894271961274899889724333654202 €7 —
— 168262.33984881039469900336415583383277506556682677 €® +
+ 510085.27212468040781599787353617454516173782111015 €° —
— 1540855.6379207615212777547545938657889645397412471 €'0 +
+0 (") (4.7)

(0) = — 1.000000000000000000000000000000000000000 €+ —
— 0.500000000000000000000000000000000000000 €3 —
— 3.BTTTTTTTTTTTTTTITTTTTITTITTTTITTITITTITTT78 €2 —
— 1.995370370370370370370370370370370370370 ¢~ —
— 36.82021604938271604938271604938271604938 —

— 19.87920801451107035069575635156380101575 € —



o

e
R
L

— 1809.001126638637160933894507798781706682 > —
— 941.2486498215135407529753614624254521594 ¢> —
— 49114.80404240275263940837370626747663512 ¢* —
— 25712.87944658606239888301931387195377680 ¢* —
— 1014742.540337323108931396794699794706304 ° —
— 533925.9315185165221824312193117157135164 7 —
— 18513953.44519328478360685998151320048728 ¢® —
— 9769845.146715270007449428486953016122496 ¢* —
— 317669932.9515691976277658362596784695115 ¢'0 + O (')

-+ 0.2500000000000000000000000000000000000000 € ~* +
-+ 0.5000000000000000000000000000000000000000 €~ +
+1.000000000000000000000000000000000000000 €2 +
+1.813369870537362855098298049824424939972 ¢ ! —
— 113.8224542836131461311762552843948945680 —

— 33.70692008121875082746730709549318292582 ¢ —

— 3800.131177952398833364468086486701310324 ¢* —

— 724.2483980459868435529785916 706580415218 ¢* —

— 83243.75114211351557600351242603548310943 ¢* —

— 9962.244874731471054690629554209449745080 ¢* —

— 1556494.392681571176934758495668112116219 ¢° —

— 125852.9269007094630774780949002157883896 ¢ —

— 27026768.74324139691004925806420463865625 ¢® —

— 1619900.985945231199760429618558131115494 ¢ —

— 451968203.1707264233126870326577507342793 ¢'0 + O (')

+ 0.6666666666666666666666666666666666666667 ¢+ +
+ 1.333333333333333333333333333333333333333 ¢ 3 +
+ 3.333333333333333333333333333333333333333 ¢ 2 —
— 2.922363183148830477868063138605600049253 ¢~ —
— 52.50529739842769756973487794955803028226 —

— 622.1548972708590376012515685880304077291 € —

— 1741.392944346262052260405956917114927201 €% —
— 17196.12685330902582768340098554237636824 €3 —
— 35037.76438140725371856293904191777384497 ¢* —
— 350040.6052285494016783912074340410365119 €° —
— 619669.7756160060500505884016704452111642 ¢® —



— 6316632.078794015469602341973684043315269 ¢ —
— 10420684.66626276045383010214928284087492 % —
— 107682720.9936656086807201002498313447872 ¢ —
— 171175743.7334785889316026497774359587050 €' + O (e'!) (4.10)

= — 0.1666666666666666666666666666666666666667 ¢ 4 —
— 0.8333333333333333333333333333333333333333 ¢ 3 —
— 5.535390236492927618733071494844783324098 €2 —
— 18.82211358179364443034084677047078519365 ¢ ! —
— 25.33131709639103630297934297632219102642 —
— 692.6253681383859207802291611352811358818 ¢ +
+ 1304.406827189023173835521731683389467596 ¢ —
— 17597.62761742767175796342110253040416842 ¢ +
+ 43608.68478725040973761321535022863250602 ¢* —
— 356925.7947952212585233385307804100264907 ¢ +
+ 939175.5208936133499000732308171881559393 ¢ —
— 6467516.567931160982387324881460909595434 ¢ +
+ 17364082.00316543469946942544036134544207 ® —
— 110630064.0504718962799294108969364410321 ¢ +
+ 299555848.2967199841801845664112146544429 €' + O (€'!) (4.11)

@ = —0.1666666666666666666666666666666666666667 ¢ * —
— 0.8333333333333333333333333333333333333333 ¢ ° —
— 4.934361784913130476033202414089058328716 ¢ 2 —
— 16.20728580177089935860423675579773428042 ¢ ' —
— 66.26045267088253719950145322703822192330 —
— 375.8131807648258568590885739785987842170 € —
— 558.8684980291056611497739327005648555056 ¢ —
— 8005.909258052308131324607228836046381631 € —
— 1919.455472313357401527573620257269458394 ¢ —
— 151678.4473872174906037102434226085312395 € +
+ 45367.13703676553118943884640644928312337 €0 —
— 2666691.771475554201053771443874777744895 € +
+ 1469487.259313641787542428480707831779115 € —
— 44948193.38776277686896804573212402472750 € +
+ 30458142.54983328875970186426762508169587 €'* + O (¢'')  (4.12)
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= 4 5.184638775716849631656827432285170840285 ¢ 1 —
— 43.27615856932464061120186605318440014787 +

+ 281.6878028207571441503294898731325032572 ¢ —

— 1513.4394983573345107838567689286 71867962 €2 +

+ 7425.188218180801392788420314778306091908 ¢ —

— 34157.28328369996440389044714608216014037 €* +

+ 150927.1863992836861076852919478736657397 ¢ —

— 648212.2200729992344766408701706025837197 €® +

+ 2730180.324952706549742379412290749026850 ¢” —

— 11339683.06464037751511038174569497508966 €° +

+ 46630964.11789747669532801502683952077042 ¢ —

— 190369535.4103429881202484621694879170262 ¢'* + O (¢'')  (4.13)

@ = + 1.80887954620833474 — 12.7814836099524403 € +
+ 71.046049240835262 €% — 334.59648933739741 ¢* +
+ 1467.5837602507405 €* — 6165.5621168597119 €” +
+25329.619267580422 € + O (€") (4.14)

Just as in the three-dimensional case [[[0], we have performed various checks on our
results. These can be divided into two categories: first, we had to make sure that the
difference equation, eq. (R.9), as well as the various parts of its solution, eqs. (R.3)), (2.4),
were in principle correct, and second, that we have reached the desired accuracy in the
numerical part of our computation. For the first task, it was in general enough to ensure
that the first few e-orders we obtained for each integral coincided with the existing analytic
results. Here the main difference to our previous three-dimensional computation laid in
the fact that while at d = 3 — 2e most of the integrals were either finite or their expansions
started with a 1/e term, we now encountered in many cases (often analytically calculable)
divergent terms up to 1/e* order. The analytic results relevant to our graphs that we have
found in the literature, as well as a few new ones, are collected in section f. We have found
agreement in all cases.

The comparisons with existing analytic results also provide an easy and reliable method
to inspect the accuracy of the numerical results, since the number of correct digits usually
stays roughly constant when moving from one e-order to the next. Just as in our previ-
ous work [[[(], other methods we have employed to assess the accuracy question include
comparing the results obtained by raising topologically inequivalent lines in a single in-
tegral to a higher power and analyzing the convergence properties of the factorial series,
i.e. checking the stability of our results with respect to varying smax. The results given
in the preceding section have been observed to be stable to at least the number of digits
shown.

One might be concerned about the rapid growth with increasing e-orders of most of
the coefficients. This is, as was pointed out in ref. [[f], caused by poles that the integrals

— 11 —



(seen as functions of d) develop near d = 4, e.g. at d = 7/2,3, etc. It is to be expected
that factoring out the first few of these nearby poles in each case will improve the apparent
convergence in e considerably.

In principle, having a method at hand that is capable of generating coefficients to
very high accuracy, even to a couple of hundred digits, one could now use the algorithm
PSLQ [[7] combined with an educated guess of the number content of some of the yet-
unknown constant terms, in order to search for analytic representations of the numerical
results. We have not made any systematic attempts in that direction, since the numerical
accuracy of our results should be sufficient for all practical purposes. However, for a few
leading coeflicients we have successfully applied this method. The analytic values are given

in section .

5. Laplace transform

As already mentioned in the above, we have encountered one case where the method of
computing the e-expansion via a factorial series representation does not work (or, more
precisely, does not converge), namely for the 3-loop integral of eq. ([L6). Let us take this
specific example as an opportunity to finally display a difference equation like eq. (R.2) in
full detail and exhibit, following ref. [B], one method other than factorial series to solve it.

Defining the integral

(5.1)

where the dot with the label x means that the corresponding propagator is raised to the
z-th power, the difference equation eq. (P-J) it satisfies is of second order and reads

0= —2(x+1)M2(m+2)+3<x+2—g> My(z+1) — (x + 3 — d)Ma(z) +

Fz+5-3) 3-d Dlz+3—d 1
( ) 5y M2(0) + s ) —
Plz+1) T(6E-3) T(x+1) T(2-d)
Fz+2-9%) 2 +r(m+5—%)r(x+3—d) 2 5.9
Tz+1) I(1-9) D@)(z+7-2d) T(1-9)’ :
with boundary conditions Ma(z > 1) ~ ] (cf. eq. (2.6)) and

—

My(0) = bl = - (53)

We would like to know the master integral Mo (1), or at least its e-expansion in d = 4—2¢
dimensions. Note that only the first two terms of that expansion are known, cf. eq. (p.32)
below. Formally, it is of course possible to solve eq. (f.9) in terms of factorial series,
following the recipe sketched in section P However, it turns out that the series does not
converge in this (and only this, of all cases treated in this paper) case, such that in practice
a different method of solving the difference equation is needed.
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One way to tackle eq. (5.9) could be the iterative method used e.g. in ref. [[§] (cf.
eq. (11)ff therein): expand in €, make Ansétze for the e-coefficients of My in terms of (sums
of multiple) harmonic sums with unknown constants, write all e-expansions of the Gamma
functions in terms of harmonic sums, then rewrite everything in terms of a unique basis,
and finally fix the constants by comparing coefficients. Unfortunately, there does not seem
to exist an algorithm yet that automatizes the choice of Ansatz, hence requiring a fair
amount of hand-work. For the basic literature on harmonic sums, see the references of
ref. [1§].

Another way of tackling eq. (p.2) is to transform it to a differential equation, which
should then be solved by analytical or numerical methods, or by a combination of both.
This is what we will do in the following, and this is how we have obtained the numerical
values given in eq. ([.6).

We can use the Ansatz My(z) = fol dtt* v(t) to Laplace transform the difference
equation for M, into a first order differential equation ®@q(t)v(t) — t®1(¢)v'(t) = w(?),
where ®g(t) =3 —d — 3(1 — 2)t — 2t and ®(t) = (1 —¢)(1 — 2¢) [

The homogeneous equation is solved by v (t) = cgt>~ (1 — t)%_Q(l — 2t)272, which
however makes Msy(x > 1) grow too fast at large = (it would grow like xl_%, in conflict
with the large-z boundary condition), such that ¢z = 0 and hence My (2) = 0.

For solving the inhomogeneous equation, note that the inhomogeneous piece has four
4

terms w(z) = ijl wj(z), which correspond to the last four terms of eq. (p.2)), written as
Tj(x) = fol dz 2" tw;(z). For j = 1,2,3 we therefore have w;(z) = F(llﬁaj)zaf(l —2z)%,
- 7 3—d) M5 (0

where @ = (5 — 32,3 —d,2 — %) and b = ((F(s)—%() ) F(21—d)’_r(12_%))' For w4, we know

that it satisfies
L Dx+5-3T(z+3—d) 2
dz 2" Lwg(2) = Tu(z) = 2 . 5.4
/0 1(2) = Tu(x) T(@)(x+7-2d) T(1-9) (54)

For the expression Ty(z), we can immediately construct a simple first-order difference
equation, x(z + 7 —2d)Ty(z +1) = (x + 5 — %)(w + 3 —d)Ty(z), from which we get — in
complete analogy to Laplace transforming eq. (b.2) — a differential equation for w:

0= (d—3)(3d — 10 — 42)wy(2) — 2(14 — 5d + 42(d — 2))w)y(z) + 222(1 — 2)w)(2). (5.5)

To write its boundary condition eq. (f.4) in a (for numerical treatment) more useful form,
note that the behavior of wy(z) at the singular point z = 1 is connected to the large-z limit
of Ty(x). Using Stirling’s formula to write 1;((‘;12; = 29701 + % + O (z7?)), we
can fix the three constants in the Ansatz wy(z ~ 1) = ¢1(1 —2)2(1+c3(1 —2)+...), when

rz—1

comparing fol dz 2" twy(z =~ 1) at large « with Ty(z > 1). Hence, writing

_ e 92,175 40— 2)%_221_%“74(2)
wa(z) = c1(1 - 2) d—2w4(z) = T(1—9HrE - 1)(d-2)
_ 28i7ITl md 31*%(1 _ z)%*2w4(2) 7 (5.6)
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we get simple boundary conditions w(1) = 452, w)(1) = F2(4F2 — ¢3) = (d;4)2 for the

new function wy(z), which satisfies the differential equation
—(d — 4)*W4(2) + 2(10 — 3d + 42(d — 3))wy(2) + 22%(z — D)) (2). (5.7)

We now get the non-homogeneous solution vyp(t) by varying the constant of the
homogeneous solution. Due to the linearity of the differential equation, the full solution is
simply the sum of four terms, which when plugged back into the definition of the Laplace
transform gives a representation for the master Mos:

1 1
Ma(o) = [aeeaa - i -t [aatt - ot - 2 x
0 t
LS o

The integral converges (in 4d) for > 1, so one can use it to compute M2 (2) and get Ma(1)
via eq. (p-3).

Unable to solve eq. (5.§) for generic d, let us now go to d = 4 — 2¢ dimensions and start
expanding. First, we need to solve the differential equation eq. (.7). Writing wy(z) =
Yoo o €" fn(2), the boundary conditions translate into fo(1) = 1, fi1(1) = —1, fp>1(1) =0
and fy(1) = 0, fi(1) =0, f35(1) = 2, f}~o(1) = 0. The f,(z) satisfy the differential

equations

0= 2(z = Vi) + (25 = Dfsle) + B 42)fos () = Shua(e), (59)

which have to be solved starting with n = 0 (setting fr<o(z) = 0).

One can e.g. solve eq. (f.9) in terms of multiple (nested) integrals. In fact, the Ansatz
fn(2) = 0n,0 — 6n,1 + [ da gn(a) respects the boundary conditions for f,(1) and transforms
eq. (b.9) into a first order differential equation for g, (a), whose boundary conditions g, (1) =

20,9 incorporates those for f/(1). The homogeneous solution is of the form g (a) = a(fja)

and vanishes due to the boundary condition: ¢, = 0. The inhomogeneous solution now
follows by variation of the constant, such that finally

*da hy(a)
n = 5n _511 — T >
fn(2) 0 ,1+/1 ~1—g

(@) = 2Ang—tna)nla) + [ 2 ET el /‘%/‘kﬁ_c (5.11)

1

(5.10)

The strategy is now clear: hy(a) — fn(z) — wa(z) — w(z) — Ma(2) — Ma(1). All of
these steps can be performed numerically, and there is a discussion of methods in ref. [B].
In practice, we numerically solved for the f,, using Mathematica, changed the order
of integrations in eq. (p.§), dealt with the t-integration (semi-) analytically, and finally
performed the z-integration numerically. The singular point at z = 1/2 was treated as a
principal value integral, and the logarithmically divergent regions near z =1/2 and z = 1

were split off and treated analytically via a series-expansion in z.

