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Chapter 1

Motivation and outline

In recent years research in the field of elementary particles is becoming more important and popular.
A fundamental building block of matter, the Higgs particle, was discovery these days [1]. Moreover,
elementary particles are of interest in astrophysics and cosmology, especially in the context of the
the big bang, i.e. at high temperatures. On the lower side of the temperature scale, studying the
constituents of matter may give insights in cold and dense stars.
The high temperature and low chemical potential behavior is studied experimentally at e.g., the Large
Hadron Collider and Relativistic Heavy Ion Collider. For such experiments theoretical predictions, in
particular finite temperature gauge theory within the Standard Model of particle physics, are vital.
Lattice Monte Carlo simulations solely provide controlled numerical results for chemical potentials
which are, in natural units, less than the temperature.
An analytical approach to understand the properties of elementary particles is commonly stated in
terms of a perturbative quantum field theory. This is formulated for weak interactions, that is high
temperatures due to asymptotic freedom. Within this approach a physical event is translated into
Feynman diagrams, which can be classified according to their number of loops and legs. A computation
of these diagrams involves a complex algebra and multi-dimensional integrals, whereas these are
becoming more involved for higher loop and leg diagrams. As a consequence, the field of performing
powerful computations and designing efficient techniques evolves. The approach is to generate all
relevant Feynman diagrams and symmetry factors by combinatorics, to specify the Feynman rules,
to translate these diagrammatic objects in mathematical expressions and to perform the relevant
algebraic manipulations. Thereafter a large set of Feynman integrals is reduced to some smaller set
of integrals, called master integrals, via linear relations in the Feynman integrals. Completing, these
master integrals are calculated analytically or numerically.
In this work we focus on the reduction of Feynman integrals and the numerical calculation of master
integrals in the context of a three-loop gap equation. This gap equation fixes the mass of the gauge
field in a three-dimensional Yang-Mills theory, whereas the mass is apparent due to a resummation at
finite temperature. The work presented here, is based on [2].
In the following we outline this thesis. Chapter 2 is a sketch of the basics of Yang-Mills theory, in
particular QCD, and thermal field theory, where we discuss their linking, the perturbative approach
and the handling of divergences within this approach. In Chapter 3 we introduce a three-dimensional
Yang-Mills theory based on the non-linear SU(N) Higgs model and its resummation. We review
an algorithm by Laporta for the reduction of a set of Feynman integrals to master integrals and a
technique to calculate these in Chapter 4. In Chapter 5 we present some computer systems, e.g.
Reduce 2, which are designed for the purposes of automated Feynman integral reduction. The
computation of the three-loop gap equation and the transverse part of the gluon self-energy up to
three loop in the context of the non-linear SU(N) Higgs model is explained in Chapter 6 as well as
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2 CHAPTER 1. MOTIVATION AND OUTLINE

a further reflection on the gap equation. In Chapter 7 we apply the Laporta-algorithm to calculate
the Euclidean zero-point sunset-type master integrals with one mass parameter numerically up to five
loop in the dimensional regularization scheme around four and three dimensions. A conclusion and
an outlook of this work is given in Chapter 8.



Chapter 2

Basics of QCD and thermal field
theory

One way from a classical theory to a quantum field theory, e.g. QCD (quantum chromodynamics),
is that of canonical quantization. An equivalent path is given by functional methods, that is path
integrals, and the formulation of perturbations therein. We take the latter one, as it is goes hand in
hand with the partition function, which is the fundamental quantity in quantum statistics, i.e. equi-
librium thermodynamics. For an introduction to (perturbative) quantum field theory and to groups
and symmetries in physics we refer to [3] and [4], respectively.
A quantum field theory comes along with two kinds of divergences, that are ultraviolet divergences
from high momenta and infrared divergences from bare massless propagators at low momenta. The
ultraviolet divergences are handled via renormalization, whereby no such a general procedure cur-
rently exists for infrared divergences. They emerge in non-Abelian gauge theories with spontaneous
symmetry breaking at temperatures higher than the critical temperature and in QCD with massless
gauge fields, i.e. gluons. This was first noted by A.D. Linde in 1978 [5] and is apparent in the self-
energy at O(g4) and the pressure at O(g6) with a gauge coupling g [6]. A bare massless propagator
is given a thermal mass at finite temperature T , which has the effect of an infrared cutoff and regu-
larizes the theory. Due to the screening of color-electric and color-magnetic gauge fields, the electric
and magnetic mass scales, gT and g2T , are induced, respectively. Though the dynamically generated
magnetic screening mass is of O(g2T ), higher orders of perturbation theory are of the same order
than the lower ones and hence, it is of non-perturbative nature. A resolution of this was proposed
by E. Braaten in 1994, involving the construction of effective field theories by a partial integrating
of separate momentum scales [7]. However, gauge fixed lattice simulations [8] are consistent with
an effectively massive gluon propagator. Moreover, a dynamically generated gauge field mass is of
interest in three dimensional Yang-Mills theories [9].
In this chapter we first introduce the theory of QCD in the path integral formalism at zero tempera-
ture, where we derive its Feynman rules and renormalize it. Then, we turn to finite temperature and
zero chemical potential and show that the partition function can be represented by a path integral.
Concluding, we consider the perturbative expansion of the partition function in a small coupling pa-
rameter, i.e. at high temperatures. As for the Φ4 model, we identify the infrared divergences and
resum them.
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4 CHAPTER 2. BASICS OF QCD AND THERMAL FIELD THEORY

2.1 Yang-Mills theory and QCD

A Yang-Mills theory is a non-Abelian SU(N) gauge theory. It is the basis for the unification of elec-
tromagnetic interactions and weak interactions, i.e. U(1)× SU(2), and of QCD, which is represented
by the group SU(3). The theory was formulated by C.N. Yang and R.L. Mills in 1954 [10], its renor-
malizable in four and less dimensions proven by G. ’t Hooft and M.J.G. Veltman in 1972 [11] and its
nature of asymptotic freedom shown by H.D. Politzer [12], D.J. Gross and F. Wilczek [13] in 1973.
The first two and the latter three were awarded the Nobel prize in 1999 and 2004, respectively.
The QCD gauge group SU(3) is acting on the color space of quarks in the fundamental representation.
The gauge invariant Yang-Mills Lagrangian reads

LY M = −1

4
F aµνF a

µν +Ψ
f

i (x)[iγ
µDµ −mf ]ijΨ

f
j (x) (2.1)

with the field strength tensor

F a
µν = ∂a

µAν(x) − ∂a
νAµ(x) + gfabcAb

µ(x)A
c
ν(x) , (2.2)

where g is the coupling parameter and the covariant derivative is

[Dµ]ij = δij∂µ − igAa
µ(x)T

a
ij . (2.3)

The gluon fields Aa
µ carry adjoint indices a ∈ {1, ..., 8}, the quark fields Ψf

j color indices j ∈ {1, 2, 3}
and flavor indices f , and also their massesmf . The generators T

a can be written as hermitian matrices
with

[T a, T b] = ifabcT c , (2.4)

where fabc are anti-symmetric structure constants. One may e.g., consider the equations of motion,
the conserved currents and approximate symmetries. However, we proceed with the quantization of
the Yang-Mills theory via path integrals, see e.g. [14].

2.1.1 Path integral and QCD Feynman rules

For some Minkowskian Lagrangian L(X) and fields X , the vacuum-to-vacuum transition amplitude
is given as the path integral1

Z =

∫

DXexp

{

i

~

∫

dxL(X)

}

∝ 〈0,∞|0,−∞〉 . (2.5)

Setting ~ = 1 and introducing source fields J , the generating functional for the Green’s functions is

Z[J ] =

∫

DXexp

{

i

∫

dx[L(X, x) + J(x)X(x)]

}

. (2.6)

Taking functional derivatives of the generating functional we obtain the time-ordered n-point functions
as

〈0|T : X(x1) ... X(xn) : |0〉 =
1

Z[0]

(

−iδJ(x1)

)

...
(

−iδJ(xn)

)

Z[J ]
∣

∣

J=0
. (2.7)

Note, that the denominator in (2.7) is a sum of vacuum diagrams, which cancels disconnected diagrams
in the correlation function and that the normalization in the amplitude drops. For L = L0+LI , where

1A term of the form igΨΨ for the convergence of the integral is implicit.
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L0 is at most quadratic in the fields and LI is an interaction Lagrangian of higher order, the generating
functional reads

Z[J ] = exp

{

i

∫

dxLI(−iδJ)

}

Z0[J ] . (2.8)

We are going to write down the perturbative expansion of the theory, by expanding LI in (2.8) in
some small parameter, that is the coupling parameter here, via Feynman diagrams.
For QCD the two-quark-gluon, three-gluon and four-gluon vertices are directly read off from the
interaction Lagrangian as