— 14 —



To check the setup, it is possible to start analytically. Solving eq. (p.11]), the first
couple of orders for h,, read ho(a) =0, hi(a) =0, ho(a) = —21In(a) and hz(a) = 21n(a) —
3In%(a) + 2Lia(1 — a), where Liy(z) = 3272, ;—'5 is the polylogarithm.

Using eq. (B-1()), this then implies fo(2) = 1, f1(2) = —1, fa(2) = —In® z — 2Lis(1 — 2),
f3(2) = (1 +5In(1 — 2) — In(2)) In?(2) + 2(1 + In(2))Lig(1 — 2) + 101In(z)Lis(2) — 2Li3(1 —
Z) - 10L13(Z) + 10¢s.

Knowing now wy(z) = 1—e+¢e?fo(2) + O (€*) and using eq. (5-) to get w4(z), we can
expand the curly bracket of eq. (@) The two leading terms cancel, such that we obtain
{}= %[(z —1)(7? +2In%(1 — 2) = 6lnzIn(l — 2)) + 321In% 2 + 6Lis(1 — 2)] + O (eh).

1 T— 1 o 1 Lr—1
NOW Mg(x) = fO dtt 2‘[25 dZ% + 0(64) = fO dZ %ﬁ —|' 0(64). We
obtain M5(2) = 6(3¢3 + O ('), which, using eq. (F-2) at x = 0, translates into M(1) =
ﬁMQ(?) = %MQ(Q) = 43¢+ 0O (€%), in nice agreement with the first term of eq. (£-33).
6. Analytic results

For completeness we list here all existing analytic results applicable to our integrals that
we are aware of [[J]. Additionally, we give the analytic form of some new coefficients of
4-loop master integrals. These were extracted from our high-precision numerical results of
section f], with the help of the integer-relation finding algorithm PSLQ [[7] combined with
an educated guess of their number content.

Here, we normalize every integral with the appropriate power of the 1-loop tadpole,
such that analytic results are independent of the integration measure. Also, recall that we
have set m = 1.

We will use the following transcendentals:

=1
k=1

=1 (1
o =3 g =1in (3) 62)
k=1
6 .
Ls;(0) = —/0 dr i QSin% : (6.3)

and abbreviate the log-sine integrals at their maximum value as Ls J(%’T) = Ls; below.

6.1 1-loop

There is one 1-loop topology and one coloring by mass. The 1-loop tadpole is solved in
terms of Gamma functions. With measure [ d%p, J = fddprLle = 74271 — d/2).

Q = 7. (6.4)

There is one 2-loop topology and three colorings by mass. One of them reduces to simpler

6.2 2-loop

cases, while the other two are master integrals. One of the two master integrals has an
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analytic solution in terms of Gamma functions. The other (fully massive) one can be
written in terms of the hypergeometric function o Fy (see egs. (4.12) and (4.13) in ref. [[1]),
or alternatively in terms of a one-dimensional integral (see egs. (21), (15) and (16) in
ref. [0]) which has a simple e-expansion (for 4d in terms of log-sine integrals).

- _QZZ__23)<Q>2 (6.5)

e oo
J? 24-21(3) '
@ 3(d — 2) (4—d 5—d 3) iz 270(5 — d)
= 2 b5 ) 73T e (6.7)
J? 4(d — 3) { 2 2 4 r(459r9)
3(d—2) s 5 , pq nd=s 21D(5 — d)
= - 1-372 (d—4)/ dr(2sin(r))* %— — — (6.8)
A(d—3) { 0 INCSOINESS)
d=n-2¢ _3(n—2—2¢) LS e 26V (4
=" — 1 ¢ L —
4(n—3—26){ 3 = jzo T A
02 215 —n + 2e
- 4—n ( 6—n ) (69)
(5" + (55" +¢)
2n .
The numbers Lsga) = — [o? dr(2sin 2)?In/~!|2sin Z| in the 4d (n = 4) case are the log-sine
integrals Lsgo) = Ls; = Ls; (%) of eq. (b.3).

6.3 3-loop

There are three 3-loop topologies.

3-loop, 4 lines: there are four colorings by mass, all of which are master integrals. Two
of them have an analytic solution in terms of Gamma functions. The third one (called
D3(0,1,0,1,1,1) in the literature, according to the notation introduced in ref. [[5]) can be
written in terms of a single hypergeometric function 3F (see eq. (4.33) of ref. [R1], where
also the first seven orders of its 4d e-expansion were given in eq. (4.32)).3 The first seven
orders of the 4d e-expansion of the fourth (fully massive) master (called By (0,0,1,1,1,1)
in the literature) can be deduced from the function By introduced in ref. [P4] using the
reductions egs. (6.2d) and (m) given below. Two more orders could be obtained from By
as given in ref. [R5, but we refrain from reproducing them here.

) 30(8534)1(3 — d)I2 (452

3In some sense, the representation in terms of special types of hypergeometric functions can be called an
all-order analytic e-expansion, namely when their expansion can be written in terms of rapidly converging
(multiple inverse binomial) sums, for which efficient algorithms exist [@] The 3-loop integrals E3, Ds and
Dy [@] below belong to this class as well.
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(6.11)

-1-= Z
73 46+86

J3
O a5,
[ d=4-2¢ 2 <_——\/_LSQ>
913 3
Jr_<_32___Z %W&+%3—2m3ﬂﬁ2+1&ﬁ@>64+

7027
+ ( f( 3(2In3-3) + 64LS4<g) — 9(67—541n3+181n2 3)Lsy +

+162(21n 3 — 3)Lss — 216Lsy + 1847rC3)> e +

+ 48601 n
128

3 23 69
+\/§<—1—67T3(67—|—181n3(1n3—3)) 36 5—{—771'(3 2In3)(3+

9

+81mLs) + 4 (~457 +61n3(67 + 310 3(21n3 — 9)))Ls, —
27 ) 81

— 5 (67487 + 181n3(In3-3))Lss + - (21n3—3)Lss -

81
— S Lss +12(3-21n 3)LS4(§> +

243
+ 49Ls5 (g) - TLS5>>66 +0 (67) (6.12)
Q) ey 5, 10 108,
L% 9 2e_ 24— 163 — 128
e 37 2° T Tl @)
9055 1367 32 5. 5 . o 5
<E + 5 — ln 2(m* — In*2) — 168(3 — 256a4 | € +
63517 16 16 68
(T_{— In*2(4In2— 15)—;7? In?2(41n2— 9)—1—571' (4In2-3) —
1876
— —3 3 + 1240¢s — 1152a4 — 153605 S +0 () (6.13)
PLE
Lsj = — [o® dr7/ ~31n? |2sin Z| are special values of the generalized log-sine function [21].

3-loop, 5 lines: there are eleven colorings by mass. Eight of them reduce, while the
remaining three are master integrals. One of the masters has an analytic solution in terms
of Gamma functions. The second one (called F5 in the literature) can be written in terms
of the hypergeometric function 9 Fi, cf. eq. (4.24) of ref. [RT]. Its first six terms of the 4d e-
expansion (we will only reproduce the first five of them below) are given in egs. (4.16), (4.18)
of ref. [R1]. The first five terms of the 4d e-expansion of the third (fully massive) master
integral (called Dj5 in the literature) can be deduced from ref. [Pf] using the reduction given
in eq. (6.25) below. One more term has recently been given in eq. (3.28) of ref. [, but
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we refrain from listing it here.

ﬁ {(3a-9) @ —3(d—2) @ Q} (6.14)
N (d 3{3d8’_+d3<Q)3}

= (d 3) {a- S)C P %Q} (6.16)
_ (d 3 {3d 8) @ T2 Q)g} (6.17)
- -5 Q + (fdf?; (@)) (0.1
= —% (6.19)
D = T Q=0 (6:20)
IR =G 621

(6.15)

SICIs
I

LS 2 (6.22)
J3 sin?(Z2) sin(324) 13(54)12(d — 2)I'(4)
D =122 5 2
ez, 2 ~ _3V3L
= S tget <5+6 3fsQ> +
44 &3
+ _+_+ gg_gf —+(2—1n3)LSQ—|—L83 +
3 162
128 572 @t 10
o Y 6.23
+<3+6 6o T 3T (6.23)
1
+3 (—6(%2 +91In3(10 + (In3 — 4) In 3))Lsy + 3(In 3 — 2)Ls3—
80 T 573 94
—2L——L<)—13—2 o 410 (S
1= gpbsalg) T3 =2+ 277T<3>>6 +0()
@ d=4-2¢ 8 25 2
75 = 1+§€+<§—6\/§LSQ>€ +

76 73
+<3 6C3+\/_<—§+6(1H3—2)L52—6LS3>> 3+
Tt 92
76—~ + 18Ls3 — 12nLss + 18Ls), + -3+ 4V3m 426103 ) (3+
+\/_< (In3 —2) — 3(10 — 4In 3 + In? 3)Lsy+

+6(In3 — 2)Lsz — 4LS4>> e+ 0 (&) (6.24)

3-loop, 6 lines: there are ten colorings by mass. The first two terms of their 4d e-
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expansion are given in ref. [26]. Five of them reduce, while the remaining five are masters.

The third term of the 4d e-expansion of one of the masters (called Dy in the literature) is

given in eq. (4.10) of ref. [1].4

respectively) are read from ref. [R§].

®

2(d — 3)
 3(d—4) @

(d—-2)

2 3
~6(d—4)(d—3) <Q>

(3d—10)(3d—8)
16(d — 4)2
(d—2)%(5d—18)
8(d — 4)2(d — 3)

(3d — 10)(3d

(@

s (D)
Q)

(d—-2)

a 316(d —4)(2d = 78))

~ 8(d—4)(d—3) <Q>3

IISIOF

The remaining four masters (called Dy, Dy, D3 and Dg,

3d—8 2(d —
+12(d—4)@ T 3d-

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)

(6.30)

(6.31)

(6.32)

(6.33)

3d—10)3d —8) [ ;=  d—4

. 2 C ;+7 )+

(d 4) s A2 = T) NS
Ld-2,

d—4"
M S, 2(3d —10)(3d — 8) C
d—4 . (d—4)2
Tl 27
— (€2 e —L
et (1080 * )E +
21 161 T 367
- ——mLsy( = 79Lso—
+< ST T (3) 2167 2
2615 2047
— Trlsy — 2 T2, — 220 4 5

Trlsy — 2¢3 + ——— 132 " 3 2916 C5> e+ 0 (6 )

_2< 52 + L + 9LS 63 +0 (64)
s 180 2
—2(3€* + (76—0 + —l 29(n% —1n?2) — 16a4> S+0 (64)
27

2 3 4

—2(3e +<24+ Ls2>e + 0O ()
17 2

e ( 93 + 3 In*2(n* — In*2) +- OLs} - 16a4> é+0 () (634)

3
X5= P opey (n;l)Q # (Zﬂil l») ~ 0.0678269619272. .. is a special case of a binomial sum [P1].

j=1j

“Note that there is a typo in eq. (4.10) of ref. [E] The second-last term should read — <2t

also ref.
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6.4 4-loop

There are ten topologies.

4-loop QED-type cases, 5 lines: there is one topology, BB.
There are two QED-type colorings of BB. Both of them are masters. One is known
analytically in terms of Gamma functions, while the other one is new.® Interestingly, the

analytic value of the last two terms in eq. (f.36]) were obtained in a physics computation
in which this master integral contributed [RY].

s gyi-sTE = 2O CFITFO ) 635

F(ll 3d)r3(4 d)

J4

(0) d—1—2 L 1T, 1o 37207 1976975 1792\ 5
p— —1—— —_— _——_— _

JA 5736 216 " 1206 ¢ T 76 T g )T

72443143 4352w | 1024 8102 47488
_ _ In 2 21 22_ 2 Pove 6
( 46656 135 272=m)+ T ant G et
+0 (€ (6.36)

4-loop QED-type cases, 6 lines: there are two topologies, T and G.

There are four QED-type colorings of T. All of them are masters. One of them is
known analytically, while the first six orders of the 4d e-expansion of two others were given
in eq. (16) of ref. [[i] and eq. (18) of ref. [[[1],° respectively. The fourth one is new.

Lewal

o 89-3T3(L)I(6 — 24)13 () (6.37)
J4 N sm(?’gd)F(H;QBd)PZ(%) 2(d - 2) .
@ 423 7T 9 39 !
S G ger g (Fg )@ (- o)+
54774 2 0/1.2 2 5
+ [ —1254 — +32In° 2(In" 2 — 7°) + 768a4 + 855¢3 + 189(5 | €’ +
@ d=4—2¢ 2 4 2 2 4 3 Azt 20065 4
7 3+36+36 +3( +4(3)€” + 6 15 + 3 €+
1928  326m* 64 1192
<_T - 4; 5 In? 2(ln2 2 — 7T2) + 512a4 + 3 G + 96C5> e +
A d=1-2¢ 1 1 2 13 3 241 5t 4
— d=-2¢ 1 1 , g2 2y
=i 4+26—|—06+< 8+2C3>€+ 1 3 t46 ) e+

This integral has also been expanded in terms of 1-dimensional harmonic polylogarithms [@

SNote that in ref. @} the last term of eq. ( involves a numerical coefficient N1g ~ 5.3111546, which
we have determined to be Nig = 4792’;)4 + é In?2 (7r2 — In? 2) — 4a4, using our high-precision result eq. ()
and PSLQ [L7].
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7T4

+ (—? -5~ 36¢3 + —C5> €+ 0 () (6.40)

There are five QED-type colorings of G. All of them reduce.

:%—H@Q (6.41)
D-22@ - SO EQ) oo
= ‘% (643
D= (640
=GO = ONO, 69

4-loop QED-type cases, 7 lines: there are three topologies, VB, N and U.

There are seven QED-type colorings of VB. Five of them reduce. There are two master
integrals. Both are new.

(Qd?:(c? )—(35)2_(31%31?)_ . * (d 2(465(;; fn) & (6.46)
- (5)(35) . B 3( 3d—10 A *

((262 27 332 —810 ‘ Q (6.47)
O = W AR e IOHOR
& - Fewrs @ —§E§ii§@ s (D O-

a 32(d(fii>ff_ 3)? (Q>4 (6.49)
83 = 3d310 {(d_?’)’@ _23(651:??) (MT_F)_%:} Q)} (6:50)
d=4-2¢ 1 5 (11 >€2+< 44 7T4+2C3> e

L e (546

JE G 3 360 ' 3
332 7t 31
+ (—? — % + —Cg + 53C5> et +0 (65) (6.51)
@ ima2e 15 (11 4 7 13\
i ‘6‘66_<3 " <‘°’> <_?_m+€@’>e "
166 5r% 29
(-G Re _<5> 40 (052

There are five QED-type colorings of N. All of them reduce.