≡igγµT a , (2.9)

≡gfa1a2a3 [(k1 − k2)µ3
gµ1µ2

+ (k2 − k3)µ1
gµ2µ3

+ (k3 − k1)µ2
gµ3µ1

] , (2.10)

≡− ig2[fa1a2aefaea3a4(gµ1µ3
gµ2µ4

− gµ1µ4
gµ2µ3

)

+ fa1a3aefaea2a4(gµ1µ2
gµ3µ4

− gµ1µ4
gµ3µ2

)

+ fa1a4aefaea2a3(gµ1µ2
gµ4µ3

− gµ1µ3
gµ4µ2

)] , (2.11)

where full and wiggly lines denote scalars and gluons, respectively and the color and Lorentz indices
are implicitly distributed among the gluon lines. The quark propagator is given as the two-point
function obtained from (2.7) with Grassmann source fields as

≡ i(γµkµ +mf )

k2 −m2
f + iǫ

. (2.12)

The gluon propagator is in principle be read off from

∫

dx

(

−1

4
F aµνF a

µν

)

=
1

2

∫

dxAa
µ(x)

[

δab(∂2gµν − ∂µ∂ν
)

]Ab
ν(x) , (2.13)

where we assume, that fields vanish at the surface of the integration. However, no Green’s function
for the term in squared brackets exists. To resolve this, we add the covariant gauge fixing term

Lgf = − 1

2ξ
∂µAa

µ∂
νAa

ν (2.14)

to the initial Lagrangian (2.1),where ξ is a gauge fixing parameter and thus, the gluon propagator
reads

≡ −i

k2 + iǫ

(

gµν − (1− ξ)
kµkν

k2

)

δab . (2.15)

Note, that physics is ξ-independent. We have to mind multiple gluon fields in the functional inte-
gration, which are related by gauge transformations. This was first done by L.D. Faddeev and V.N.
Popov in 1967 [15]. They separated the integration of gauge transformation related fields, inducing a
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determinant, which is field-dependent in non-Abelian theories. The determinant is rewritten in terms
of Grassmann fields, representing auxiliary anti-commuting scalar ghost fields. These fields cancel the
unphysical longitudinal parts of the gluon fields in Feynman calculations. The ghost propagator

≡ i

k2 + iǫ
δab (2.16)

and the two-ghost-gluon vertex

≡ −gfabckµ (2.17)

emerge as additional Feynman rules, where the ghost fields carry associated color indices. Merging
all parts, the QCD Lagrangian reads

LQCD = −1

4
F aµνF a

µν +Ψ
f

i [iγ
µDµ −mf ]ijΨ

f
j − 1

2ξ

(

∂µAa
µ

)2
+ ca

(

−∂µDab
µ

)

cb (2.18)

with ghost fields c and anti-ghost fields c. The residual symmetry of this gauge fixed Lagrangian is
associated with BRS transformations [16]. We proceed with the schematic renormalization of QCD.

2.1.2 Ultraviolet divergences and renormalization in QCD

While performing Feynman calculations, one commonly encounters ultraviolet (UV) divergences. They
emerge due to the loop integration of large momenta. The UV divergence can be estimated via the
superficial degree of divergence, that is a naive counting of the momenta in a Feynman diagram e.g.,
within dimensional regularization,

=

∫

dDk

(2π)D
(

igT bγν
) i(γρkρ + γρ(q2)ρ +m)

(k + q2)2 −m2
(igT aγµ)

i(γρkρ + γρ(q1)ρ +m)

(k + q1)2 −m2

×
(

igT bγν
) −i

k2

∼
∫

dDk

k4
k ≫ 1 , (2.19)

which is logarithmically divergent for D = 4. The generic procedure is to choose a regularization
scheme, that is dimensional regularization in terms of ǫ here, calculate the Feynman diagrams and
absorb the UV divergences in counter-terms via renormalization.
We implement the renormalization in QCD by rescaling the bare (B) fields and parameters as

Ψf
B ≡ Ψf =

√

ZΨΨ
f
R , Aaµ

B ≡ Aaµ =
√

ZAA
aµ
R , caB ≡ ca =

√

Zcc
a
R ,

mB ≡ m = ZmmR , gB ≡ g = ZggR , ξB ≡ ξ = ZξξR , (2.20)

where the dimensionless renormalization constants depend on the renormalized (R) parameters and
the dimension. Rewriting the bare QCD Lagrangian (2.18) in terms of the introduced renormalized
quantities as

LB
QCD = LR

QCD + Lct (2.21)
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induces the counter term Lagrangian

Lct =(ZΨ − 1)Ψ

(

iγµ∂µ − ZmZΨ − 1

ZΨ − 1
m

)

Ψ+
(

ZmZΨZ
1
2

A − 1
)

gΨγµAa
µT

aΨ

− (ZA − 1)

(

1

4
(∂µAaν − ∂νAaµ)2 +

ZAZ
−1
ξ − 1

ZA − 1

1

2ξ
(∂µAa

µ)
2

)

+
(

ZgZ
3
2

A − 1
) 1

2
gfabcAbµAcν(∂µA

a
ν − ∂νA

a
µ) +

(

Z2
gZ

2
A − 1

)

(

−1

4
g2fabcAbµAcνfadeAd

µA
e
ν

)

− (Zc − 1)c∂µ∂µc−
(

ZgZcZ
1
2

A − 1
)

gfabcca∂µAb
µc

c (2.22)

dropping the indicator R. One may write down explicitly the additional Feynman rules as given by
the counter term Lagrangian. We fix the renormalization constants by claiming that the sum of a
type of Feynman diagrams of some loop order and its counter term is finite, that is the counter terms
cancel the divergences. However, we are left with a residual fix of the renormalization constants, due
to terms of O(ǫ) within dimensional regularization, which are set to some value in various schemes e.g.,
vanish in the MS (Minimal Subtraction) scheme. The current status of the renormalization constants
is given in [14] and references therein.

2.2 Partition function and path integral

The fundamental quantity in quantum statistics is the partition function

Z = Tr
{

e−βH
}

(2.23)

with β = 1/(kBT ), the Boltzmann constant kB , the temperature T and the Hamiltonian H . With
the partition function at hand, one may compute various observables at thermodynamic equilibrium
e.g., the free energy F and the thermodynamic pressure P via

F = − 1

β
lnZ , P =

1

β
∂V lnZ . (2.24)

In the following we derive the path integral representation of the partition function for bosons. In
field (φ) space the partition function is written as

Z =

∫

dφ
〈

φ
∣

∣e−βH
∣

∣φ
〉

=

∫

dφ
〈

φ
∣

∣e−∆τH ... e−∆τH
∣

∣φ
〉

, (2.25)

where ∆τ ≡ β/N is a small imaginary time. For each of the N terms e−∆τH we insert to its left a
complete set of states of the canonical momentum π, i.e.

1 =

∫

dπi(x)

2π
|πi〉〈πi| i ∈ {1, ..., N} (2.26)

and to its right

1 =

∫

dφi(x)|φi〉〈φi| . (2.27)
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We have objects such as

〈φi+1|πi〉
〈

πi

∣

∣

∣e−∆τH(φ,π)
∣

∣

∣φi

〉

=exp

{

i

∫

d3xπi(x)φi+1(x)

}

〈πi|φi〉
(

1−∆τH(φi, πi) +O
(

∆τ2
))

=exp

{

i

∫

d3xπi(x)(φi+1(x)− φi(x))

}

× exp

{

−∆τ

∫

d3xH(φi(x)πi(x)) +O
(

(∆τ)2
)

}

, (2.28)

where the operators are evaluated at a single point in time. The residual bracket 〈φ1|φ〉 = δ(φ1 − φ)
yields 〈φ| = 〈φ1| when performing the φ-integration. For N → ∞, O(∆τ) → 0 and hence

Z = lim
N→∞

∫ N
∏

i=1

dxidpi
2π

exp







∆τ

N
∑

j=1

∫

d3x

[

iπi(x)
φi+1(x) − φi(x)

∆τ
−H(φ(x), π(x))

]







∣

∣

∣

∣

xN+1=x1

,

(2.29)

which in the continuum limit reads

Z =

∫

Dπ

∫

φ(x,β)=φ(x,0)

Dφexp

{

∫ β

0

dτ

∫

d3x [iπ(x, τ)∂τφ(x, τ) −H(φ(x, τ), π(x, τ))]

}

, (2.30)

where the φ(x, τ)-integration is compactified and the integration measure D is understood as the limit
of (2.29). For a Hamiltonian of the form

H =
π2(x)

2m
+ V (φ(x)) (2.31)

with a π-independent potential V we can explicitly perform the π-integration in the discrete form of
(2.29), as

∫

dπi

2π
exp

{

−∆τ

(

π2
i

2m
− iπi

φi+1 − φi

∆τ

)}

=
( m

2π∆τ

)
1
2

exp

{

m(φi+1 − φi)
2

2∆τ

}

, (2.32)

which yields

Z =

∫

φ(x,β)=φ(x,0)

∏

x

CDφexp

{

∫ β

0

dτ

∫

d3x[iπ∂τφ−H]

}

, C ≡
(

mN

2πβ

)
1
2

. (2.33)

The Minkowskian path integral (2.5) in four dimensions is linked to the Euclidean partition function
via Wick rotation, that is t → τ ≡ −it, bounding one space-time integration direction and closing
one field integration in a periodic way. Thus, it is effective dimensional reduced, as common in
equilibrium thermodynamics. If in addition a charge N is conserved, then one replaces H(φ, π) →
H(φ, π) − µN (φ, π) with the chemical potential µ.

2.3 Weak-coupling expansion and infrared divergences

For a weak interaction SI we can perform the functional integration in the partition function

Z = N

∫

Dφe−SE (2.34)
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with the normalizationN by expanding the Euclidean action SE = S0+SI , where S0 is an unperturbed
action in powers of the coupling parameter.2 Formally, we expand (2.34) as

Z = N

∫

[Dφ]e−S0

∞
∑

l=0

(−SI)
l

l!
. (2.35)

Taking the logarithm gives

lnZ = lnZ0 + lnZI ≡ ln

{

N

∫

[Dφ]e−S0

}

+ ln

{

1 +

∞
∑

l=1

(−1)l

l!

〈

Sl
I

〉

0

}

,

〈

Sl
I

〉

0
≡
∫

[Dφ]e−S0Sl
I

∫

[Dφ]e−S0
(2.36)

with the ideal gas contribution lnZ0. Expanding the logarithm in a series, yields

lnZI =

∞
∑

k=0

(−1)k

k + 1

(

∞
∑

l=1

(−1)l

l!

〈

Sl
I

〉

0

)

=

∞
∑

k=0

(−1)k

k + 1

(

−
〈

S1
I

〉

0
+

1

2

〈

S2
I

〉

0
+ ...

)k+1

=− 〈SI〉0 +
1

2

(〈

S2
I

〉

0
− 〈SI〉20

)

+ ... , (2.37)

where the first and the second term in the last line are of the order of the coupling parameter and
the squared of the coupling parameter, respectively. However, this naive expansion is not valid after
leading order, due to infrared (IR) divergences.
Before we will show this explicitly in the next section, we discretize space and time via a dimensionless
Fourier transformation in the field

φ(x, τ) =

√

β

V

+∞
∑

n=−∞

∑

k

ei(k
µxµ+ωnτ)φn(k) (2.38)

with Matsubara frequencies ωn = 2nπβ−1 or ωn = (2n+ 1)πβ−1 for bosons or fermions, respectively,
which is a consequence of the periodicity constraint. We define the full propagator in momentum-
frequency space as

D(k, ωn) =
[

ω2
n + ω2 +Π(k, ωn)

]−1

=[1 +D0(k, ωn)Π(k, ωn)]
−1D0(k, ωn) (2.39)

with ω2 = k2 +m2 and the free propagator

D0(k, ωn) =
[

ω2
n + ω2

]−1
, (2.40)

where the self-energy Π is given as
Π = −2δD0

lnZI

∣

∣

1PI
, (2.41)

which is evaluated for 1PI (1 Particle Irreducible) diagrams. Thus, in the momentum continuum limit
the IR divergences are manifest in expressions such as

B(m,T ) = β−1
+∞
∑

n=−∞

∫

d3k

(2π)3
1

ω2
n + ω2

, (2.42)

2An alternative approach is to evaluate the partition function on a space-time lattice, see e.g. [6].
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in the limit m → 0, which are associated with bubble diagrams in the context of the computation of
the logarithm of the partition function [6]. We handle the IR divergences via a resummation of an
infinite number of ring diagrams such as for the φ4 model.3

2.3.1 Infrared divergences and resummation in the φ4 model

The Euclidean Lagrangian of a scalar φ4 model with a coupling parameter λ reads

Lφ4 =
1

2
(∂µφ)(∂µφ) +

1

2
m2

Bφ
2 +

1

4
λBφ

4 . (2.43)

According to (2.37) the free energy density, which equals the negative pressure, is given as

f(T ) ≡ lim
V →∞

F (T, V )

V
= lim

V →∞

{

F0

V
− 1

βV

[

−〈SI〉0 +
1

2

(〈

S2
I

〉

0
− 〈SI〉20

)

]

+ ...

}

. (2.44)

In the pole mass scheme, that is m2
R is taken to be the physical mass squared, and the limit m2

B → 0,
the result is known as

f(T ) =
π2β−4

90

[

1− 15

32

λR

π2
+

15

16

(

λR

π2

)
3
2

]

, (2.45)

where λB = λR +O
(

λ2
R

)

and m2
B = m2

R +O(λR) [18]. Comparing term by term of (2.45) with (2.44)
we notice that a naive counting of powers in the coupling parameter as in (2.44) is not valid, i.e. a

contribution of O
(

λ
3/2
R

)

is present in (2.45), whereby the variance in (2.44) is of O
(

λ2
R

)

. Indeed,

writing f =
∑

n=0 f
(n) ∼∑n=0 O(λn

B), the contribution f (2) is given as

f (2)(T ) = −9

4
λ2
B

β−4

144

β−1

8πmB
+O

(

m0
B

)

, (2.46)

and the infrared divergence is apparent in the limit mB → 0.
In the following we sum the divergent terms to all orders, which will result in a qualitative modification
of the weak-coupling expansion, due to higher order contributions, i.e. the finite half-integer term of
O
(

λ3/2
)

in (2.45) emerges. At order λN
B the dominant infrared divergent contribution is given by one

zero Matsubara mode

B(0)(T ) = β−1

∫

dDk

(2π)D
1

(ω2)N
, (2.47)

which is dressed with N non-zero Matsubara modes

B̃(0, T ) = β−1
∑

n6=0

∫

dDk

(2π)D
1

ω2
n + k2

(2.48)

as

, (2.49)

3Alternatively, one may work with an effective field theory, which separates different scales, see e.g. [17].
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where the dots denote possible B̃(0, T ) loops [6]. Summing the mickey-mouse diagrams (2.49) to
infinite order yields a set of ring diagrams. Each ring diagram looks like4

, (2.50)

whereas each full point represents a self-energy loop. A calculation of a generic mickey-mouse diagram
gives

=
(−1)N+1

N !

(

λB

4

)N

〈φφφφ ... φφφφ〉0,connected

=
(−1)N+1

N !

(

λB

4

)N

6N2(N − 1)2(N − 1)! ... 2
[

B̃(0, T )
]N

β−1

∫

dDk

(2π)D

(

1

k2 +m2
B

)N

.

(2.51)

For D = 3− 2ǫ this reads

=
(−1)N+1

N !

(

λB

4

)N

6N2N−1(N − 1)!

[

β−2

12

]N

β−1 (−1)N

(N − 1)!
∂N
m2

B

(

m3
B

6π

)

=− β−1

2

1

N !

(

λBβ
−2

4

)N

∂N
m2

B

(

m3
B

6π

)

. (2.52)

We sum all orders and get

− β−1

12π

∞
∑

N=0

1

N !

(

λBβ
−2

4

)N

∂N
m2

B
(m3

B) = −β−1

12π

(

m2
B +

λBβ
−2

4

)
3
2

. (2.53)

Here, the result is finite in the limit mB → 0. Moreover, (2.53) is of O
(

λ3/2
)

and equals to that term

in (2.45). The subsequent terms of O
(

λ2
R

)

, O
(

λ
5/2
R lnλR

)

and O
(

λ
5/2
R

)

, O
(

λ3
R lnλR

)

and O
(

λ3
R

)

are calculated in [19] and references therein.
Let us conclude this section by a schematic scale separation, which is analogical for QCD.5 The
one-loop self-energy at finite temperature is given by [6] as

Π(1) = 12λβ−1
∑

n

∫

d3k

(2π)3
1

ω2
n + ω2

, (2.54)

whereas the renormalized one is

Π
(1)
R = 12λ

∫

d3k

(2π)3
1

ω

1

eβω − 1
. (2.55)

4One may name it frog diagram.
5From (2.54) and the Matsubara frequencies ωn = (2n+ 1)πβ−1 for fermions no infrared divergences emerge in the

photon propagator in quantum electrodynamics.
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In the high temperature limit, masses are negligible, thus Π(1) → λβ−2 and hence thermal fluctuations

generate an effective mass for the scalar field, that is the soft scale mth =
√
λβ−1. In this limit, Π

(1)
R

is dominated by momenta of the order of the temperature, that is the hard scale k ∼ β−1 evolves. To
integrate the effects of the thermal mass, we define an effective propagator

Dth(k, ωn) =
1

ω2
n + k2 + λβ−2

. (2.56)

For hard momenta the self-energy correction to the propagator is of perturbative nature, whereby
the thermal mass term is as large as the inverse bare propagator on the soft scale and thus, non-
perturbatively.