:(2d6—(5)_(33c;2—8) ( )(3d — 8' Q
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- % (Q >4 (6.53)
T 2d —5)(3d — 8 3d 8)
- 6(d — 4))((d 3)) )(2d —7) ‘ Q (6.54)
([ = ((Qj 453)(;3; - 181)) (6.55)
D "= @+ Q3O
4
- 32(d(—d4)(2d) —3) <Q) (6.56)
- (Qdfﬁfi(?’ii - e @ O-
3d . . Q 32 d 4 3d 42 <Q)4 (6:57)
There are four QED-type colorings of U. All of them reduce.
S AE 3d @A) -4 3) Q)4 (6.58)
4
</. _ j g 3d 8) @Q . 2)(( )(Q) (6.59)
< - _2(dd —34) @ 3262 87 . Q (6.60)

d—3 7

 a=— 61
N T 3o (6.61)
4-loop QED-type cases, 8 lines: there are two topologies, VV and W.
There are seven QED-type colorings of VV. All of them reduce.
2d—7)(2d—5)(3d—10)(3d—8 —3)%(2d — 7 AR

) (d PR
6(d — 4)2(3d — 13)(3d — 11) T ([d—4)(3d—13)(3d—11) <&
AP (2d—T)(2d = 5)(3d — 10)(3d — 8) (d=3)(2d =T7) 7o
VYT 18(d 0)2(d — 3)(3d — 11) (d—4)(3d—11) =&

(d— 3d— 10 (3d — 8)
48(d 4 )(2d —7) ' Q (6.63)
SN (2d - 7)(2d 5)(3d—10 )(3d — 8) 2d 7)
D T 6(d—4)%(d - 3)(3d —11) Q *
(d —2)(3d — 8) 5d2 — 35d + 61)
T T 6d— 02 d—3)2d—7) . Q (6:64)

~ (2d—T7)(2d - 5) 3d—10 (3d — 8. 2(2d —7)
_ 6(d —4)2(d — 3)(3d — 11) 3(d 3d—11 3d—10A+

L (d—2)(3d - 8)(95d3 989d2 + 3428d — 3956) ’ Q N
32(d — 4)(d — 3)(2d — 7)(3d — 11)(3d — 10)

_9)3 1
16(d(ii4)(2¢; —3)2 < Q) (6.65)

d
3(d
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A5 = — ;iif?id4§<§?53§{ . (- 4(d (dzgéz; 9) @ -
- “?Zd‘ 5 (8D + - j?éﬁf‘i‘ 33”? =20+
16d Z?Z;ld Sf)a @Q 64d 4)( 3d(2d7) 9) <Q)4 (6.66)
Y5 = (122€éd—53))<(32€i1—$)) * ((iid—f)g))(éizj)) (0) (2d 7) 3d2 10) A *
i D) - e aa—arean (O) -
MRS
-4 32 d3d4 i 3d . @ Q 128d 43d2 51)2?;;893)) (Q>4
- Db ain iy e anton gy
(d23d 120d3d78‘ Q+
N (d_?z((zd 5&)3) 11d2 - 77d+ 134) @ Q N

(d —2)3(18d° — 129d2+245d 58
T 8(d—5)(d —4)°(d —3)? <Q) (6.68)

There are five QED-type colorings of W. Four of them reduce. There is one master
integral, whose leading term in 4d can be read from ref. [B{] due to the fact that it does

not contain any infrared divergences.

B (2d — 5)(3d — 8)(27d® — 283d% + 990d — 1156)
*CD - 12(d — 4)3(2d — 7)(3d — 11) -
(d—3)(3d —10) 2(d — 3)*(5d — 18)
S 2(d—4)(2d—7) @ ~ 3(d—4)2(2d — 7)(3d — 11)(3d — 10) A B
)

(2d — 5)(3d — 8) (d—2)(3d — 8)(5d — 18
T 6ad—4)(2d—7) (D) + 16(d — 4)(3d — 11)(3d — 10) ' Q
7(d —2)3 4
~128(d — 4)(d — 3)(2d — 7) <Q) (6.69)
E'::D _ 2(2d — 7)(2d — 5)(3d — 10)(3d — 8) . n

d—4)3(3d — 11)

9(

8(d —3)3(2d — 7) 7\ ,
9(d — 4)2(3d — 11)(3d — 10) A * (d 4)2(3d — 11) =&
(

)
_ (d—=2)(3d = 8)(7d* — 48d +82) ’ Q (6.70)
24(d — 4)(2d — 7)(3d — 11)(3d — 10) '

67 - gjii;gg_i; 32262 53 3262 87 .+ Q

—3)°Q2d—T7) 7

_l’_

,23,



T 3(d- 4)?(d - 3;z3d - 10) A * ((dd_ 32)((326;_ 170)) @ -
3d_ 10 . 2d 7) 3362 —810 ‘ Q * (6.71)
+ 5=y (D O+ o 9d‘éi? 7><Q)4
D - we 5i§?d 83 (D +5i=w 55_ ﬂ Hi- D *
B GYRE T o S C@ Q +
+ Szt (O)’ 7

d“55g +O () (6.73)

J4

4-loop QED-type cases, 9 lines: there are two topologies, H and X.
There are five QED-type colorings of H. All of them reduce.

3(2d — 5)(3d — 11)(3d — 8)(54 — 29d + 4d?)
G D 256(d — 5)(d 4)2(d — 3)(2d — 9) (0) B
( 2(2d —7)
- 3(d— (3d—13 )(3d — 11) @+
( —3)(d?® — 11d + 27) 9(d — 4)(3d — 10) /75
8(d —5)(d — 4)(2d — 9) @ ~ 8(d—5)(2d—9) a
(d —2)(3d — 8)(13d3 — 77d? 4 9d + 351)
~ 32(d —5)(d — 3)(2d — 9)(3d — 13)(3d — 11) @ Q
3(d —2)(3d — 8) (13d? — 92d + 162)
©64(d—5)(d—4)(2d — 9)(2d — 7) ’ Q
(d—2)3 (2452d5 43031d4+ 329345d3 — 1198763d? + 2170827d — 1564110)
512(d — 5)(d — 4)2(d — 3)2(2d — 9)(3d — 13)(3d — 11)

Q) @
"1 3(2d — 7)(2d — 5)(3d — 10)(3d — 8)
G T 2(d—4)(3d — 14)(3d — 13)(3d — 11) a
6(d — 3)%(2d — 7) P
T (Bd—14)(3d —13)(3d — 11) &

32(d — 3)3(2d — 7)
"~ 9(3d — 14)(3d — 13)(3d — 11)(3d — 10) A *

N (d —2)(3d — 8)(139d> — 1495012 + 5344d — 6348) ’ Q (6.75)
96(2d — 7)(3d — 14)(3d — 13)(3d — 11)(3d — 10) '

~7(2d —7)(2d — 5)(3d — 10)(3d — 8) 22d-T7)
9(d—4)2(3d — 13)(3d — 11) * (d 4)(3d 13)(3d 11) <& *
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32(d — 3)3(2d — 7) d—4
* 9(d — 4)(3d — 13)(3d — 11)(3d — 10) A ~2(3d —13) B
(d —2)(3d — 8)(409d® — 4285d? + 14944d — 17348)
~96(d — 4)(2d — 7)(3d — 13)(3d — 11)(3d — 10) . Q

(d—2)3 4
 16(d — 4)(d — 3)(3d — 13) <Q) (6.76)
~ (2d—5)(3d — 8)(3d* — 19d* + 19d + 38)
@ T 12(d—5)(d —4)%(2d — 7)(3d — 11) *
(2d — 5)(3d — 11)(3d — 8)(2d> — 14d? + 23d + 6)
* 128(d — 5)(d — 4)3(d — 3)(2d — 7) (0) B

2(d —3)%(2d — 7)
~3(d—5)(d—4)(3d — 11) @ B

)(d
2(d — 3)3(17d? — 125d + 230)
T 3(d—5)(d—4)(2d —7)(3d — 11)(3d — 10) ZZES *
(d — 3)(5d% — 37d + 69) 3(d — 3)(3d — 10)
T Tl d—syd—ap @ T Rd—5)d-T) @ - (6.77)

_ 3(3d—10) _ (d—2)(3d—8)(10d° — 87d2+235d 186) @ Q
4(d—5) 32(d — 5)(d — 4)2(d — 3)(3d — 11)
(d —2)(3d — 8)(38d* — 568d> + 3174d* — 7863d + 7290)
16(d — 5)(d — 4)2(2d — 7)(3d — 11)(3d — 10) @ Q
~ (d—2)?(418d° — 7346d" 4 51389d° — 178846d2+ 309603d —213234) (Q )4
256(d — 5)(d — 4)3(d — 3)2(2d — 7)(3d — 11)

~ (2d—5)(3d — 8)(69d> — 725d* — 2543d — 2978)
ED T 12(d — 4)2(2d — 9)(2d — 7)(3d — 11) -
3(2d — 5)(3d — 8)
128(d — 3)(2d — 9)(2d — 7) (0) -

2(d — 3)3(d — 2)(13d — 47)
©9(d—4)(2d — 9)(2d — 7)(3d — 11)(3d —10) A B

_ (d=3)(d* = 11d +27) ;7 )(3d — 10) @ N
8(d — 4)2(2d — 9) @ 2d 9 (2d —7)

+3(3d—10) N (d—2) 3d 8) 5d—18 @Q N
8(2d — 9) 64(d — 4)2 )(2d — 9)
(d—2)(3d—8)(1139d* — 16453d3+89068d2 214178+193044) ’ Q N
192(d — 4)2(2d — 9)(2d — 7)(3d — 11)(3d — 10)
(d —2)3(48d® — 445d? + 1352d — 1344) 4
256(d — 4)2(d — 3)2(2d — 9)(2d — 7) <Q)

There are two QED-type colorings of X. One reduces. The other one is a master

(6.78)

integral. Its leading coefficient (denoted by X below) is not yet known analytically.
ST (2d=5)(3d— 8)(2109d* —31288d3+173302d? —425005d-+389562) . N
i 36(d — 4)(2d — 9)2(2d — 7)(3d — 13)(3d — 11)

N (2d — 5)(3d — 8)(24d> — 268d* + 1003d — 1258) N
256(d — 4)2(2d — 9)2(2d — 7)
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14(d — 3)%(2d — 7)

32— 9)(3d — 13)(3d — 11) = ©

2(d — 3)3(295d> — 3332d% + 12431d — 15334) A
9)2

9(2d — 9)2(2d — 7)(3d — 13)(3d — 11)(3d — 10) =

3(d —4)(d —3)(3d — 10) (d — 4)2"
2(2d — 9)2(2d — 7) @ T oRd—9)Bd—13) a
(d—2)(3d—8)(599d* —9067d>+51340d> — 12886d+121044
C O 48(2d — 9)2(2d — 7)(3d — 13)(3d — 11)(3d — 10) ’ Q *
(d —2)3(392d* — 620443 + 36843d* — 97323d + 96502)
512(d — 4)2(d — 3)(2d — 9)2(2d — 7)(3d — 13) <Q) (6.79)

@ L2 Xoe + 0 () (6.80)

J4

All the above formulas agree with our numerical results of section fl.

7. Conclusions

We have employed the general method of numerically solving single-scale integrals in terms
of their e-expansion around d = 4 — 2¢ via difference equations, to high precision and to
high e-orders. We have covered the set of all vacuum master integrals up to three loops,
as well as ‘QED-type’ vacuum master integrals at 4-loop order. These integrals play a role
in state-of-the-art perturbative calculations for precision tests of the standard model.

The main vehicle of solving the difference equations treated in this work was a formal
representation in terms of factorial series, which could then be evaluated numerically in a
truncated form.

In cases where the factorial series representation does not converge, a more general
(and hence more complicated) method can be used, which transforms the problem into
differential equations. We have encountered only one such case, and have shown in detail
how it can be represented in terms of multiple integrals, which we then solved numerically.

Furthermore, we have made an attempt to collect all presently known analytic results
for the class of vacuum master integrals that we have treated here, up to the 4-loop level.
This is meant as a concise reference for practitioners in the field.
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A. Numerical results for analytically known master integrals

As a complement to section f], we here list the first few terms of the Laurent expansions in
e = (4 — d)/2 of those single-mass-scale vacuum master integrals up to four loops that are
known analytically (see the explicit d-dimensional expressions of section ).

Notation and integral measure are as in section fl, which in particular determines the

1 d=%p 1 _ 1 = -3 2l
24+€) J m2—c p241 e(1—€?) n=0 :

1-loop tadpole to be J = T

Q = — 1.0000000000000000000000000000000000000000000000000 ¢ ~* —
— 1.0000000000000000000000000000000000000000000000000 € —

— 1.0000000000000000000000000000000000000000000000000 €3 +
+0 (65) (A1)
'—' = — 0.5000000000000000000000000000000000000000000000000 € ~2 —
— 0.5000000000000000000000000000000000000000000000000 €+ —
— 3.6449340668482264364724151666460251892189499012068 —
— 3.4428771636886321510726770051345751984539636088663 € —
— 17.748133915933433322311939139507906328597192596121 €2 —
— 16.366439374126401323669287645924253086404587829687 €3 +
o) (64) (A.2)
C = —0.083333333333333333333333333333333333333333333333333 ¢ % —
— 0.37500000000000000000000000000000000000000000000000 ¢ ~* —
— 2.4683003667574465515695409166563459279428082839367 —
— 8.5848042311088475775631523236940150167718153674315 € —
— 38.120827450450135424466436253406610052456582985006 €2 +
+0 (63) (A.3)
= +0.33333333333333333333333333333333333333333333333333 € 3 +
+ 0.16666666666666666666666666666666666666666666666667 €2 +
+ 0.58333333333333333333333333333333333333333333333333 ¢ ! +
+ 0.41381840842558476106596843069719997537329677957466 —
— 24.905969600320865917659060143145414845610363033237 € —
— 12.059724940640299353325034075589267393005352211165 €2 +
! (63) (A.4)
'_' = —0.33333333333333333333333333333333333333333333333333 ¢ 5 —
o — 0.66666666666666666666666666666666666666666666666667 € 2 —
— 5.9565348003631195396114969999587170451045664690803 €+ —
— 10.976993729846780032023343117902167435855817881707 —
— 67.587197404302297868575437012376235190940093056288 € —
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— 120.04368176952781664333978568556636327245719008030 €2 +

+ 0 (%) (A.5)
= + 0.08333333333333333333333333333333333333333 ¢ > +

+0.2361111111111111111111111111111111111111 e 2 +

+0.4189814814814814814814814814814814814815 ¢~ +

+ 0.5870437170675600697079437393391752840153 —

— 38.15649063807203021274518890590965524153 € + O (¢?) (A.6)

= +0.1666666666666666666666666666666666666667 €+ +
+ 0.1666666666666666666666666666666666666667 € > —
— 0.1666666666666666666666666666666666666667 €= +
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— 78.06045784302350379977045250776444270422 —
— 77.68037792722049725359022296531379645497 € + O (62) (A.7)

In fact, the results shown here have been obtained via numerically evaluating truncated
factorial series along the lines of sections f| and B but they of course coincide perfectly
with the analytical results of section f| (note the different normalization there).
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Abstract

We compute the four-loop QCD contribution to the electroweglarameter induced by the singlet diagrams ofZheoson
self-energy. The numerical impact on the weak mixing angle aniVmson mass is small.
0 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The electrowealp parameter as introduced by VeltmH measures the relative strength of the charged and
neutral current. Considering QCD corrections it can be written as

p=1438p, 1)
with

5 IIzz(0) Mww(0)
P = 2 2 -
My My,

)

Iz 7(0) andITyw (0) are the transverse parts of the andZ-boson self-energies evaluated for vanishing external
momentum. The paramet&s enters a variety of quantities which are determined from experiment with an enor-
mous precision. In particular, it enters the relation betweeithegoson massMy , the fine structure constart,
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Fig. 1. Sample three- and four-loop singlet diagrams contributing tgtharameter. In the fermion loops either top- or bottom-quarks are
present.

the Fermi constant; r, and theZ-boson mass\z, which is given by[2]

M2 dra
M2 =—2|1+ [1— ) 3
=2 ( +\/ ﬁM%GF(l—Ar)) 3

The quantityAr is conveniently parameterized in the form

2
C
Ar = Ao — TW(S,O + Ar'em, 4)
Sw
with cy = My /M7 ands2, = 1 — ¢2,. Aa contains contributions from light fermions giving rise to a correction
of about 6%. The leading corrections proportionaGtpM? are incorporated idp and amount at one-loop order
to roughly—3% whereas the remaining part is small.
Egs.(3) and (4)can be used to predidty,, where the formula
M c?
SMw = TW 27“/25;0 (5)
‘w—Sw
immediately accounts for the dominant shiftiy due to the corrections to theparameter. We can also look at
the change of the effective leptonic weak mixing angle? Bﬁft, defined through the coupling of ti&boson to
leptons. The leading universal corrections originating fé@antan in analogy to E(5) be written as

. 2 lept C%vsgv
Cw —Sw

Currently the uncertainties fa¥y and sirf Q‘L‘ifpt are given bys My = 34 MeV ands sir? eé‘ifpt =17x10*
[3], respectively. However, a future linear collider running at #iboson pole, the so-called Giga-option, and
around theW-pair threshold might reduce the uncertaintieg iy = 6 MeV ands sin? 6.7 = 1.3 x 1075 [4].