Chapter 3

Resumming the non-linear SU(N)
Higgs model in a nutshell

Historically, the term linear sigma model was introduced by M. Gell-Mann and M. Lévy in 1960 [20]. It
is a renormalized maxican-hat potential inspired model for pion condensate. The O(4) model consists
of four scalar fields and thus, the vacuum values are on a 3-sphere. The three light field modes are
the pions and the heavy one is called sigma. It was a predicted particle which was identified with the
broad σ(600) resonance, though this resonance was too broad. Consequently, the model was modified
and the σ mass adjusted by slow oscillations of the potential. In the limit of fast oscillations the
pion fields are restricted to a sphere. This non-renormalizable1 effective model is called the non-linear
sigma model. Actually, this is a misnomer as there is no finite energy σ left. In the context of generic
SU(N) Yang-Mills theories, spontaneous symmetry breaking is described via the Higgs model. We
consider a non-linear SU(N) Higgs model, that is a field U ∈ SU(N) with the constraint U †U = const.,
by adding and subtracting a scalar field Φ ∼ SU(N) as e.g., treated in [2]. Thus, a gauge field mass
is added, see [21].

3.1 Lagrangian

We parametrize a field U ∈ SU(N) by N2 − 1 hermitian SU(N) generators T a and real coefficients
Λa as

U = eΛ(x) , Λ(x) = igT aΛa(x) . (3.1)

The pure Euclidean gauge invariant SU(N) Yang-Mills theory is

L = − 1

2g
Tr
{

F 2
µν

}

, Fµν = [Dµ, Dν ] , (3.2)

with the coupling parameter g ∼ mass(1/2) and the covariant derivative

Dµ = ∂µ − igT aAa
µ(x) . (3.3)

An additional scalar field Φ ∼ SU(N) with mass m in the context of the non-linear SU(N) Higgs
model is parametrized as

Φ =
m

g
exp

{

i
g

m
T aπa(x)

}

. (3.4)

1In two dimensions, its fields, its metric and hence, all of its coupling parameters are dimensionless, and therefore
renormalizable.

13
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The mass dimensions of the auxiliary Goldstone-like boson fields πa(x) ∈ R and the gauge fields
Aa

µ(x) ∈ R are the same. The local gauge transformations of the fields read

ΨΛ ≡ UΨ : ΨΛ = ΨU † ,
(

ΨΨ
)

Λ
= ΨΨ .

(Aµ)Λ ≡ UAµU
† + (∂µU)U † : (DµΨ)Λ = UDµΨ ,

(

ΨDµΨ
)

Λ
= ΨUDµΨ .

ΦΛ ≡ UΦ : (DµΦ)Λ = UDµΦ ,
(

(DµΦ)
†(DµΦ)

)

Λ
= (UDµΦ)

†(UDµΦ) . (3.5)

Claiming gauge invariance, we write down the Lagrangian in Rξ gauge, that is, we add a total
derivative, which is zero by means of space-time integration in the action, as

L = Tr

{

− 1

2g2
([Dµ, Dν ])

2

+ (DµΦ)
†(DµΦ)

+
1

ξ

(

1

ig
(∂µAµ) + iξmTr

{(

Φ− Φ†
)

T a
}

T a

)2

+ 2(∂µc)((∂µc)− [Aµ, c]) + gξmc
(

Φ†c+ cΦ
)

−∂µ

(

m

g

(

Φ− Φ†
)

Aµ

)}

, (3.6)

with a gauge fixing parameter ξ, Faddeev-Popov ghost field c = igT aca(x), anti-ghost field c =
−igT aca(x) and the gauge term in the last line, that is to cancel explicitly the terms bilinear in πA.
For the derivation of Feynman rules, we expand the Lagrangian in the field π, i.e. write Φ = m/g+Φ̂
and apply Tr

{

T aT b
}

= δab/2 for the gauge term, so that we rewrite the gauge fixed Lagrangian as

L = Tr

{

− 1

2g2
([Dµ, Dν ])

2

+
(

∂µΦ̂
)† (

∂µΦ̂
)

+
m

g

(

∂µ

(

Φ̂− Φ̂†
))

Aµ +
((

∂µΦ̂
)

Φ̂† − Φ̂
(

∂µΦ̂
†
))

Aµ − m2

g2
AµAµ

− 1

ξg2
(∂µAµ)

2+
m

g

(

Φ̂− Φ̂†
)

(∂µAµ)−
ξm2

2
Tr
{(

Φ̂− Φ̂†
)

T a
}(

Φ̂− Φ̂†
)

T a

+2(∂µc)((∂µc)− [Aµ, c]) + gξmc
(

Φ̂†c+ cΦ̂
)

+ 2ξm2cc

−m

g

(

∂µ

(

Φ̂− Φ̂†
))

Aµ − m

g

(

Φ̂− Φ̂†
)

(∂µAµ)

}

, (3.7)

where the red terms cancel and the blue highlight the Lagrangian of a pure Yang-Mills theory (2.1).
To handle the infrared divergences, due to massless gauge fields, we perform a resummation of the
non-linear SU(N) Higgs model.

3.2 Resummation

The way of resummation is to sum up an infinite number of higher order contributions into a given
order of the perturbative expansion and to subtract these at the order they are naturally present.
Formally, the rearrangement is done by subtracting contributions at one loop higher than those which
are added, i.e.

Leff =
1

l

[

L
(√

lX
)

+∆L
(√

lX
)

− l∆L
(√

lX
)]

, (3.8)
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where the physical fields X are rescaled and ∆L is a modified Lagrangian of the initial and possible
auxiliary fields [22]. In particular, if ∆L represents a mass term of the gluon, then the infrared
divergences are regulated. After the expansion of the effective Lagrangian (3.8) in the counting
parameter l, we set l = 1 and obtain the initial Lagrangian. Note, that the results in the initial
and resummed theories may differ at finite order calculations and the quality of the approximation
has to be estimated from the apparent convergence of the series for each observable. A resummed
perturbation theory has to maintain the symmetries of the theory at every order. We choose a gauged
non-linear SU(N) Higgs model, coupling a field Φ ∼ SU(N) as

∆L ≡ Tr
{[

(DµΦ)
†(DµΦ)

]}

. (3.9)

Thus, ∆L provides a mass term for the gluon at tree-level.
Equivalently, we derive the resummation prescription by rewriting the Lagrangian (3.6) in terms of
Φ → V ≡ exp{ig/m · T aπa(x)} as

L =
1

g2
Tr

{

− 1

2
([Dµ, Dν ])

2

+m2(DµV )†(DµV )

+
1

ξ

(

1

i
(∂µAµ) + iξm2Tr

{(

V − V †
)

T a
}

T a

)2

+ 2g2(∂µc)((∂µc)− [Aµ, c]) + g2ξm2c
(

V †c+ cV
)

− ∂µ
(

m2
(

V − V †
)

Aµ

)

}

, (3.10)

and note that the pure Yang-Mills Lagrangian (2.1) is obtained for m2 = 0. Hence, the resummation
prescription is to transform here m2 → m2(1 − l) and l → 1 in the end, whereby the m in V is not
scaled. In addition, we rescale g2 → g2l to count orders in terms of l. Thus, the ingredients are

Dµ = ∂µ − ig
√
lT aAa

µ(x) ,

V (x) = exp

{

i
g
√
l

m
T aπa(x)

}

,

c(x) = ig
√
lT aca(x) , c(x) = −ig

√
lT aca(x) , (3.11)

with gauge transformations

U = eΛ , U † = e−Λ ,

(Aµ)Λ = UAµU
† + (∂µU)U † = Aµ + δAµ[Λ] +O

(

Λ2
)

,

δAµ[Λ] = ΛAµ −AµΛ + (∂µΛ) ,

VΛ = UV = δV [Λ]V +O
(

Λ2
)

, V †
Λ = V †U † = V † + δV [Λ]† +O

(

Λ2
)

,

δV [Λ] = ΛV , δV [Λ]† = −V †Λ (3.12)

and the resummed Lagrangian

Ll = − 1

g2l
Tr

{

1

2
([Dµ, Dν ])

2 −m2(1− l)(DµV )†(DµV ) +
1

ξ
F2 + 2cδF [c]

}

, (3.13)

where the first two terms are left invariant by the gauge transformations. The Rξ gauge fixing condition
F , which cancels mixed two-point functions πA reads

F ≡ (∂µAµ)− ξTr {WT a}T a , W ≡ m2(1− l)
(

V − V †
)

(3.14)
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and transforms as

WΛ = W + δW [Λ] +O
(

Λ2
)

,

δW [Λ] = m2(1 − l)
(

ΛV + V †Λ
)

,

FΛ = F + δF [Λ] +O
(

Λ2
)

,

δF [Λ] = ∂µδAµ[Λ]− ξTr {δW [Λ]T a}T a . (3.15)

The ghost term is implied in FΛ. The pure Yang-Mills Lagrangian (2.1) in covariant gauge is obtained
for l = 1 in (3.13). We will apply the resummed non-linear SU(N) Higgs model in Chapter 6 to
calculate the the transverse part of the gluon self-energy. Next, we check BRS invariance, which is
the residual symmetry after gauge fixing.

3.3 BRS invariance

BRS transformations were first introduced by C. Becchi, A Rouet and R. Stora in 1975 [16] and are
nilpotent of vanishing square, that is δ2BRS = 0. The Ward-Takahashi identities associated with BRS
symmetry imply the structural stability of the action as implementing renormalization. For a broader
application of BRS transformations see [23]. We introduce a global Grassmann parameter ω and
derive explicitly the transformations. As gauge invariance implies BRS invariance the first two terms
in (3.13) are left invariant by the particular transformation Λ = ωc, i.e.

δBRSAµ ≡ δAµ[ωc] ,

δBRSV ≡ δV [ωc] , δBRSV
† ≡ δV †[ωc]

⇒ δBRSπ = ω

∞
∑

n=0

Bnl
n
2

n!

n
∑

j=0

(

n

j

)

πn−jcπj +O
(

ω2
)

= ωc− ω
√
l

2
(πc− cπ) +

ωl

12
(ππc− 2πcπ + cππ) +O

(

π4, ω2
)

(3.16)

where Bn are the Bernoulli numbers. The transformations δBRSc and δBRSc are given by invariance
of the last two terms in (3.13). One has

δBRSF = δF [ωc] = ωδF [c] ,

0
!
= δBRS

(

1

ξ
F2 + 2cδF [c]

)

=
2

ξ
FωδF [c] + 2δBRScδF [c] + 2cδBRSδF [c] (3.17)

Thus, we can set

δBRSc ≡ −1

ξ
Fω (3.18)

and are left with

0
!
= δBRSδF [c]

= δBRS(∂µδAµ[c]− ξTr {δW [c]T a}T a)

= ∂µ(δδBRSAµ[c] + δAµ[δBRSc])− ξTr {(δδBRSW [c] + δW [δBRSc])T
a}T a

= ∂µ(δAµ[δBRSc]− δAµ[ωcc])− ξTr {(δW [δBRSc]− δW [ωcc])T a}T a . (3.19)

Consequently, we deduce
δBRSc ≡ ωcc . (3.20)



Chapter 4

Review of the Laporta-algorithm

In 2000, S. Laporta described an algorithm for the reduction of a set of generic Feynman integrals
to some finite set of integrals [24], henceforth called master integrals, and also the methods of their
numerical solutions [25]. Here, we will give a review of the techniques applied in our computations
starting with the reduction of Feynman integrals by integration-by-parts identities. Thereafter, we
will present the method of difference equations1 and their solutions by means of factorial series which
allows us to calculate the master integrals numerically.

4.1 Integration-by-parts identities

The method of integration-by-parts (IBP) identities was first described by K.G. Chetyrkin and F.V.
Tkachov in 1981 [26]. Once created, a system of IBP identities provides a way to reduce the number
of Feynman integrals to be calculated, i.e. the master integrals. Each initial Feynman integral is
expressed as a linear combination of these master integrals. To illustrate the method of IBP identities,
we consider the zero-point one-loop integral in D-dimensional momentum-space

I(n) =

∫

[

dDk
] 1

(k2 + 1)n
, (4.1)

where
[

dDk
]

≡ dk1 ... dkD/πD/2 and each kµ ∈ (−∞,+∞) . IBP on the level of the integrand yields
∫

[

dDk
]

∂kµ

kν
(k2 +m2)n

=

∫

[

dDk
]

[

δµν
(k2 + 1)n

− 2nkµkν
(k2 + 1)n+1

]

. (4.2)

The left hand side is identically zero by Stokes’ theorem. Contracting the right hand side with δµν ,
and making use of δµµ = D and k2/(k2 + 1) = 1− 1/(k2 + 1), we can rewrite this for n > 0 as2

(D − 2n)I(n) + 2nm2I(n+ 1) = 0 . (4.3)

Now, we have a set of recurrence relations, so that we can express any I(n > 1) in terms of I(1),
which is the irreducible master integral in this example.
Let us turn to a generic L-loop Feynman integral with N internal lines and Ne external momenta of
the form

I(n1, ..., nN ;α1, ..., αNsp) =

∫

[

dDk1
]

...
[

dDkL
]
Rα1

1 ... R
αNsp

Nsp

Dn1

1 ... DnN

N

, (4.4)

1Alternatively, solutions of difference equations has been obtained via systems of differential equations in masses and
momenta by means of Laplace’s transformation, see [25].

2Rewriting this as I(n+1) = (n−D/2)/(m2n)I(n) the known result I(n+1) ∝ Γ(n−D/2)/Γ(n) follows, recursively.

17
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where the set {Rj} contains all Nsp = L(Ne + (L + 1)/2) possible scalar products ki · kj and pi · kj
and Di = q2i +m2

i , where qi is a linear combination of ki and the external momenta pi.
The next step is to write the scalar products Rj as irreducible ones, in the sense that Rj is not
appearing in the numerator and denominator, in terms ofDj , simultaneously. This is done by applying
the algebraic identity

Rj

Dj
=

1

Cj

(

1− Dj − CjRj

Dj

)

(4.5)

with Cj given as coefficients of Rj in Dj .
For these integrals with only irreducible scalar products (i.s.p.), we can write down a set of IBP
identities as

∫

[

dDk1
]

...
[

dDkL
]

∂(kj)µ



{(kl)µ, (pm)µ}
[

Rα1

1 ... R
αNsp

Nsp

Dn1

1 ... DnN

N

]

i.s.p.



 = 0 . (4.6)

Reducible scalar products formed in the calculation of the derivative and the contraction of the index
µ have to be transformed into irreducible ones via the algebraic identities (4.5).
This linear homogeneous system of equations with integrals as unknowns is infinite dimensional.
Laporta suggests a Gauss algorithm for a finite subset of these identities: One IBP identity is chosen,
and previously reduced integrals are substituted therein. This identity is rewritten such that one of
the integrals which is not yet reduced is expressed by the residual ones. Hence, it is added to the list
of reduced integrals and this procedure is repeated with another IBP identity.
The algorithm is sensible to the ordering of the identities and the integrals. The ordering of the
identities does not affect the solution of the system but the computation time. A good choice is to
select first the integral with the lowest number of denominators, so that the number of substitutions is
minimized. The ordering of the integrals affect the form of the master integrals. Laporta’s choice is a
lexicographic ordering of the number of denominators, the sum of the exponents of the denominators
and the sum of the exponents of the scalar products. A flow chart of the algorithm and the details on
the finite sets of identities to be considered are given in [25].
Besides the IBP identities, one may make use of the Lorentz-scalar nature of Feynman integrals by
constructing Lorentz-invariance (LI) identities [27]. They have the form

∫

[

dDk1
]

...
[

dDkl
]

pµi p
ν
j

(

pkν∂pkµ − pkµ∂pkν

) 1

Dn1

1 ... DnN

N

= 0 . (4.7)

The differential operator within the round brackets is the generator of Lorentz transformations in the
linear space of scalar functions depending on pk. Though the LI identities can be represented as linear
combinations of IBP identities [28], they may be useful in performing reductions.
Various computer programs have implemented the Laporta-algorithm, e.g. SYS by S. Laporta, Fire
by A.V. Smirnov [29] and Reduze 2 by A. von Manteuffel and C. Studerus [30]. Next, we apply the
algorithm to determine the difference equations satisfied by the master integrals.