The one-loop corrections whave been computed in 19[4 and also the two-loop QCD corrections are known
since almost 20 yeaf$—7]. Roughly 10 years ago the ordGrFM,Zozs2 QCD correctiong8,9] constituted one of
the first applications of the three-loop massive vacuum integrals. At three-loop order for the first time a new kind
of Feynman graphs has to be considered, the so-called singlet diagrams as skayvrl imhich only contribute
to the Z-boson self-energy. They are characterized by the fact that in contrast to the non-singlet contribution the
externalZ-bosons couple to different fermion lines. We want to note that the singlet contribution forms a finite
and gauge-independent subset. At three-loop order it completely dominates the numerical correctiolSif the
definition is adopted for the top-quark mass. In the case of the pole mass definition the singlet part still amounts
to about 30% of the total three-loop contribution. We want to mention that also twd-ldopl] and three-loop
mixed electroweak/QCIL2] and even three-loop pure electroweak correctj@@shave been evaluated. Recently
also corrections in the large Higgs boson mass limit have been cons{d&&d] For non-universal corrections
to My and sif 0" we refer to[15,16}

In this Letter we consider the four-loop contribution to th@arameter originating from the singlet diagrams.
In Fig. 1some sample diagrams are shown. This constitutes one of the first applications of the four-loop vacuum
master integrals evaluated recently in H&%].
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2. Technicalities

Since the boson self-energies have to be evaluated for zero external momentum and only QCD corrections are
considered, only the axial-vector part of tdeboson correlator gives a non-zero contribution. Whereas for the
non-singlet contribution the naive anti-commuting definitionyettan be adopted, special care has to be taken in
the singlet case. Actually, the definition of 't Hooft and Veltnja8] has to be adopted and additional counterterms
have to be introduced in order to ensure the validity of the Ward identities. In the practical calculation we follow
Ref.[19] and perform the following replacement in the axial-vector current

1
yry® = 35 WYoYe. @)

We pull out thes-tensor from the actual integral and consider instead the completely antisymmetrized product of
the threey-matrices which can be written as

1
Yy =Sy T = vy y). ®)
As a consequence we have to deal with an object with six indices. Thus, for zero external momentum we obtain
_ S guu’awpaaﬂrv/plcl _ 1 el
HZZ - 4 HZZ - 144 H[Vﬂ”’]["/l)/a/] - _znlvpo‘] . (9)

In the practical calculation we consider the objﬂ{lt;’;’] for which we also perform the renormalization as de-
scribed in the following. Thus, in E¢9) the limit D — 4 has been considered whebe= 4 — 2¢ is the space-time
dimension.

The additional finite counterterm is only needed to one-loop order, since the singlet diagrams appear the first
time at three-loop level. For each axial-vector vertex a fed®y20]

Zi=1- Cp% +0(a?), (10)

with Crp = (NC2 —1)/(2N,) has to be considered. Furthermore, we have to consider the one-loop counterterms for
the strong coupling constant and the top-quark mass defined by

a‘? =Zy, o, m? = Z,,m;, (112)

wherem; = m; (1) is renormalized in th&1S scheme. The renormalization constants are given by

de

with C4 = N, andT = 1/2.ny = 6 is the number of active flavours. The transition to the pole mass is achieved
via

1/ 11 1 3
Zoy =1+ g(——cA + —Tnf)% +0(d),  Zy=1- —Cp% +0(e?), (12)

1 1= 32\ % 4 o2 13
mt(/'L)—|: +CF<— _Znﬁtz);—i_ (O(S)j|Mt- (13)
We generate the Feynman diagrams ViXBRAF [21] and adopt with the help of the packaggZe andexp
[22,23] the topologies and notation to the program performing the reduction of the four-loop vacuum diagrams
[24]. As an output we obtain the corrections to ghparameter as a linear combination of several master integrals.
All of them have been computed in R¢E7].
It is interesting to note that some of the master integrals are multiplied by spurious poles of trtiehd a
consequence, for these tl¥e) and even th&(¢2) contribution is needed. In the case of the master intdzfal
(which is the four-loop sunset vacuum bubble with one massless and four massive lines, see Egs. (4.8) and (6.36) of
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Ref.[17]) it happens that the coefficient of ordemvhich originally has only been evaluated in numerical f¢1i,

enters the pole part dfp. Thus an analytical expression can be deduced (in(E4).below denoted bpB4 (1)

which perfectly agrees with the known numerical result. Furthermore, we have obtained an analytical expression
for the coefficient of orde¢2, by combining the numerically known value with the basis of transcendentals known
from an independent investigatifieb]. These two coefficients read

BB4 = J4 Z "BB4"—Y

n>0

1976975 1792
BB4D = — W ——(3) =—-14.897726533029588869214274870082319534267

72443143 47488 8704 1024 2048 8192
BB4®? = — 3 c(4 In*2 — 2)In?2

26656 T 27 ‘@ g t@r g 3 c@nzt ==
= —-1678886929107772963403030310267917509151 (14)
whereJ is the one-loop tadpole,(n) is Riemann’s zeta function and

ag=Lis(1/2) ~0.51747906167389938633 (15)

Let us mention that we performed the calculation using an arbitrary gauge parameter of the QCD gluon propa-
gator,£. As expected the final result is independeng aven before inserting the values for the master integrals.
This constitutes a nice check of our result.

3. Resultsand discussion

Let us in the following present our analytical result and discuss its numerical implications. For completeness we
also repeat the QCD corrections up to three-loop order. FavitBelefinition of the top-quark mass we obtain

__ 16 2
8pM3=3xt{1+ ﬁ[e- —;(2)+8|n“—2]

my
<47,> [224159— 258—0164;(2) 3560;(3) £44,;<4) 1634_ g D 4 8825,
I (‘530 + 1—124(2) - —¢<3>> —~56£(3)
* (6—28— @ +”f<‘8§8+ 3—4@)) “; + (76— gn )mz Z?]
+ (E) [?_452&(3)+ 20;3164_(4) 2624I iy, %g(Z)In ,
- - 1232@)n _2] +. } )
m

where the “-56¢(3)” in the third line stems from the three-loop singlet diagram. In om&lonly the singlet
contribution is presented. Furthermore, we have

GFmt2
Xt = s
87242
4 ,
Sp = —— Im(Li2(¢'™/3)) ~ 0.26043413763216209896
2= 55 Imi(Liz(e™")
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2 1
Bs = 16aa4 + 3 In*2 — 4¢(2)In2 — ; £(4) ~ —1.7628000870737708641

D3 =6¢(3) - 1745 £ (4) — 6[Im(Liz(¢/3))]* ~ —3.0270094939876520198

In Appendix A we present the three- and four-loop result for the singlet contribution corresponding (b6iq.
retaining, however, the colour factofs-, C4 andT. With the help of Eq(13) one obtains the singlet result in the
on-shell scheme. Together with the non-singlet terms one gets

5p05=3x,{1+ &[_9 - E3;“(2)}

ar| 3
(4,,) [?;3114 2(;5104 - 3416“3) _ _;(2)|n2+ £;(4) _ 1_634_ gD3+88252
oy (‘S - @5(2) - —4(3)> —560(3) + (—%8 - %54(2) +nf<196 3—2¢(2))) AP/LI;}

(471) [236 11;92“3”20316 (4)—%” ‘24 52348§(2)In22
20392a4—784§(3)ln Mj ] +} -

with X, = GpM?/(81°\/2).
Inserting the numerical values for the constants in Et) and (17)and adoptinge = m, andu = M,, respec-
tively, the numerical corrections read

_ 2 3
5pMS = 3y, [1 —0.19325% 4 (—4.2072+ 0.23764 (“—) _3 2866(“‘) ]
T T

b
O Oy 2 o) 3
8p°S=3x, [1 —2.8599-" + (—4.2072— 10.387) (—) + 7.9326(—) } (18)
T T T

where the three-loop contribution is split into the singlet (first number in round brackets) and the non-singlet piece.
If we furthermore adopd; (m,) = 0.108 andw,(M;) = 0.107, the expression fép looks like

8oMS = 3x,(1 — 0.00664— 0.00469— 0.00013,
8p°S = 3X,(1 — 0.09741— 0.01693+ 0.00031), (19)

where thexth term inside the round brackets corresponds to the contribution of GrﬁiM,za‘S”_l). One observes
that the new four-loop singlet contribution is numerically small and amounts to about 3% of the three-loop result
in the MS scheme and to less than 2% for on-shell top-quark masses. Note that the correction is positive in the
on-shell and negative in tidS scheme. In the on-shell scheme the shifi4y and su?e em according to Eq¥5)
and (6)amounts to 0.175 MeV and 16, respectively, which is significantly below the recent estimates of higher
order contributions and variations of input paramefs16]

It is interesting to mention that at three-loop order the singlet contribution completely dominatés fiop-
quark masses and amounts to about 30% in the on-shell scheme. Thus, in case the same pattern also holds :
four-loop order, the complete QCD corrections would be well under control. However, the numerical values in
Eq. (18) suggest that for some reason the four-loop singlet contribution seems to be accidentally small.

Let us also comment on the dependence of the singlet contribution on the renormalizatiop schaieh
can be done separately from the non-singlet part. The latter is discussed ifoRéf. Fig. 1 of Ref.[9]).
As far as the singlet contribution is concerned one obtains for the quasti?/(3X,) — Dsinglet the values
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{—0.00457 —0.00437 —0.00453 corresponding ta = {M;, M, /2, 2M,}. The u-dependence, being formally of
higher order, is less then 5% of the sum of the three- and four-loop singlet part which can be used as an estimate of
the O(a?) term.

In the remaining part of this section we briefly compare the numerical effect of the new terms with known
corrections tdSp. In the on-shell scheme the three-loop QCD corrections of ar@ﬁ’rt lead to a shift of about
—10 MeV in theW-boson mass and t¢5 x 10° in the effective weak mixing angle. For Higgs-boson masses
between 200 GeV and 300 GeV the three-loop corrections of mjféf [12] have the opposite sign and with
roughly half the magnitude they are still relevant for the precision to be reached at th& Gigigon of a future
e*e™ linear collider. However, the pure electroweak corrections of oifeare very small and give rise to cor-
rections well below 1 MeV for the shift in th&-boson mass. The same is true for the four-loop QCD singlet
contributions considered in this Letter.

In conclusion, we computed the four-loop singlet contribution to ghparameter which constitutes one of
the first applications of the four-loop massive vacuum integrals to a physical quantity. The numerical size of the
corrections turn out to be surprisingly small and lead to a shift inWheoson mass below 1 MeV and to the
effective weak mixing angle below 18—beyond the accuracy foreseen in a future linear collider. This illustrates
the good convergence properties of the perturbation theory and confirms the stable predictions based on the three
loop corrections. However, for a definite conclusion also the non-singlet contribution has to be evaluated.
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Appendix A. Singlet contribution to the p parameter
In this appendix we present the three- and four-loop singlet result expressed in tefms=a¥,, Cr = (N? —

1)/(2N.) and T = 1/2. Furthermore, we keep the label which counts the number of massless quarks. The
three-loop term can also be found in R6].

2
P = 3x,< )CFT{ 84¢(3)

[ ( 3360(3) + 2400 (4) — 1281 2+ 76& (2) In® 2 — 307214 — 504 (3) I ”—Z)

m;
+CA< —;(3)+3056§(4)—?In 2+ 640 (2)In?2 — 256Q14 — 616;(3) I m—f)
+an(—§(3) 784{(4)~|— o 128 (2) In?2 + 51214 4 224 (3)In m—z)

i
T(?—@g(S)—i—ZM{(S)In—T)]—i—O( )} (A.1)
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1. Introduction

As is well known, finite-temperature QCD seems to show twiedkht phases: it is confining
at low temperatures (the realm of mesons and baryons) whjlmtotic freedom and a quark-
gluon plasma are expected to appear in the high-tempenatgirae. A good observable to witness
the change is the QCD free energy density, given essenlipltiie familiar Stefan-Boltzmann law
of blackbody radiation, multiplied by the number of lighfesftive degrees of freedom.

To study the free energy density requires different metliodsfferent regimes. At low tem-
peratures the problem has to be treated with numericatdasimulations, while at high tempera-
tures perturbation theory should allow at least for somgmass, given that the coupling constant
g is small. Nevertheless, even for smglicertain coefficients in the weak-coupling expansion do
remain non-perturbative [1], and can only be determinet witmerical techniques.

In the high-temperature regime, the theory contains thifereht momentum scales [2],
namely T (hard modes)gT (soft modes) andfT (ultrasoft modes). The contribution of each
of these modes is best isolated in an effective theory sdthjs. is accomplished vidimensional
reduction[2, 3, 4] by integrating out the hard and soft modes to obtd@dd pure Yang-Mills SU(3)
theory (“MQCD”). MQCD can then be analysed on the lattice #reresults can be added to the
various perturbative contributions to obtain the compéatswer.

To add the MQCD lattice results to the perturbative ones, aedrto change regularization
scheme from lattice to dimensional regularization. To #imm, a matching between lattice and
continuum computations is needed and this is achieved bysnefaLattice Perturbation Theory
applied to MQCD. The strategy we adopt for this purpose hethd one oNumerical Stochastic
Perturbation TheorfNSPT) developed in recent years by the Parma group.