4.2 Difference equations

In the previous section we have shown how to reduce generic Feynman integrals to master integrals.
In this section we discuss how to build difference equations satisfied by the master integrals. The
method to solve these, will be discussed in the next section.
Difference equations are functional equations with the parameter of the unknown function shifted by
integer values. Let us recall that we have encountered an example for a linear difference equation of
first order in (4.3). Linear difference equations are mathematically well understood [31]. Here, we



4.3. FACTORIAL SERIES 19

consider linear difference equations in one parameter. This will help us in high precision calculation
of the master integrals.
We sketch the construction of difference equations by introducing an exponent x in a scalar master
integral of the form,

UD1
(x) =

∫

[

dDk1
]

...
[

dDkL
]

Dx
1D2 ... DN

, (4.8)

where the master integral is given as UD1
(1) - diagrammatically, we place x points on the corresponding

line. IBP identities yield a linear difference equation of order R of the function UD1
of the form

R
∑

j=0

pj(x)UD1
(x+ j) = F (x) (4.9)

with polynomials pj(x). F (x) is a linear combination of known integrals derived from master integrals
containing D1 but not all of the other denominators.
Next, we have a closer look at this procedure by taking into account all master integrals obtained by
means of the algorithm described in the previous section. The number of denominators of the master
integrals range from L to N , i.e. from the number of loops to the number of internal lines. For each
m ∈ {L, ..., N} we group all of the master integrals in a set which contain non of the denominators
Di with i < m but the denominator Dm. In the following Lm denotes the number of elements in such
a set and 1 ≤ l ≤ Lm for a given m. Different sets do not intersect, hence we treat each of them
separately. We define master functions as

Uml(x) =

∫

[

dDk1
]

...
[

dDkL
]

[

Rα1

1 ... R
αNsp

Nsp

Dx−1+m
m Πi>mDi

]

i.s.p.

, (4.10)

which are identical to the master integrals for x = 1. Applying a modified version of the previously
described algorithm, see [25], yields a system of identities which contain solely master functions. The
solution of this system of identities provides difference equations in Uml with the structure

Rh
∑

i=0

pilh(x)Um,l+h(x+ i) =
l+h−1
∑

k=1

Qhlk
∑

j=0

qjkl(x)Umk(x+ j) , (4.11)

where h labels different master integrals with the same denominators but different numerators. This
structure has a triangular form, so that we can tackle it sequentially and solve each difference equation
one at a time, supposing that we know the inhomogeneity.

4.3 Factorial series

Assuming that we have worked out a triangular system of linear difference equations in the master
functions U(x), each linear difference equation of order R is of the form

R
∑

j=0

pj(x)UD1
(x+ j) = F (x) (4.12)

with known polynomials pj(x) and some function F (x), which is solved by a general solution of its
homogeneous equation. A particular non-homogeneous solution UNH(x) is given as

U(x) =

R
∑

j=1

ωj(x)U
HO
j (x) + UNH(x) , (4.13)
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where ωj(x) are periodic functions of period one and {UHO
j (x)} is a fundamental system of homoge-

neous solutions.
We now introduce factorial series and some useful operators and describe how to use them to solve
the linear difference equation 4.12. A factorial series of first kind is of the form

∞
∑

s=0

asΓ(x+ 1)

Γ(x −K + s+ 1)
. (4.14)

This series behaves similarly to asymptotic expansions in 1/n, but it has a better convergent behavior
[32]. It converges for every point in the half-plane which is limited on the left by the abscissa of
convergence λ ≡ ℜx, excluding the points x = K − n with n ∈ N.
For any m, the operator ρ is defined as

ρ
mU(x) =

Γ(x+ 1)

Γ(x−m+ 1)
U(x−m) (4.15)

following the identity

ρ
m
ρ
nU(x) = ρ

m+nU(x) . (4.16)

Additionally, the operator π is defined as

πU(x) = x(U(x) − U(x− 1)) . (4.17)

These operators obey the following identities:

[ρ,π]U(x) = ρU(x) , (4.18)

p(π)ρmU(x) = ρ
mp(π +m)U(x) , (4.19)

xU(x) = (π + ρ)U(x) , (4.20)

where p is a polynomial. Applying these operators to master functions, an expansion in factorial series
becomes an expansion in powers of ρ−1

We start with the solution of the homogeneous difference equation

p0(x)U
HO(x + 0) + ...+ pR(x)U

HO(x+R) = 0 . (4.21)

Making the replacement x → x−R and setting qR−i(x) = pi(x −R) this can be rewritten as

q0(x)U
HO(x + 0) + ...+ qR(x)U

HO(x−R) = 0 . (4.22)

We make a change of variable UHO(x) = µxV HO(x), where µ is an unspecified parameter and obtain

µRq0(x)V
HO(x) + ...+ µ0qR(x)V

HO(x−R) = 0 . (4.23)

We now rewrite this equation in terms of ρ and π operators by multiplying it with (x−0) ... (x−R+1)
and remember that xV HO(x − 1) = ρV HO(x) and xV HO(x) = (π + ρ)V HO(x) to obtain the first
canonical form of the difference equation

(

f0(π, µ)ρ
0 + ...+ fm+1(π, µ)ρ

m+1
)

V HO(x) = 0 , (4.24)

where fj are polynomials. Usually, fm+1(µ) is solely a function of µ. The characteristic equation

fm+1(µ) = 0 (4.25)
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has R non-zero solutions in powers of µ. For each distinct solution the canonical form (4.24) takes
the form

(

f0(π)ρ
0 + ...+ fm(π)ρm

)

V HO(x) = 0. (4.26)

Now, we are looking for a solution of this equation in V HO in terms of the factorial series

V HO(x) =

∞
∑

s=0

asΓ(x+ 1)

Γ(x−K + s+ 1)
(4.27)

and substituting it we obtain the recurrence relations

asfm(K +m− s) + ...+ a0fm−s(K +m− s) = 0 0 ≤ s ≤ m,

asfm(K +m− s) + ...+ as−mf0(K +m− s) = 0 s ≥ m. (4.28)

Assuming that a0 6= 0, we first solve the indicial equation

fm(K +m) = 0 (4.29)

for K. Usually, all roots are distinct and their number is a multiple of the solution of the characteristic
equation (4.25). If some roots differ by a positive integer, called congruent roots, then fm(K+m−s0) =
0 for some s0 and the residual terms of the recurrence relations (4.28) vanish and thus, the value of
as0 is undetermined and can be chosen at will.
The general solution of the homogeneous difference equation is a linear combination of λ distinct
solutions of the characteristic equation (4.25) and its νi indicial equations (4.29), i.e.

UHO(x) =

λ
∑

i=1

νi
∑

j=1

ωij(x)µ
x
i V

HO
ij (x) (4.30)

with single-periodic functions ωij(x).
A particular solution of the non-homogeneous difference equation is obtained in a similar way, assuming
that F (x) can be written as a sum of factorial series. Conveniently, let us consider F (x−R) = µxT (x)
with

T (x) = c0ρ
K−0 + c1ρ

K−1 + ... , (4.31)

where µ, K and all ci are known. Following the procedure for the solution of the homogeneous
difference equation we obtain

asfm(K − s) + ...+ a0fm−s(K − s) = c0 0 ≤ s ≤ m,

asfm(K − s) + ...+ as−mf0(K − s) = cs s ≥ m. (4.32)

In the more general case F (x−R) = µxp(x)T (x), we first transform the polynomial p(x) into p(π+ρ)
and let it act on the expansion of T (x).
Let us summarize what we have encountered so far and what is to be done next. We have studied how
to obtain a fundamental system of the homogeneous difference equation and how to find a particular
solution of the non-homogeneous difference equation based on factorial series. As we are looking for
the integer values of x in the general solution, we can write it as

U(x) =

R
∑

j=1

ηjU
HO
j (x) + UNH(x) (4.33)

with constants ηj . The next step is to determine these constants. Subsequently, we discuss the
convergence of the factorial series to obtain a high precision result for the master integral.
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The values of the constants can be determined in two different ways. One method is to equate the
first coefficients of the expansions in factorial series of the general solution (4.33) and of the master
function

U(x) =

∫

[

dDk1
]

...
[

dDkL
]

[

Rα1

1 ... R
αNsp

Nsp

Dx
1D2 ... DN

]

i.s.p.

(4.34)

for large x. The other one is to equate the general solution (4.33) and the master function (4.34) at
x equal zero.
We now illustrate the large-x method by considering an Euclidean massive Feynman integral which
we will address again in Chapter 7.

4.3.1 Example: massive zero-point five-loop sunset-integral

An Euclidean zero-point sunset-integral with one mass parameter is of the form

S(l, D, x) =

[∫

dDp

p2 + 1

]−l ∫
dDk1
k21 + 1

...
dDkl
k2l + 1

1

[(k1 + ...+ kl)2 + 1]x
, (4.35)

where l labels the number of loops. We are interested in extracting the first two coefficients in the
expansion of the factorial series for l = 5. Writing S(5, D, x) in hyperspherical polar coordinates
for k1 yields

S(5, D, x) =
1

Γ
(

D
2

)

∫ ∞

0

dk21(k
2
1)

D
2
−1

(k21 + 1)x
f
(

k21
)

,

f(k21) ≡
1

ΩD

∫

dΩDk̂1g(k1) ,

g(k1) ≡
∫

[

dDk2
]

...
[

dDk5
] 1

k21 + 2k1p cosφ+ p2 + 1
, (4.36)

where ΩD ≡ 2πD/2

Γ(D/2) and p ≡ ∑5
i=2 k

2
i . Diagrammatically, g(k1) corresponds to the initial diagram

with one line cut. In the Euclidean massive case, f
(

k21
)

has no singularities for k21 ≥ 0 and thus, the

behavior for large x of the integral is determined by the factor
(

k21 + 1
)−x

, that is around k21 = 0.
Expanding the integrand of g(k1) up to second order in k1 yields

g(k1) =

∫

[

dDk2
]

...
[

dDk5
]

[

1

p2 + 1
− 2p cosφ

(p2 + 1)2
k1 +

( −2

(p2 + 1)2
+

8p2 cos2 φ

(p2 + 1)3

)

k21 +O
(

k31
)

]

.