2. The NSPT method

NSPT relies orStochastic Quantizatiofb] which is characterized by the introduction of an
extra coordinate, a stochastic timeaogether with an evolution equation called the Langevimeeq

tion,

Jdo(xt)  dS¢)
Fra 20 +n(xt), (2.1)

wheren (x,t) is a Gaussian noise which effectively generates the quafiactnations of the theory.
The average over this noise is such that, together with tpeoppate limit int, the desired
Feynman-Gibbs functional integration is reproduced:

t—oo 17

(Olgn (x.)]), — > [DO[e(x)]e e (2.2)
For SU(3) Yang-Mills theory, the Langevin equation becomes
34Uy =i (0SUg)+ 1)Uy, 2.3)

guaranteeing the proper evolution of variables within traug.
In this framework, perturbation theory comes into play byameof the expansion [6]

Up (x,t) — ZQ('SUSK) (xt), (2.4)
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whereqp is the bare gauge coupling. This results in a system of cdupdgiations that can be
numerically solved via a discretization of the stochastitett = n7, wherer is a time step. In
practice, we let the system evolve according to the Langegimtion for different values af,
average over each thermalized signal (this is the meanitigeabove-mentioned limit— o), and
then extrapolate in order to get tle= 0 value of the desired observable. This procedure is then
repeated for different values of the various parametersamy in the action.

3. Massasan IR regulator

As stated above, the quantity we are interested in is theaibatibn to the QCD free energy
density f coming from the 3d pure SU(3) theory. On the lattice, thiseotable is related to the
trace of the plaquettél — Mp), wherelp = Ny Re TrP andP is the elementary plaquette, via

228 9 [ f
1-Mp) = | = 1
with bare lattice coupling = 2N./ (a“—dg%). The outcome can be expanded in powerSgds
C1 Co C3 64 _5
1-Np)=——+—=+—=+—=7+0(5,>) . (3.2)
"B BB B

The determinations of the first three coefficients in the gmesetting have been discussed in
Ref. [7]. The non-perturbative value of the whole quantis lbeen determined with lattice si-
mulations in Ref. [8]. Terms oO(BO‘E’) disappear in the continuum limit, thanks to the super-
renormalizability of the theory. Thus only the fourth ordeefficient is missing at the moment.

As shown parametrically in Ref. [1] and explicitly in Ref8][the coefficient, is actually IR
divergent, and consequently an appropriate regulator brusitroduced for its determination. In
a non-perturbative setting this is provided by confinemeile in fixed-order computations one
could employ a finite volume (as in Ref. [7]) or a mass. Sineeube of a mass is more convenient
in continuum computations involving dimensional reguation, we need to implement it in lattice
perturbation theory as well.

Apart from introducing a mass, we also fix the gauge in ordem&tch the setting of the
continuum computations. Consequently, the function&grsl is given by

z= / [Dy) Det(—%f?,bf)u[rp] +mz) exp(— Sy —Se) = / [Dg] exp(—Sy— Ser — Se) , (3.3)

where we assume the use of lattice units @e: 1), and

Su=Fo3 (1-Te) + i"f WZﬁ(x)wﬁ(x) : (3.4)

S = anea 32 000] 35)

Se = —Tr[in(= 3 0Byle) +m?)] (3.6)
7]
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where we have followed the conventions of Ref. [10], writingparticularU, = exp(iq), @, =

@, TA, with the normalization TTAT®] = 5*8/2. Moreoverm is the common gluon and ghost

massa is the gauge parameter, abg is the discrete Faddeev-Popov operator, given by [10]

Bl = 1410, - Loz - Lot L 48 0@8)|or1in 3.7)
H 2 M 127H 720H 30240 H L R

with @, = ¢F#, where[FA|gc = —ifAEC are the generators of the adjoint representation,

To treat the Faddeev-Popov determinant as a part of thenaateans that, because of the
Langevin equation, one has to face the quanfitg, = —OTr[InB] = — Tr[OBB~1] with B[g] =
—Su éblﬁu[q)] +m?. We perform the inversion as in Ref. [11], while the trace égsnputed by
means of sources in the usual way.

The global strategy is then to perform simulations withidat of different sizes at fixed mass
in order to extrapolate to infinite volume and, afterwardsgpeat this procedure for other values
of the mass. At this point, after subtracting the expectgardithmic divergence, one extrapolates
to zero mass, obtaining the needed fourth order coefficieist.crucial to take the infinite-volume
limit before the zero-mass one because, by performing thi¢slin the opposite order, the final IR
regulator would be the volume and not the mass as we want.

4. First (benchmark) results

So far, the statistics we took are not sufficient to carry batibfinite-volume and zero-mass
limits for the fourth order coefficients; but it is already possible to crosscheck the reliability of
the general method. As a first test, we compare the 1-loop ncaheesults for the trace of the
plaquette for the various masses with the known analytigesl As shown in Fig. 1 for a lattice
extentL = 5, the agreement between the numerical values and the iamalyte is very good.

A second check could consist of extrapolating at fixed latéigtent to zero mass, to see if one
recovers the already known coefficients [7]. Figs. 2 — 5 slimse extrapolations for a lattice extent
L = 7: the fitting curve is a polynomial in? (the most naive choice) and it seems to approach the
expected result (the point at = 0) very well for all the loop orders. The numerical values are
given in Table 1. Both of the mentioned checks are well satisfilso for the other lattice extents
that we have employed so far.

Loop | Result from a fit tan= 0 | Direct measurement at=0
1 -2.6594(17) -2.6580(8)
2 -1.9166(63) -1.9095(30)
3 -6.304(37) -6.307(21)
4 -28.43(27) -28.68(15)

Table 1: Comparison of the zero-mass extrapolations with the kn@sults [7] (lattice extent 7).

As for the 4-loop order, Fig. 6 shows the behavior with respethe lattice size at fixed mass:
the result seems to stabilise towards the infinite-volumeevin the way one would expect. Once
a few more lattice sizes are available and similar extrdjpoia can be carried out for all masses,
we will finally be in a position to carry out the mass extragiola that is our ultimate goal.
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Figure 4: The 3-loop trace of the plaquette (for
L = 7), together with a polynomial it in?.

5. Conclusions and prospects

It is worth stressing once again that our approach has ssfodlggpassed the reliability checks
we adopted: known zero-mass limits are reproduced thromgbxrapolation, and the volume
dependence at a fixed mass appears to disappear once theidimess combinatiomL, wherem
is the mass ant the lattice extent, is large enough.

In order to obtain the asymptotic large-volume value at affiness, it is still necessary to
collect more statistics on bigger lattices (for examples 12 and 14) at least for the two or three
smallest masses. Then, the fitting function should be a auatibn of a negative exponential and
polynomials inmL, as explained for instance in Ref. [12].

After subtracting the logarithmic divergence from the ftiafinite-volume values, the sub-
sequent extrapolation to zero mass does not appear to d@etsome, given that tests with lower
loop orders have produced good results so far.
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1. Introduction

The strong coupling constant, «g, constitutes a fundamental parameter in the Standard
Model and thus its precise numerical value is very important for many physical predictions.
An interesting property of «; is its scale dependence, in particular its strong rise for low and
its small value for high energies which make perturbative calculations within the framework
of QCD possible. The scale dependence is governed by the 8 function. However, in order to
relate s at two different scales it is also necessary to incorporate threshold effects of heavy
quarks which is achieved with the help of the so-called matching or decoupling relations.
Thus, when specifying «; it is necessary to indicate next to the scale also the number of
active flavours. In this paper we evaluate the decoupling relations to four-loop accuracy.
This makes it possible to perform a consistent running of the strong coupling evaluated at
a low scale, like, e.g., the mass of the 7 lepton, to a high scale like the Z boson mass —
once the five-loop 3 function is available.

Many different techniques have been developed and applied to various classes of Feyn-
man diagrams. The complexity increases both with the number of legs and the number of
loops. As far as the application of multi-loop diagrams to physical processes is concerned
the current limit are four-loop single-scale Feynman diagrams, where either all internal
particles are massless and one external momentum flows through the diagram (see, e.g.,
ref. [[l] for a recent publication), or all external momenta are zero and besides massless lines
there are also particles with a common mass M. The latter case has been developed in
refs. [B], fl] and first applications can be found in refs. [, ff]. In this paper we consider a fur-
ther very important application: the four-loop contribution to the matching or decoupling
relation for the strong coupling.

The paper is organized as follows: In the next section we define the decoupling con-
stants and the theoretical framework of our calculation. In section ] we present analytical



results and discuss the numerical consequences. In section [] the connection of the de-
coupling constant to the coupling of a Higgs boson to two gluons is explained and the
corresponding coupling strength is evaluated to five-loop order. Finally, we conclude in
section [j In the appendix we present the result for the decoupling constant parameterized
in terms of the on-shell heavy quark mass.

2. Theoretical framework

We consider QCD with ny active quark flavours. Furthermore it is assumed that n; quarks
are massless and nj, quarks are massive, i.e. we have ny = n; + nj. In practice one often
has ny = 1, however, it is convenient to keep a generic label for the massive quarks.

The decoupling relations relate quantities in the full and effective theory where the
latter is defined through the lagrangian £’ given by

D
E/ (g(s), mg, 50; ¢((1), Gg,a, CO,a; CZO) _ EQC (gg/, mgl’ 50/; 2/’ G?L/,a’ CO/,a) ) (2.1)

Vg, Gﬁ and c¢* are the fermion, gluon and ghost fields, respectively, m, are the quark
masses, ¢ is the gauge parameter, and o, = g2/(47) is the strong coupling constant. L¢P
is the usual QCD Lagrange density and the effective n;-flavour quantities are marked by
a prime. Eq. (2.])) states that the lagrangian in the effective theory has the same form as
the original one with rescaled fields, masses and coupling. It is convenient to define the
decoupling constants (; in the bare theory through

g(s)l = gg(s)’ m(O]l = Cpnm?]’ 50/ -1= C??(go -1),
07, 0, a — /700,
g =@, Gt =GN, = (22)

In a next step the renormalized quantities are obtained by the usual renormalization
procedure introduced by the multiplicative renormalization constants through [ﬂ]

gg:ﬂa 9987 mgzzmmq7 50_1:23(5_1)7
VY =\ Zobg, Gy = Z3Ge., O =\ Zyc . (2.3)
Combining eqgs. (R.2) and (R.3) leads to renormalized decoupling constants, e.g.
Zg 10 Zs .o s _ I3
— 290 230 = 2350, 2.4

Note that since we are interested in the four-loop results for (; the corresponding renor-
malization constants have to be known with the same accuracy. In ref. [fi] the results up
to four-loop order have nicely been summarized (see also refs. [§, H]).

Due to the well-known Ward identities [f]] there are several ways to compute the
renormalization constant for the strong coupling, Z,. A convenient relation, which has the
advantage that due to the appearance of renormalization constants involving ghosts less
diagrams contribute, is given by

Zy = = 2
Z3\Z3

(2.5)



where Z; is the renormalization constant of the ghost-gluon vertex g;Géc. The same is
true for the corresponding equation for the decoupling constant, such that one can use the
relation

) = @ (2.6)

= —1=.
(Vs

where 5? denotes the decoupling constant for the ghost-gluon vertex. Alternatively, one

can use the renormalized objects (3, (3 from eq. (R.4) as well as ¢; = %C? and then obtain

¢, from the renormalized version of eq. (2.6).
In refs. [I{, 1] formulae for the bare decoupling constants CZO are derived which relate
the n-loop decoupling constants to n-loop vacuum integrals. In particular, one has

(3 = 1+11g'(0),
¢ = 1+112"(0),
() =1+ T¢(0,0), (2.7)

where I1g(p?) and II.(p?) are the gluon and ghost vacuum polarizations, respectively, and
the superscript h denotes the so-called hard part which survives after setting the external
momentum to zero. Specifically, Ilg(p?) and II.(p?) are related to the gluon and ghost
propagators through

v

. ip-T 0,q, T 0,bv __sab gﬂ
l/dxe (TG @)™ (0))=3 {p2 [1+ 119, (p?)]

+ terms proportional to p“p”} ,

. ip-x ,a , _ 5ab
z/dxe <Tc0 (m)é)b(0)>——m, (2.8)

respectively, while I'%_ (p, k) is defined through the one-particle-irreducible (1PI) part of
the amputated Géc Green function as

. 1PI
i2 / dzdy ' P tky) <Tc°’“(x)c4)vb(0)G°‘“(y)>
= p'g? {—if“bc [1 4+ Tz (p, k)] + other colour structures} , (2.9

where p and k are the outgoing four-momenta of ¢ and G, respectively, and f®¢ are the
structure constants of the QCD gauge group. Sample four-loop diagrams for each line of
eq. (B7) are shown in figure fl(a)—(c).

From eqgs. (2.6), (B.4) and (R.7) it becomes clear that for the calculation of ¢, four-
loop vacuum diagrams are needed. Currently the only practical method to express an
arbitrary four-loop vacuum integral in terms of a small set of master integrals is based
on the algorithm developed in ref. [1J]. The application to four-loop bubbles has been
discussed in ref. [}]. First physical results deal with moments of the photon polarization
function [{] and the singlet contribution to the electroweak p parameter [[f]. The essence
of the Laporta algorithm [[[J] is the generation of large tables containing relations between



Figure 1: Sample diagrams for the gluon (a) and ghost (b) propagator and the ghost-gluon vertex
(¢). In (d) the lowest-order diagram is shown mediating the Higgs-gluon coupling in the Standard
Model and (e) shows an example for a five-loop diagram contributing to the result in eq. ([.4).

arbitrary integrals and the so-called master integrals. For the calculation at hand the tables
have a size of about 8 GB and contain 6 million equations.

The master integrals needed for the evaluation of (; have been computed in ref. [I3,
where, however, some of the higher order coefficients in € could only be determined numer-
ically.

3. Running and decoupling for o

Whereas at three-loop level of the order of 1000 diagrams have to be considered, at four
loops there are almost 20000 diagrams which contribute to the gluon and ghost propagators
and the ghost-gluon vertex. They are generated with the program QGRAF [[4]. With the
help of the packages q2e and exp [[[§, [[f] the topologies and notation are adopted to the
program performing the reduction of the four-loop vacuum diagrams [J]. As an output we
obtain the bare four-loop results as a linear combination of several master integrals. All of
them have been computed in ref. [LJ].

Since at four-loop order the renormalization is quite non-trivial, let us in the following
briefly describe the procedure necessary to arrive at a finite result. It is convenient to
build in a first step the sum of the bare contributions to ¢J, 5?? and CN? and combine them
immediately to Cg according to eq. (R.6). Already at this point the gauge parameter,
&, which for the individual pieces starts to appear at three-loop order, drops out and
hence spares us from renormalizing £. Let us mention that due to the complexity of the
intermediate expressions, the four-loop diagrams have been evaluated for Feynman gauge,
whereas the lower-order diagrams were computed for general £.