(4.37)
Integrating over the angular part and making use of the identities

∫ π

0

dφ sinD−2 φ cosφ = 0 ,
ΩD−1

ΩD

∫ π

0

dφ sinD−2 φ cos2 φ = D (4.38)

we obtain

f(k21) =

∫

[

dDk2
]

...
[

dDk5
]

[

1

(p2 + 1)2
+

(

4−D

D

1

(p2 + 1)2
− 4

D

1

(p2 + 1)3

)

k21

]

=
S(4, D, 1)

Γ
(

2− D
2

) +

(

4−D

D

S(4, D, 2)

Γ
(

2− D
2

) − 4

D

S(4, D, 3)

Γ
(

2− D
2

)

)

k21

≡A0 +A1k
2
1 (4.39)
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dropping the contribution of O
(

k31
)

. Making the change of variables k21 ≡ u
1−u and expanding in

powers of u we get

f
(

k21
)

= (1− u)
D
2
+1

(

A0 +

(

2 +D

D
A0 +A1

)

u

)

. (4.40)

Laporta has shown [25], that the coefficients of the factorial series as are related to the As via

as = As

Γ
(

s+ D
2

)

Γ
(

D
2

) . (4.41)

We read off

a0 =
S(4, D, 1)

Γ
(

2− D
2

) ,

a1 =
D

2Γ
(

2− D
2

)

(

2 +D

2
S(4, D, 1) +

4−D

D
S(4, D, 2)− 1

D
S(4, D, 3)

)

(4.42)

and note that we have expressed the coefficients of the factorial series of the five-loop integral in
terms of four-loop integrals.

It is a general feature of the large-x method, to express the coefficients of the factorial series in
terms of integrals with one lower order in loop. Thus, all coefficients of the factorial series may
be recursively determined. Let us now state some more common properties. For the homogeneous
difference equation, the constants ηj are different from zero, if the corresponding µj and Kj satisfy
the condition

µj =
1

m2
1

& Kj +
D

2
∈ Z− ⇒ ηj 6= 0 , (4.43)

where m1 is the mass of the propagator treated separately, i.e. the propagator which is not present
in g(k1) in the context of the above example. A similar equation for the non-homogeneous difference
equation is usually found not to be satisfied. If no pair satisfies the condition (4.43), then the integral
is completely determined by the non-homogeneous term. The non-zero constants are determined by
equating the factorial series of the integral as encountered here with the factorial series of the general
solution obtained previously by comparing the coefficients of the same powers of the operator ρ.
For the case of non-Euclidean integrals, the radial integration has to be analytically continued to
the complex plane. Thereby it may go across some singular points where the line integral has to be
deformed to turn around these singularities. For such a case or for the case of non-zero masses in
propagators which cause additional singularities, we refer to [25].
The zero-x method is not affected by the values of external momenta or masses but yields solely a
relation between the constants, i.e.

U(0)− UNH(0) =

R
∑

j=1

UHO
j (0) . (4.44)

U(0) is an integral with one denominator less, which may be obtained by e.g., adding an exponent to
some of the denominators and solving the corresponding difference equations.
To perform a high precision calculation of the master integral U(1), we analyze the convergence of a
factorial series

U(x) = µx
∞
∑

s=0

as
Γ(x + 1)

Γ(x+ 1−K + s)
. (4.45)
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The abscissa of convergence λ is finite, if none of the solutions µj of the characteristic equation (4.25)
satisfies the condition

0 <

∣

∣

∣

∣

µj

µ
− 1

∣

∣

∣

∣

< 1 . (4.46)

The convergence is logarithmic, that is

∣

∣

∣

∣

∣

µx
smax
∑

s=0

as
Γ(x+ 1)

Γ(x+ 1−K + s)
− U(x)

∣

∣

∣

∣

∣

∼ sλ−x
max (4.47)

for large m. Usually, λ ∼ 1, hence the integral U(x = 1) can not be calculated directly by summing
up the factorial series. The way to calculate the master integral is to calculate master functions for
some large xmax and to apply the corresponding recurrence relations thereafter, to get the master
function for all x ∈ {xmax, ..., 1}. Here, we have to keep in mind that the recurrence relation may
be unstable causing a decrease in the precision. We define a quantity A−1 = minj |µj/µ|. If A > 1,
then each iteration in x increases the error of U(x) by a factor A. Else, if A = 1 and µ is a root of
the characteristic equation (4.25) of multiplicity m > 1, then n iterations in x increase the error of
U(x) by a factor nm−1, which is weaker than the preceding instability. To calculate U(1) with the
favored number of correct digits, the parameters smax and xmax have to be chosen appropriately. We
will discuss more about this for our calculations, later on.



Chapter 5

Framework of automated Feynman
integral reduction

In perturbative quantum field theories, the usual method to calculate physical observables, e.g. cross
sections, involves the generation and calculation of Feynman diagrams. On the analytical level, a
reduction of Feynman integrals to a set of master integrals can be implemented, which in turn can be
numerically calculated, see Chapter 4. Commonly, one has to treat a large number of diagrams with
a complex tensorial structure. To handle this effectively various algorithms have been implemented
in computer systems.
A first attempt was made in 1967 with Schoonschip by M. Veltman written in assembler language
[33]. He initially designed it to compute the quadrupole moment of the W boson as a part of his
work on the renormalizability of electroweak interactions. He was awarded the Nobel prize in 1998.
The next effort was made with Reduce by A.C. Hearn in 1968 based on Lisp, which is yet being
developed [34]. In 1982, the multi-purpose system Mathematica was developed by S. Wolfram in
C [35]. In 1989, J.A.M. Vermaseren has written the low-level symbolic manipulation system Form

in C, which is a successor of Schoonschip [36]. P. Nogueira has designed QGraf in FORTRAN77 in
1993, to automatically generate Feynman graphs by representing them in symbolic expressions [37].
The computer systems named here, excluding Mathematica, are made public. We will continue
with discussions on some current high-level computer programs, each covering some general or special
purposes of the automated reduction of Feynman integrals.

5.1 Fire and LiteRed

The name Fire is an abbreviation for Feynman Integral REduction, which refers to AIR (Automated

Integral Reduction), developed by C. Anastasiou and A. Lazopoulos [38]. Fire is implemented in
Mathematica by A.V. Smirnov [29]. It is designed to perform the reduction of dimensional regu-
larized scalar Feynman integrals to master integrals. It provides several modes, such as the Laporta-
algorithm. Further modes involve applying the s-bases-algorithm, which is based on the notion of
Gröbner-bases [39], accessing QDBM [40] to store data on disc and to link Fermat [41] for algebraic
manipulations. Additionally, it makes use of the symmetries, explicit integrations by subdiagrams,
ideas by R.N. Lee [28] and rules defined by hand and also the rules created with LiteRed [42].
The Mathematica package LiteRed (Loop InTEgrals REDuction) is written by R.N. Lee [43]. It
performs a heuristic search of the symbolic IBP reduction rules, which is not systematic and may
abort but yields less redundancies with respect to the brute-force Laporta-algorithm. A reduction
with the Laporta-algorithm generates large databases of IBP rules which are too large to store and

25
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are thus re-computed in each run. Furthermore, a large number of IBP identities generated with
the Laporta-algorithm are redundant. Besides, LiteRed provides tools for the search of symmetry
relations, the construction of difference equations and dimensional recurrence relations [44] and for
drawing graphs. The package includes various illustrative examples.
Let us return to Fire and give an example making use of IBP identities and symmetries. We reduce
a subtopology of the Benz-diagram, i.e. the scalar zero-point three-loop basketball-diagram with one
mass parameter and three lines with one dot, each.