In a next step it is convenient to renormalize the parameters oy = g2/(47) and my,
applying the usual multiplicative renormalization (cf. eq. (R.3)). The corresponding coun-
terterms have to be known up to the three-loop order. At this point one has to apply
eq. (4) which requires the ratio Z, /Zy up to four-loop order. In order to evaluate this
ratio one has to remember that Z; is defined in the effective theory and thus depends on
o), and n; whereas Z, depends on o and (n; + np). Thus it is necessary to use (; up to
three-loop level in order to transform o/, to as where due to the presence of the divergences
in Z; also higher-order terms in € of (; have to be taken into account.



Finally one arrives at the following finite result for (Cg)2 which for N, =3 and n, =1
is given by

(ru+1) 2 (ni+1) 2 2 2
PR 0) <_%lnu_> . (w) (E B Elnﬂ_2+ilnzﬂ_2>

T mi s 224 my 36 mi
3
. al" () ) 564731 82043 (- 12 R L 0
_ _ L R Y
T 124416 27648 576 m2 576 m,% 216~ m}
o (263 6T w1, pP\T o )\ 7291716893
_ 2633 67T opm Lok
'\731104 T 576 " m? 36 m2 p 6123600
3031309 121 3031309 121 2362581983
il WD Wil LD W tctmitutill ) B P W Mt ) P B Wittt sanidiad
1306368~ 4320 or772s ¢ 2+ (D) 57091200 °)
76940219 2057 1389 3031309 121 151369
i @) 2 5 S gy — oY
o177280 © M) ¥ g SN2+ 555 C0) + s et 5505~ Srmgg O
7391699 2529743 p? 2177, p? 1883 1 1
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( 716196 165888 )> m? 3456 m}% 10368 2 -+ T 1206 m?
ATT0941 685 "85 3645913
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541549 685 110341 110779 12
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10368 m%l pI8d m§> K ( 178076 5184 T Tsge2a M2
5
T, i p "V ()
2 Ly of[L—*¥ 3.1
20736 mZ 324 " mh>] * T ’ (3:-1)

where the heavy quark mass mj, is renormalized in the MS scheme at the scale p. The
corresponding expression for the on-shell mass is given in appendix [Al In eq. (B.1]), ((n) is
Riemann’s zeta function and a,, = Li,(1/2) = Y32, 1/(2¥k"). The constant X, which is
the leading coefficient of a certain finite four-loop master integral, is only known numerically
with the value [[[3]

Xo = +1.808879546208334741426364595086952090 . (3.2)

Interestingly, in principle the number of numerical coefficients occurring in eq. (B.1) should

be three. One relation among them can be established through the separate renormalization

of the ghost propagator while a further constant has become available recently in analytical

form [[l7). Thus one remains with one coefficient which is only known numerically.
Inserting numerical values into eq. (B.1]) one obtains

(u+1) 2 (u+1) 3
¢2 ~ 140.1528 (w) +(0.9721 — 0.0847 ny) (w)

™ ™

s

a(nH—l)(mh) 4
+ (5.1703 — 1.0099n; — 0.0220n7) [ ———2 ] . (3.3)



It is interesting to note that the n;-independent four-loop coefficient is relatively big as
compared to the corresponding constants at lower loop-order. However, for the interesting
values n; = (3,4,5) one observes a big cancellation leading to a well-defined perturbative
series with coefficients (—0.4288,40.7790, +1.9428) in front of (as/m)*. Note, that the
two-loop result for (;, has been computed in refs. (8, [9) and the three-loop terms have
been evaluated for the first time in ref. ().

We are now in a position to study the numerical impact of our result. As an example
we consider the evaluation of agS)(M z) from agl)(MT), i.e. we apply our formalism to the
crossing of the bottom quark threshold with n; = 4. In general one assumes that the value
of the scale up, where the matching has to be performed, is of order my. However, it is
not determined by theory. Thus this uncertainty contributes significantly to the error of
physical predictions. On general grounds one expects that while including higher order
perturbative corrections the relation between alV (M;) and ag5)(M 7) becomes insensitive
to the choice of the matching scale. This has been demonstrated in refs. [21], [[J] for the
three- and four-loop evolution, respectively. In the following we want to extend the analysis
to five loops.

The procedure is as follows. In a first step we calculate 0424) (1p) by exactly integrating
the equation

i+2
24 off) n ) (a7
Lo ) (o) = - 00 (2 34

du* = = T

with the initial condition a§4)(MT) — 0.36. Afterwards a!” (up) is obtained from the
renormalized version of the first equation in (R.9) where we use (, parameterized in terms
of the on-shell mass (cf. eq. (AJ])) M, = 4.7GeV. Finally, we compute al? (Mz) using
again eq. (B4). For consistency, i-loop evolution must be accompanied by (i — 1)-loop
matching, i.e. if we omit terms of O(ai™2) on the right-hand side of eq. (B.4), we need to
discard those of O(a’*!) in eq. (A.1]) at the same time. Since the five-loop coefficient in
eq. (B4) is not yet known we set ﬂ4nf to zero in our numerical analysis.

In figure [ the result for ozg5)(M 7) as a functions py is displayed for the one- to five-
loop analysis. For illustration, u; is varied rather extremely, by almost two orders of
magnitude. While the leading-order result exhibits a strong logarithmic behaviour, the
analysis is gradually getting more stable as we go to higher orders. The five-loop curve
is almost flat for p, > 1 GeV and demonstrates an even more stable behaviour than the
four-loop analysis of ref. [I{]. It should be noted that around p, ~ 1 GeV both the three-,
four- and five-loop curves show a strong variation which can be interpreted as a sign for the
breakdown of perturbation theory. Besides the u; dependence of ozg5) (My), also its absolute
normalization is significantly affected by the higher orders. At the central matching scale
wy = My, we encounter a rapid convergence behaviour.

4. Effective coupling between a Higgs boson and gluons

In this section we want to discuss the relation between (¢, and the coupling of a scalar
Higgs boson to gluons. Due to the fact that gluons are massless, there is no coupling at
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tree-level. At one-loop order the HGG coupling is mediated via a top-quark loop depicted
in figure [l(d).

For an intermediate-mass Higgs boson which formally obeys the relation My < my it
is possible to construct an effective lagrangian of the form

HO
Leﬂ - _WCIOI, (41)
with the effective operator
2
01 = (Gl)" (4.2)

where GY,,, is the colour field strength. The coefficient function C; incorporates the contri-
bution from the top-quark loops. At one-loop order it is easy to see that the contribution
from the triangle diagrams can be obtained through the derivative of the one-loop diagram
for HOG with respect to the top-quark mass. However, at higher-loop orders this simple pic-
ture does not hold anymore and the relation between the HGG diagrams and derivatives
of the two-point functions containing a top-quark loop gets more involved. In ref. [[(] an
all-order low-energy theorem has been derived which establishes such a relation and which

has a surprisingly simple form (for definiteness we specify to the top-quark in this section):

m?0

1
Ci=—-—-—
! 2 Om?

In¢;. (4.3)



An appealing feature of eq. (f.J) is that at a given order in ay only the logarithmic con-
tributions of ¢, are needed for the calculation of C at the same order. Thus, from our
calculation we can reconstruct the five-loop logarithms of ¢, from lower-order terms and
the 8 and +,, functions governing the running of as and the top-quark mass, respectively.
This leads to the following result, at N, = 3 and nj = 1,
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with m; being the MS top-quark mass renormalized at the scale ;. Note the appearance of
the flavour-dependent part of (4 in the five-loop contribution, whereas the corresponding

coefficient from the anomalous mass dimension does not appear. We want to stress that the

6 (s - i)

term of order a2 covers the contributions from five-loop diagrams like the one in figure l(e).



Evaluating eq. (f.4) numerically leads to

Cl N 1 agnl+1)(mt)

T2 m

(u+1) (ni+1) 2
1427500 ) (9 7051 — 0.6979m,) <O‘7(mt)>

s
3
agnr‘rl) (mt) )

s

+ (49.1827 — 7.7743 0y — 0.2207 1) (

+ (—662.5065 +137.60057; — 2.5367n2 — 0.077513 + 6 ( () _ ﬁi"l“)))

(ni+1) 4
x <@> ] . (4.5)

Again one observes large cancellations between the n? and nll term in the five-loop contri-
bution to Cf.

Note that the result of eq. (£:4) constitutes a building block for the N*LO calculation
to the Higgs boson production and decay in the two-gluon channel, for which the complete
answer currently is certainly out of range. Still, the five-loop result for C constitutes a
high-order result in perturbative QCD which is of theoretical interest by itself.

5. Conclusions

In this paper the decoupling constant of the strong coupling is presented to four-loop order.
This constitutes a fundamental quantity of QCD and is one of the very few known to such a
high order. The decoupling constant is necessary for performing a consistent running of «
with five-loop accuracy including important effects from the crossing of quark thresholds.
The calculation has been performed analytically, and the main result can be found in
eq. (B.1). With the help of a low-energy theorem it is possible to derive the five-loop result
for the effective coupling of the Higgs boson to gluons, which constitutes a building block
in the corresponding production and decay processes.

We want to mention that the result for Cg2 in eq. (B.1) has been obtained independently
in ref. [29]. Except for QGRAF, which is used for the generation of the diagrams, there is
no common code. Even the master integrals have meanwhile been computed indepen-

dently [RJ] and for the renormalization a different procedure has been chosen.
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A. Results for C;)S

Replacing in eq. (B.1)) the MS mass my, by the pole mass M;, using the three-loop approx-
imation [24-Rd] one gets
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We discuss radiative corrections to how quark mass thresholds are crossed, as a function of the
temperature, in basic thermodynamic observables such as the pressure, the energy and entropy
densities, and the heat capacity of high temperature QCD. The indication from leading order that
the charm quark plays a visible role at surprisingly low temperatures, is confirmed. We also sketch
a way to obtain phenomenological estimates relevant for generic expansion rate computations at
temperatures between the QCD and electroweak scales, pointing out where improvements over the
current knowledge are particularly welcome.

PACS numbers: 11.10.Wx, 11.15.Bt, 12.38.Bx, 98.80.Cq

I. INTRODUCTION

Besides being of fundamental theoretical interest to finite temperature field theory, the thermodynamic pressure of
the Standard Model, as a function of the temperature T' and of various chemical potentials u;, has several potential
phenomenological applications. Most notably it dictates, through the Einstein equations, the expansion rate of the
radiation dominated Early Universe. The expansion rate in turn determines when various dark matter candidates
decouple, thus fixing their relic densities: fine details of the pressure could become observable for instance if dark
matter is made of electroweak scale WIMPs [l 2] or of keV-scale sterile neutrinos |3, 4]. Furthermore, the pressure is
in principle visible in the present-day spectrum of the gravitational wave background that was generated during the
inflationary epoch [§]. More generally, the pressure incorporates the fact that the Standard Model possesses a trace
anomaly, i.e. T%, # 0, which in turn can influence many kinds of gravity-related cosmological scenarios (for recent
examples, see Refs. [d]).

Apart from cosmology, the pressure is potentially also relevant for the hydrodynamic expansion that the dense mat-
ter generated in current and upcoming heavy ion collision experiments may undergo. In this case there is some room
for caution, however, since the issue of whether local thermodynamic equilibrium is reached remains controversial [1].

Given that the biggest theoretical challenges are related to strongly interacting particles, considerable efforts have
been devoted to the determination of the QCD part of the pressure over a course of years. Denoting by g the renor-
malised strong coupling constant, perturbative corrections to the non-interacting Stefan-Boltzmann law have been
determined at relative orders O(g?) [d], O(g®) [9], O(g* In(1/g)) [10], O(g*) [11], O(g®) [12], and O(¢®In(1/g)) [1], as
a function of the number of colours, N, and the number of massless quark flavours, Nt. The first presently unknown
order, O(g®), contains non-perturbative coefficients [14, [15], but those can also be attacked [16, [17]. All orders of g
are available in the formal limit of large N¢ [1&]. These results have been extended to the case of finite quark chemical
potentials [19, 20, 21|, and a similar computation has recently also been finalised for the weakly interacting part of
the Standard Model, at temperatures higher than the electroweak scale [22]. Moreover, the fact that several orders
are available allows to experiment with various kinds of resummations |23, 124].

Surprisingly, however, relatively little seems to be known about the dependence of the QCD pressure on the quark
masses m;, @ = 1,..., Ny. While the non-interacting Stefan-Boltzmann law is readily extended to this situation, it
in fact appears that even the first non-trivial term, O(g?), has not been exhaustively investigated in the literature
(see, however, Ref. [25]). In principle this term has of course been available since almost 30 years [9], but in explicit
form only in a renormalization scheme for quark masses which differs from the current standard, the MS scheme.
Furthermore, no general numerical evaluation of the basic integrals appearing has been presented, as far as we know.
For T = 0 but ju; # 0, the full O(g?) analysis has also only been carried out recently [26].

Several probable reasons for the apparent lack of interest can surely be envisaged. First of all, the dependence on
Nt is known to a high order in the massless case, and interpolating between integer values of Ny should give much of
the information that we may need for the massive case. Second, including quark masses turns out to be technically
cumbersome [9]. Third, there are several indications, for instance from considerations of the baryon chemical poten-
tial [19, 120] and of mesonic correlation lengths [21], that the convergence is much better in the quark sector than in
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the gluonic sector, so that the lowest non-trivial order may already provide sufficient accuracy. Nevertheless, we feel
that the last assumption deserves to be checked, at least at the next-to-leading order (NLO) O(g?), and this is the
purpose of the present paper.

In short, our general philosophy will then be to account for the gluonic contributions to the highest order available,
0O(g%In(1/g)), and consider the change that quarks with finite physical masses inflict on this result at NLO, O(g?).
We do find that the quark mass effects at NLO are not too different from those at the leading order, O(g°), such
that the philosophy of terminating at O(g?) is at least self-consistent. Nevertheless, we also outline the procedure for
determining the quark mass dependence up to the order O(g°).

Apart from the theoretical goals mentioned, we also wish to sketch certain phenomenological results in this paper.
Consider the temperature evolution of an expanding system in the case of cosmology, for instance. Einstein equations
then lead to (see, e.g., Ref. [2]])

1dT 247e(T) s(T)
Tdt mp,  c(T)’ (1)

where t is the time; we assumed the Universe to be flat (k = 0); and we ignored the cosmological constant. All the
quantities appearing here follow from the pressure: s(T) = p'(T) is the entropy density, e(T) = T's(T) — p(T) is the
energy density, and ¢(T') = ¢/(T) = Tp”'(T) is the heat capacity. We wish to present our favoured “fits” for all these
functions for temperatures between the QCD and electroweak scales, indicating where further work is required.

The plan of this paper is the following. We start by elaborating on the basic formalism in Sec. [, discuss quark
mass thresholds in Sec. [TIl, present a phenomenological evaluation of the various thermodynamic functions relevant
for physical QCD in Sec. [[V], include weakly interacting particles in Sec. [Vl and conclude in Sec. [Vl

II. BASIC FORMALISM

In order to determine the basic thermodynamic quantities of the Standard Model, all of which can be derived from
minus the grand canonical free energy density, or the pressure p(T, ), where p collects together the various chemical
potentials associated with conserved global charges [54], we make use of the framework of dimensionally reduced
effective field theories [29, 30, 31]. This framework allows to organise the computation in a transparent way, and
implements various resummations of higher order effects. We start by briefly reviewing certain aspects of the general
framework for QCD; further details can be found in Ref. [13].

Dimensional reduction proceeds by first integrating out the “hard modes”, with momenta or Matsubara frequencies
of order 27 T. This produces an effective theory [29], called EQCD [31], wh1ch is a three-dimensional SU(N,) gauge
theory with a scalar field in the adjoint representation. The effective theory has a certain number of couplings,
parametrised by functions denoted by agj...agy [contributing up to O(¢®In(1/g))] and Bgi...Brs [contributing at
0O(g%)] in Ref. [13]; in the following we explicitly specify the definitions for only a subset of them. These parameters
contain all the information concerning the hard modes. Assuming the use of dimensional regularization, we denote
by o}, BNS parameters from which the 1/e-divergences have been removed by the MS-prescription.

To proceed, we need to specify explicitly the effective mass parameter m? and the effective gauge coupling g3 of
EQCD at NLO:

2 4

~2 _ M3z _ g NS
W = g = 0'oFi + o (2)
2 4
2 _ 93 _ 2 g MS
93 = ? =g+ (4 )2 1\E/I7 (3)

Both parameters are renormalization group invariant up to the order computed, i.e., the dependence on the scale
parameter i is of order O(g°).
With this notation, the physical pressure of hot QCD can be written in the form

PQCD = Phard + Psoft » (4)

where ppara represents the contribution of the hard modes (by definition containing both all direct hard contributions
to the pressure, and all finite terms emerging from products like € - 1/¢€), while psof; represents the contribution of the
soft modes. Up to the accuracy O(g%), phara can conveniently be expressed as

4
Phard ~ MS
it o+ a0l + 125 (0 — ool — {daCaof) +




§8 — —_— = 43 27 il
+ (4973)4 { [dAcA(agg — o dAcig(? - 5#)} In % + Ahard} : (5)

where dg = N2 —1,C4 = N, and we have separated a term on the last line which cancels the ji-dependence of psof;
at O(g%). The function Apard,

S 5 S 43 27 AT
Apara = {dAC'A(aEE — ool — daCy (? — §7T2)} In 2 4
_ - — — 1 _ - —
+OFT + 2075(al7)? — 20507 — 7 daCa (655 — ol + A ) - (6)

depends on N, N, my, pi;, and i/T. The contributions of the soft modes are [13]

' 3 £2.52 7 G415 2 1
Dsoft _ ﬂdA—ggmgdACA<ln H +§>_93m3d O2<89+%_E1n2)+
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g3 5| (43 491 , I 43 157 , I
B o8| (2 - ) (- a2 ) Asott | - 7
T Gy AK4 7687 ) Moy T \12 768" ) " 2Cagr T Ot @

The function Ag.s reads

m[dA—i—Q s 2da —1 m} (8)

Asott = Bu + Ba — apy 103 Brs + 10t PEs
A A

where By can be found in Ref. [32], and a numerical estimate of 8g in Ref. [11].

Let us stress that the formulae presented apply independently of whether quark masses are included or not: all
quark mass effects can be incorporated in the perturbative functions aﬁ...a%"_% § % In particular, the non-
perturbative numerical value Sg and the contribution from the Debye scale Gy in Eq. () are “universal”.

In the following, we refer to the various orders of the weak-coupling expansion according to the power of gs,ms
that appear, with the rule O(1n3) = O(g3) = O(g). In other words, “O(g")” denotes O(gy~*mk) in the expression
constituted by Eqs. @), @), @). If 92,3 were to be re-expanded in terms of g2, the result of Ref. [13] would be
reproduced up to O(g%). In practice, however, it is advisable to keep the result in an unexpanded form, because this
makes it more manageable, and because the unexpanded form introduces resummations of higher order contributions.

III. QUARK MASS THRESHOLDS IN THE PRESSURE

In the absence of an explicit O(g° In(1/g))-computation with m; # 0, one can envisage various recipes for estimating
the change that quark masses cause on the Ny = 0 result. For instance, one could multiply the Ny = 0 result with
the change indicated by the Stefan-Boltzmann law, i.e. by apj (Ng)/a5(0) [2]. An alternative would be to define an

effective non-integer Ny by evaluating the massive o3t (Eq. [[) below), fitting it to the massless formula (Eq. (A.1)
in Ref. [13]), and using the resulting N; in the massless result of O(¢g%In(1/g)) [33]. What we propose here is an
improvement of the first of these alternatives: we determine the functions oy, aps, aps in the general massive case,

which allows us to evaluate the order O(g?) result for the pressure, viz.

pqQco NS |, A2 NS
S~ il + g3 - 9)

Afterwards, we may modify the Ny = 0 result with a “correction factor”,

0 + 3035I(ND)
o + 93045](0)

(10)

Comparing the outcome of this O(g?) recipe with the corresponding O(g°) recipe allows to probe the convergence.
Note that it is important to also determine aﬁ, since only this way can the renormalisation scale that appears in §3
be reasonably fixed (cf. Eq. @)).

We thus proceed to compute aﬁ, oa%, aﬁ. We do this in full generality, keeping N¢, N, the quark masses m;,
and the chemical potentials u; as free parameters. The quark masses and the strong gauge coupling are renormalised
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FIG. 1: Left: the pressure for Ny = 0, 3, 4, at O(g°) and O(g?). Right: the “correction factors” accounting for the effects

of quarks, at O(g°) and O(¢?) (cf. Eq. [)). They grey bands indicate the effect of MS scheme scale variations by a factor

0.5 ... 2.0 around the “optimal” value. It is observed that while the (9(92) corrections are of order 20...30% in the pressure,
they are of order 10% in the correction factors for Ny = 3, and even less for the physical case N¢ = 4.

in the MS scheme. Some details concerning the computation are collected in Appendix A. As final results, we obtain

2 Nt 2
agr = dagz +4CAZF1(T;7%) ; (11)
=1
o = _dala % L (25 Ny om0 )] 4
BT e\ T2 T 12T
m? 7 m? 2m? m?
SR ) PSRN | § Y A ) R O (e 12
+47r2T2< Mo T > 2<T2’T) T2 4(T2’T>}’ (12)
_ Ny _ 9
—  22C4 neveE 1 2 I ms o g
ME 1 Sl e Y B2] Ly o R 13
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where the functions Fy, ..., Fy and some of their properties are detailed in Appendix B.
To estimate the numerical importance of the O(g?) corrections, we need to assign a value to all the parameters that
appear. Following a simple-minded logic, we use 1-loop running,

2472 10 (firet/ Asrs) | AT
T T 7] : (14)

90 = {C, — 4T (A 0 = (““f)[ (/1) Ans)

where Tr = N;/2, Op = (N2 — 1)/2N,, jiret = 2 GeV. The quark masses at i = firof are taken from Ref. [34].
To choose fi, we apply the principle of minimal sensitivity criterion for the parameter g3, as suggested in Ref. [35].
Furthermore, for illustration, we set Agz = 200 MeV.

The outcome of this procedure is shown in Fig. [ for p; = 0. It is observed that while the O(g?) corrections are
of order 20...30% in the pressure (left panel), the “correction factors”, i.e. the ratios in Eq. (), only contain O(g?)
corrections of order 10% for Ny = 3, and even less for the physical case Ny = 4 (right panel). This implies that the
quark mass dependence of the pressure probably converges faster than the weak-coupling expansion as a whole.

Finally, we note from Fig. [(right) that the charm quark contribution starts to be visible already at fairly low
temperatures. At leading order, the quark mass dependence is determined by the function Fy (cf. Eq. (), which at
low temperatures has the familiar classical form

2

A(ge0)~ () oel-5) w

It is observed that Fy obtains 5% of its asymptotic value 772/720 at temperatures as low as T ~ m/5. (For the
precise numerical values of Fi, see Fig. Bl) As Fig. [(right) shows, the onset of a visible charm mass dependence is
postponed to about T ~ 350 MeV at O(g?), but the basic pattern remains unchanged.
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FIG. 2: A phenomenological interpolating curve (solid line) for the QCD pressure at Ny = 0. In the perturbative curve (grey
band) the unknown O(g°) constant has been adjusted so that lattice data (closed squares [38]) is matched, once T > 3.6 A5

IV. PHENOMENOLOGICAL RESULTS FOR QCD

We now move from fairly well-defined expressions towards phenomenology. The goal is to present, where possible,
an educated numerical guess for the physical QCD pressure. We set all chemical potentials to zero in the following.

The general philosophy we adopt is that, for temperatures above the deconfinement transition, the weak-coupling
expansion needs to be evaluated up to the order where the dominant contributions from all the different scales
(27T, gT, ¢g*T) have made their entrances. There is some support for such a recipe from a number of non-trivial
observables [36, 37]. In practice, this means that the QCD pressure would need to be evaluated up to O(g°).

Unfortunately, only some of the O(g®) terms (parametrised by S, Bc, B4 in Sec. [l) are known at present. This

introduces a certain unknown “constant” into the prediction. We propose to fix the constant by the following recipe.
Let us start by considering the case Ny = 0, N, = 3. Then the expressions in Sec. [lldepend on only two parameters:

MS MS MS MS

on fi/T (through ..o, B5...045), and on [i/Ass (through ¢2(fi)). It so happens that the dependence on fi,
which formally cancels up to the order of the computation, is numerically non-monotonous (see, e.g., Ref. [23]), so
that the specific choice is not terribly important, as long as we are close to the extremum. In practice we choose /T
according to the principle of minimal sensitivity criterion for the parameter g3, as already mentioned. Thereby the
results only depend on 7'/ A5z and on the unknown O(g%) terms, contained in Aparq and Agof, defined in Eqs. @), (@).
It is important to note that once fi/T has been fixed, the A’s can be treated as temperature-independent constants.
It is furthermore convenient to combine them into a single term [57],

Apard + daCH Asory = daCHA . (16)

In order to now eliminate the dependence on A, we “match” the perturbative prediction to 4d lattice simulation
results for the case Ny = 0, where the continuum limit has been reached with reasonable precision [38, 139]. It should
be stressed that this step is purely phenomenological: in principle A is computable from the theory. On the other
hand, there is every reason to expect that results obtained through the dimensionally reduced framework do match
4d lattice results as soon as T 2 2T, where T, is the temperature of the deconfinement phase transition (see, e.g.,
Refs. [36], 40]-[4d]). Moreover, that a family of functions specified by a single parameter should match a given
function for a whole range of argument values, provides for a non-trivial consistency check.

Now, lattice results are usually presented in terms of T/T, rather than T/Aszs. We thus need a value for T../Ass;
we use Te/Asz ~ 1.20 which appears to be consistent with all independent determinations (cf. Ref. [37], Sec. 4.2).
After this choice, an excellent match can be obtained (we do this by minimising the difference squared of the function
values in the range T > 37T¢), with a value A &~ —3.287 (cf. Fig. B). In the following we will take the cubic spline
interpolation shown in Fig. [ as the “starting point”, which will then be “corrected” by the effects of quarks.

To now include quarks, we simply multiply the result just obtained by the correction factor in Eq. (). We should
expect this construction to work the better the higher the temperature, but surely at least 7' > 200 MeV is required.

It needs to be noted, however, that like in Fig. [l the evaluation of the correction factor necessitates fixing Ags
in physical units. This exercise is non-trivial. We again choose a purely phenomenological but rather convenient
procedure, which makes use of the pressure produced by the full set of hadronic resonances [34]. Indeed, it has been
demonstrated recently that if the resonance masses are tuned to correspond to the quark masses accessible to current
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lattice simulations, the resulting “resonance gas pressure” works surprisingly well even for temperatures deep into the
crossover region [43].

Thus, we tune Agz such that our analytic recipe and the first derivative thereof match the resonance gas result (in
which the temperature is automatically measured in physical units) at a certain temperature. Examples are shown
in Fig. Bl(left). The values of Az that result depend slightly on Nf and on variations of quark masses within their
experimental errors, but the typical range is Ays ~ 175...180 MeV. We should stress that this matching is of course
rather arbitrary, but it does produce qualitatively reasonable results with, for instance, an inflection point on the side
T > T, ~ 175 MeV, as suggested by lattice results [44]—41].

Naturally, the resonance gas results cannot really be trusted in quantitative detail for temperatures above, say,
150 MeV. Therefore, for a certain interval (which we choose to be T'= 150...350 MeV, and shade in all figures), the
results remain to be established by lattice simulations. The matter becomes even more urgent, when one considers
derivatives of the pressure, to which we now turn.

Apart from the pressure, its first and second derivatives play an important role, as already mentioned in connection
with Eq. ([@). There are various ways of presenting the information contained in these derivatives: we may for instance
parametrise the physical observables e(T), s(T'), ¢(T) through effective numbers of bosonic degrees of freedom,

gen(@) = 701 )= 2y = A0 ()
Ed =] &l
in terms of which Eq. (@) becomes
§ i@d_T _ vV geff(T)heff(T) (18)
2V 3 T3 dt io(T) ’
or we can consider dimensionless ratios like
e p(D)
w0 =) T T e o)
o - P(T) _ p(T) _ s(T)
) = @) = T @~ o) (20)

Both the “equation-of-state” w(T) and the sound speed squared c2(T) equal 1/3 in the non-interacting limit. The
deviation of the parameter w(T') from 1/3 is proportional to the trace anomaly, sometimes also called the interaction
measure.

Results for all of these quantities, based on our interpolation, are shown in Fig. B(middle, right). It can be seen
that quantities involving derivatives show a significant amount of structure around the QCD crossover, even if there
were no singularities. We remark that to smooth the behaviour we have evaluated p(T, p) with a relatively sparse
temperature grid in the critical region.

Clearly, it is important to correct the results in the “shaded region” by using results from future lattice simulations
of the type in Refs. [44]-|41]. In particular, the recent Refs. [46, 41| display direct results for ¢? and w, respectively.



Unfortunately, it does not appear that these results would be useful for our present purposes: they for instance fail
to reproduce the significant rise in w and ¢? that is seen in Fig. B(right) at temperatures down from the critical one,
displaying rather a much deeper dip (down to ~ 0.1) around the critical region, and then rising at most slightly as the
temperature is lowered. Therefore, it could be feared that the dip itself is affected by the unphysically heavy quark
masses that are used in the simulations.

We finally comment on the peak visible in i.g in Fig. B{middle). While the details are of course not captured by
our phenomenological recipe, the fact that a peak exists in the heat capacity is not unexpected for rapid crossovers;
in second order phase transition, the heat capacity even diverges as T" — T.

V. PHENOMENOLOGICAL RESULTS FOR THE STANDARD MODEL

While in heavy ion collisions at most strongly interacting particles have time to thermalise, the expansion rate is
much smaller in cosmology, so that all Standard Model degrees of freedom do reach thermal equilibrium, and remain
thermalised until neutrino decoupling at around 7" ~ MeV. Therefore, their contributions need to be added to the
QCD pressure. In practice, we count gluons and the four lightest quarks as the QCD degrees of freedom, while the
bottom and top quark are treated as part of the “weakly interacting” sector, so that the result splits into a sum of
two terms.

We will assume that it is sufficient to treat the weakly interacting sector at 1-loop level. That is, we construct
the free energy density f in the presence of a Higgs expectation value v, temperature T', and chemical potentials u;,
according to

J.T ) = =3 @ + T A@0+ Y o (m0), T ) (21)

where the sum extends over all physical degrees of freedom, with their proper degeneracies; o; = +1 (—1) for bosons
(fermions); and the tree-level masses m;(v) depend on v in the standard way (it is sufficient at this order to work in
unitary gauge). For scalar (J;), vectors (J,) and fermions (J;),

m* i3 T4 [ 1
L= - mt 2y [ g -1(1— —vw+y) , 22
T 64772(nm2+2)+4ﬂ'2/0 rx2? In e y:?_g ( )

m [T T [ 1
= — mEs 2 )+ [ dratm(1- V) 23
J 64772(nm2+6)+4ﬂ'2/0 S S ym2 (23)

m4 IBQ 3 4 m2 'LL

The renormalised pressure is then given by

p(Ta /1/) = min'l)f(vv Oa O) - minvf(v,T, /11) . (25)

The renormalised pressure depends on a number of parameters defined in the MS scheme: the Higgs potential
parameters v2(ji), A(ji) (cf. Eq. [Z1)); and the weak gauge and the top and bottom Yukawa couplings g2 (ji), hZ(j1),
h2(f1) (through the tree-level masses). The first four of these we express through the Fermi constant and the W=,
Higgs, and top pole masses, employing the explicit relations listed in Ref. [30], while the last one is fixed through
the bottom mass in the MS scheme [34]. Given that the electroweak theory contains a multitude of scales, both zero
temperature and thermal, we simply choose a fixed @ = 100 GeV for the weakly interacting part of the pressure (we
have varied the scale by a factor 0.5 ... 2.0, and seen that the dependence is invisible on our resolution).

Let us remark that Eq. ([Z3) suffers from the problem that it leads to a first order electroweak phase transition
at a certain temperature, while there is none if the theory is treated more carefully 48, 49]. In practice this does
not lead to any serious complications, however: we again smooth the behaviour by evaluating p(T, p) with a sparse
temperature grid around the critical region. In our figures, we shade the corresponding temperature interval, where
our estimates are qualitative at best.

With these reservations, the whole Standard Model pressure, and the parameters defined in Eqgs. (), [[d), @),
are shown in Fig. Bl

At temperatures above the electroweak scale, our results are already very close to the ideal gas results. Recently,
higher loop corrections in this region have been considered in some detail [22]. The authors find a rather more signifi-
cant deviation from the ideal gas value, due for instance to the top Yukawa coupling. We have not implemented these
corrections, however, since they would require a correspondingly higher order computation in the broken symmetry
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phase. Though such a computation exists in principle up to 2-loop level [50], we did not consider the non-trivial
challenges posed by its numerical evaluation for general masses to be worth tackling at present, given that in the
quantities plotted in Fig. Blright), the 2-loop contributions (which do not contribute to the trace anomaly on the
symmetric phase side) are expected to largely cancel out. Nevertheless, it would be important to finalise this compu-
tation, if physics is made with the temperature interval 7 = 10...100 GeV, where the W*, Z° bosons and top quark
cross their mass thresholds.

Finally, once a definite Higgs model is available, it will of course be important to carry out lattice simulations for
the transition region. Fortunately, for the electroweak theory this can be achieved within the dimensionally reduced
effective theory [3(0], whereby also all fermions with their physical Yukawa couplings can be fully accounted for.

VI. CONCLUSIONS

The functional dependence of the QCD pressure at a high temperature 7" on most of the parameters of the theory
(number of colours N., number of active massless flavours N¢, and quark chemical potentials p;) is known up to relative
order O(¢g®1In(1/g)), while the dependence on the quark masses m; has gained much less interest. The purpose of
this note has been to study whether it indeed is justified to consider the effects of finite non-zero quark masses at the
level of the non-interacting Stefan-Boltzmann law (i.e. O(g")), as has been the standard procedure. For this purpose,
we have determined the corrections of order O(g?) in full generality in the MS scheme, and presented a numerical
evaluation of all the integrals that appear in this result.

We find that while the O(g?) corrections are in general 20...30% (Fig. [(left)), they are numerically at most 10% for
the quark mass dependence (Fig. [(right)). This is perhaps in accord with previous observations according to which
quarks are fairly perturbative as soon as they are deconfined, even though gluons do display strong interactions up
to very high temperatures.

Finally, we have sketched educated “guesses” for the thermodynamic quantities that play a role in various physical
contexts, for temperatures between the QCD and electroweak scales. For the case of heavy ion collisions, in particular,
it is perhaps relevant to keep in mind that if the charm quark does thermalise, it has a rather significant effect even
at relatively low temperatures (Fig. Bl(left)). Of course, it is by no means clear whether such a thermalization should
take place in practice [51].

In order to improve on our QCD results, the missing perturbative O(g®) computations and, naturally, lattice
simulations in the transition region, with physical values of the quark masses, remain to be completed.

For the full Standard Model, we have presented similar guesses for the various quantities that are relevant for expan-
sion rate and particle decoupling computations (Figs. Hl). Although the deviations from previous phenomenological
estimates that have appeared in the literature [l 2] are in general fairly small, we nevertheless hope that our results
help for their part to gauge the systematic uncertainties that still exist in these quantities.

In particular, we have stressed the need for repeating the computations of Ref. [22] in the broken symmetry phase
and, of course, the need for effective theory lattice simulations in the transition region, once the electroweak model /
Higgs mass is known.
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APPENDIX A: OUTLINE OF THE COMPUTATION

In this Appendix we present a few details for the computation leading to Eqs. ([)—([I3). We concentrate on the
fermionic contributions; the bosonic ones are elementary.

We write the fermionic contributions in terms of the renormalised gauge coupling g2 and the renormalised quark
masses m;, ¢ = 1, ..., Ny. The master integrals emerging are

1
Aziﬁ, (A1)
B, Do
1 _
Je(m,p) = 5% In(P? +m?) , (A2)
e
Ii(m, ) = . (A3)
f b - =5 5 b
P PP +m?

1
iPf@f (P2 +m2)(Q? +m2)(Pr — Qr)?

Hi(m, ) (A4)

where P, Pr denote bosonic and fermionic Matsubara four-momenta, respectively, and Pr=P+ (—iu, 0) includes
the chemical potential p. With this notation, the fermionic contributions to the parameters of interest are

N¢
Tag, = 4Cy Z Je(mi, pi) (A5)
=1
N¢
T4a£32 = 2CA51m2 Z mflf(mi, Ni) +
=1

+ da Z{ [2]}; - It(ml,uz)}ff(mi,ui) + Zm?Hf(mi,,ui)} , (A(j)
Loy s 9,2 dIe(mi, pi)
(47T)2CYE7 = 619° + 3 Z am? ) (A7)

i=1

where 51m2, b1 g* are counterterms defined by writing the bare mass parameter and gauge coupling as m%,; = m?(1 +
g261m?), g% = ¢*(1 + g261¢?); it is understood that only the fermionic part of &2 is considered; and d = 3 — 2e.

The next step is the evaluation of the Matsubara sums appearing in the master integrals. For the 1-loop structures
(Eqs. (AI)—-@A3)), it is straightforward to obtain

dd
B = [ 1+ 2D (A8)
Ji( )—/ddp p[l— (B = 1) = (B + )] (A9)
imo) = | 5oy np(E — p) — np =
dip 1
1 = — 11— E—p)— E A10
where we have carried out a partial integration after the sum in J¢, and
E)= ! E) = ! All
ne(E) = gp—7. w(B) = p- (A11)

As is well known, the momentum integral in Eq. (AS) can be carried out explicitly, I, = 7%2TT'(1—d/2)¢(2—d) /27T,
but the ones in Eqs. [(A9), (AI0) with m, u # 0 cannot in general be integrated in closed form.
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For the genuine 2-loop integral Hy in Eq. ([(Ad)) the sums are slightly more complicated, so we give here some
details. The method we employ follows the standard procedure [9] (see also Refs. |52, [53]). The twofold sum over the
Matsubara modes is first written as a threefold sum with a Kronecker delta-function, and the delta-function is then

written as d(pg) = Tfoﬁd:v exp(ipox). The sums can now be performed:

1pbx 1
_ (B—a)E zE}
Z ) 2 B 2EnB(E) {e +e"7 (A12)
TZ et 1 [nF(E + p)eB=DELB _ o (B — p)e®F (A13)
p?+E?  2F ’

where py,, pr denote the bosonic and fermionic Matsubara frequencies, respectively; and py = ps—ip. The integral over
x is then simple. All the exponents appearing can be written in terms of inverses of the distribution functions ng,
np, and multiplying with their explicit appearances, we are left with at most quadratic products of the distribution
functions, and fractions containing the three “energies”.

The fractions containing the energies can be organized in a transparent form, once we introduce the zero-temperature
objects

9 5 an d4—25P d4—2eQ 1
stk o) = [ |G e e A
d4 25P 1
Q) = [ e g o)
A@*m) = G (A16)

Indeed, carrying out the integrals over Py, Qo in these functions, one obtains similar energy fractions. Making
furthermore use of the O(4 — 2¢) rotational invariance of the Q-dependence in Eq. [(ATH), which is present once also
the integration over p is performed, the various fractions can be identified with each other.

In order to write the subsequent result in a compact but generic form, we introduce the notation

Ei=\/p;+mi, P;=(Ei,pi), Pi-Pj=EE;—pi-pj, (A17)

and denote
N — ) nB(EY) for bosons (= F3)
na(Bi) = { —np(E; £ p) for fermions (= Ei, Es) (A18)
Then, allowing for generality for three different masses, like in Eq. (ATd),
Hy = Hyae(m3,m3,m3) +
d 1 U l
p> Z/ Sagp Memtmd mi) +
i£j#£k o==%1
d’p; d? p; no(Ei)n-(E;) s o
" Z Z / / 2m)d AE;E; Al=(oF — 7F;)%myi] (A19)
itk or=+1

where 37,k = (i k=(1,2,3),(2,3,1),3,1,2)- 1ndividual terms in this sum may contain infrared poles (or, after
performing some of the integrations in complex plane, imaginary parts), but the expression as a whole is finite and
real for € # 0.

We return now to the case of physical interest (m? = m3 = m?;m3 = 0), and ignore all temperature-independent
terms. We note, furthermore, that the contribution originating from the last term in Eq. (AI9) for (z,5, k) = (3,1,2),
contains A[—(Ps + P1)%;m?] + A[—(Ps — P1)?;m?] which vanishes, given that P? + P? = m?2. The same is true for
(4,7,k) = (2,3,1). This leaves us with

Hi(m, u) = [temperature-independent terms| +

+ I, TI(0; m?, m?) 4 21¢(m; p) TI(—m?;m?, 0) +
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Jr/ddpl /ddpz n—(En)ny (B2) + ny (Er)n-(E2) 1 n
(2m)d J (2m)d 8E1 Es pP1-p2 —m2 — EE,
d?py [ d¥p2 n_(E1)n_(Es) +ny(Ey)ny(Es) 1 A20
+ a 7 s : (A20)
(27‘() (27‘() 8E1E2 P1 P2 m* + ElEQ

where we substituted p; — —p; in the last term. We can still perform the integration over z = p1 - p2/|p1||p2l,
leaving a rapidly convergent integral over |p1], |pa|-

The final step is the expansion in €. The only temperature-dependent ultraviolet divergences are in the factorised
terms on the second row in Eq. (A20)). Adding together with the contributions from the other master integrals, as
specified in Egs. (AR)-([AX), a straightforward computation reproduces the fermionic parts of Eqs. ([l)—(T3).

APPENDIX B: FUNCTIONS DETERMINING THE MASS DEPENDENCE

The functions that appear in Eqs. ([)-(I3) are defined as

R = g [t [ 2] [ ta T 0+ T4 ®1)

Rni) = gz [ o [xjy]% [ (VY = ) (VY )] (B2)

Fy(y ) = - / [ ] (e (VT ) + e (VT )] (83)
N 1

Fy(y,p) = dxl dxg \/301—+\/UC2—+

x{ [ﬁp(w T3 (VB TG+ ) + e (VI TG+ e(VE T )] X
(Va1 F Y2 Ty +y — /T1as |
LVT1+ Y/ T2+ Y+ Y+ \/T122 ]
+{ﬁF(\/$1 +y— @)nr(Vas +y — i) +nr(Ver Fy A+ p)ar (Ve +y+ﬂ)} X
VI YT Ty —y+ /172 |

X In

+

x In , B4
L VZ1 + Y/ T2+ Y — Y — /T122 | (B4)
where
fip(z) = ! (B5)
P = e 1

These functions are related to the functions J;, Iy and Hy defined in Eqgs. (A2)-([AZ): the medium-modified part of J;
reads T*Fy for € = 0; the medium-modified part of I; reads —T?F; for € = 0; the medium-modified part of dI/dm?
reads —F3/(47)? for € = 0; and the “non-factorizable” part of H; (the last two terms in Eq. (A20)) reads T?F} for
€ = 0. The functions F}, F», F3 are related by

R ) L O (y. )
F =-2—= F = (4r)" ——————. B6
2(3/7 /1’) 8y ) 3(3/7 /1’) ( 7T) 3y ( )
The functions introduced possess some solvable limiting values. For y — 0,
. T2 ‘a2 ﬂ4
Fi(0,1) = ﬁ()—i_ﬂ + 1872 (B7)
1 q
FZ(Ouu) - 24 + 871'2 ’ (BS)
N Y i 1 f L p
P07 ~ g+ 2+ D(T) =l = [u(g + i) +u (5 —ig) | B
3(0.) &~ In 5+ 2yp + DT 167r2 g Tigr) Tg Tian (B9)

where “~” denotes that the logarithmic divergence displayed on the right-hand side needs to be subtracted before
setting y — 0, and the function D, which has the property D(0) = 0, corresponds to the notation in Ref. [4(].
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The analytic expression in terms of 9(z) = I'(2)/T'(z) comes from Ref. [20]. For ji # 0, the function F, diverges
logarithmically at small y, but as it is always multiplied by y, this behaviour has little interest in the present context.
R Eqs. (3.14), (3.15), (3.20) of Ref. [20]

3 3 3 3 MS MS
Inserting the values in Eqs. (BZ)-(BY) into our expressions for ofi}, o, a3,

are reproduced.

For y — oo and ji fixed, the functions Fy, F5, F3 vanish as exp(—,/y), the function Fj as exp(—2,/y), modulo a
powerlike prefactor. An interesting limit is obtained, however, by setting y, i simultaneously to infinity but keeping
the ratio z = y/f? = m?/u? fixed. This corresponds to setting the temperature to zero but keeping m, u finite. Then

Jim TP, (T;—j %) = 91— 2) 9’(‘:;2 u® — 32f,) | (B10)
%iglOT2FQ(?—§,%) - 9(1—2«)%@, (B11)
i 73 (2. 2) = 0122 (h ). (B12)
11210T2F4(m—22,%) = 9(1—z)64‘f4z(w4— 2) (B13)
where
w=viT7, fzzm_zlnﬁ. (B14)

Inserting into our expressions for ajts, a}s, Egs. (1) and (4) of Ref. [26] are reproduced.

Unfortunately the limit & — 0, of most interest to us in this paper, does not render any of the functions analytically
solvable, as far as we know. We show the results of numerical evaluations in Fig.
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