(*declare symmetries*)

ro = Cycles[{{1, 2, 3}, {4, 5, 6}}]; (*rotation*)

re = Cycles[{{1}, {2, 3}, {4, 6}, {5}}]; (*reflection*)

de = Cycles[{{1, 4, 6}, {2, 5, 3}}]; (*deformation*)

group = PermutationGroup[{ro, re, de}];

elements = GroupElements[group];

sym = PermutationReplace[{1, 2, 3, 4, 5, 6}, elements];

Get["FIRE/FIRE_3.5.0.m"]; Get["FIRE/ibp.m"]; (*load FIRE*)

(*generate IBP identities*)

Internal = {a, b, c};

External = {};

Propagators = {a^2 + mm, b^2 + mm, c^2 + mm, (a - b)^2 + mm,

(b - c)^2 + mm, (c - a)^2 + mm};

PrepareIBP[];

startinglist = {IBP[a, a], IBP[a, b], IBP[a, c], IBP[b, a],

IBP[b, b], IBP[b, c], IBP[c, a], IBP[c, b], IBP[c, c]};

RESTRICTIONS = {}; (*define regions of vanishing integrals*)

SYMMETRIES = sym;

Prepare[]; (*transform into internal format*)

Burn[]; (*perform optimizations*)

(*reduce integral*)

F[{2, 0, 2, 2, 1, 0}]

This will yield some output containing various information on the evaluation and the outcome. Dia-
grammatically, the procedure is as follows:

↓ shrink lines and place points

=
−3(−3 +D)(−2 +D)(−10 + 3D)(−8 + 3D)

512(−4 +D)[mm]3

− (−2 +D)3(−38 + 11D)

256(−4 +D)[mm]4
(5.1)
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Figure 5.1: Topological graphs in Mincer (see [45])

5.2 Mincer and Matad

The Form package Mincer by J. Vermaseren was originally implemented by S.G. Gorishny, S.A.
Larin, L.R. Surguladze and F.V. Tkachov in Schoonschip [45], based on the integration-by-parts
method [26]. It performs the Laurent-expansion of scalar massless two-point Feynman integrals in
terms of ǫ = (4 −D)/2 up to O

(

ǫ3−l
)

with loops l ≤ 3.
As there is currently no manual for the current package Mincer Exact, we give some more details
on its use. On has to disable the call to the procedure treatqaqa.prc in calcdia.frm, if no gluon currents
show up in the Feynman diagram, to be calculated. Else, the trace over a single Dirac γ matrix makes
the integral equal to zero. The integrals are declared in diagram.h by specifying the momentum
carried by each line and the topology shown in Figure 5.1. Q labels the external momentum. Internal
momenta are denoted by p followed by the number of the corresponding line. The names of the
topologies as given in Figure 5.1 have to be written in lower case letters. Note that the topology be
is equivalent to the topology be with line 8 shrunken to a point. The topologies one1 to one4 are
called by o1 to o4, respectively. The topology of the two-loop diagram (their Fig. 1.) and that of
the one-loop diagram (their Fig. 2.) is named t1 and l1, respectively. In the default example, a
subtopology #define SUBTOPO "12" is stated but not applied in calculations. In addition, topologies
named fa, o5, o6, y1, y2, y3, y4, y5, y6, t1, t2 and t3 are declared though not associated with diagrams.
We give two more examples, hereafter.

Local example1=Q.Q^2/p1.p1/p2.p2/p3.p3/p4.p4/p5.p5/p6.p6/p7.p7



28 CHAPTER 5. FRAMEWORK OF AUTOMATED FEYNMAN INTEGRAL REDUCTION

/p8.p8;

#define NAME "example1"

#define TOPO "no"

Local example2=Q.Q/p1.p1/p2.p2/p3.p3/p4.p4/p5.p5/p6.p6/p7.p7;

#define NAME "example2"

#define TOPO "o1"

The exact result of a calculation is given in terms of rational functions in ǫ, G-scheme constants and
the one- and two-loop master integrals (their Fig. 2. and Fig. 1., respectively) and two three-loop
master integrals, named BasicNOIntegral and BasicT1Integral. G-scheme constants are functions of
the Euler Γ function and thus, related recursively whereas GschemeConstants(1,1) is, roughly given as
the one-loop master integral. Common factors 4π−2l are set to 1. The output by default is according
to the MS-scheme and in the G-scheme, if #define MSBAR is not set in calcdia.frm. To expand a
result in powers in ǫ (ep) via the ζ (z) function, one may modify the print command in the end in
calcdia.frm:

#call subvalues;

#call expansion(ep);

print;

.end

We give the exact and the expanded printout for our examples.

example1 = BasicNOIntegral * rat(1,1)

example1 = + ep * ( 50*z6 + 160*z5 + 68*z3^2 ) + 20*z5

example2 = GschemeConstants(0,0) * BasicT1Integral * rat(ep^2,1)

example2 = + ep^-1 * ( 6*z3 ) + ep * ( 102*z5 + 36*z4 + 72*z3 )

+ 9*z4 + 24*z3

Matad is a Form package written by Matthias Steinhauser [46]. Like Mincer, it is based on the
method presented in [26] but approaches the opposite limit, that is the zero external momentum and
massive lines. The name is an abbreviation for MAssive TADpoles, i.e. it is designed to expand scalar
zero-point Feynman integrals with one mass scale in terms of ǫ = (4 − D)/2 up to O

(

ǫ3−l
)

with
loops l ≤ 3. Furthermore, a user interface is provided and leg diagrams can be expanded around zero
external momentum. For a representation of the master integrals in the output, see [47].

5.3 Cut-and-Tarcer technique

We refer to the cut-and-Tarcer technique as by cutting a three-loop vacuum bubble diagram once,
reducing the residual two-loop integral with Tarcer [48] and subsequently integrating the truncated
line. Tarcer is part of FeynCalc [49] by R. Mertig and R. Scharf. It is an implementation of
the recurrence algorithm by O.V. Tarasov [50] in Mathematica for the reduction of dimensional
regularized two-point two-loop Feynman integrals with arbitrary masses and tensorial structure. A
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general two-loop integral is given as

1

πD

∫

dDk1d
Dk2(∆k1)

a(∆k2)
b
(

k21
)u (

k22
)v

(pk1)
r(pk2)

s(k1k2)
t

[k21 −m2
1]

ν1 [k22 −m2
2]

ν2 [k23 −m2
3]

ν3 [k24 −m2
4]

ν4 [k25 −m2
5]

ν5

≡ TFI
[

D, p2,∆p, {a, b}, {u, v, r, s, t}, {{ν1,m1}, {ν2,m2}, {ν3,m3}, {ν4,m4}, {ν5,m5}}
]

, (5.2)

where k3 = k1−p, k4 = k2−p, k5 = k1−k2 and an external light-like vector ∆. The TACRER pack-
age was designed for Mathematica 3.0 but includes some pre-generated binary files tarcer*.mx.
These files are named according to their rank limit in which all involved operators up to {a +
b, r + s} ≤ $RankLimit are constructed and the corresponding relations generated. The reduc-
tion of a defined integral is done via TarcerRecurse[%] which can be expanded in ǫ by means of
TarcerExpand[%,D→4-2ǫ]. In the following, we illustrate the cut-and-Tarcer technique.
We define a class of scalar zero-point three-loop Feynman integrals with one mass parameter m by

Is1s2s3s4 =

∫

dDk1d
Dk2d

Dk3
[k21 +m2]s1 [k22 +m2]s2 [k23 +m2]s3 [(k1 + k2 + k3)2 +m2]s4

. (5.3)

From mass derivatives on the respective right hand sides of (5.3), using the fact that the overall mass

dimension of the integral is known and letting the mass derivatives ∂m2 or [∂m2 ]
2
explicitly act on the

integrand, we get,

8m2I2111 = (8− 3D)I1111 ,

2m2(3I2211 + 2I3111) = (10− 3D)I2111 ,

4m2(I2221 + 3I3211) = (12− 3D)I2211 ,

24m4(I2221 + 3I3211 + I4111) = (10− 3D)(12− 3D)I2111 . (5.4)

Using furthermore the cut-and-Tarcer technique on the specific combination

2I3111 − I2211 ,

3I4111 − 3I3211 + I2221 . (5.5)

we deduce D-dimensional reduction relations

4(4−D)I2211 =
1

16m4
(3−D)(8 − 3D)(10− 3D)I1111 + I2220 ,

8(4−D)I3111 =
1

16m4
(7−D)(8 − 3D)(10− 3D)I1111 − 3I2220 ,

64(4−D)I4111 =
1

16m6
(10− 3D)(8− 3D)(58− 17D +D2)I1111 −

1

m2
(34− 7D)I2220 ,

64(4−D)I3211 =
3

16m6
(6−D)(3 −D)(10− 3D)(8− 3D)I1111 −

1

m2
(14− 5D)I2220 ,

32(4−D)I2221 =
3

16m6
(3−D)(2 −D)(10− 3D)(8− 3D)I1111 +

1

m2
(38− 11D)I2220 . (5.6)

Expanding both sides via Matad we have confirmed the above relations up to O(ǫ = (4 −D)/2).
Note, that I2220 = J2J2J2 are products of one-loop tadpoles. The corresponding one-loop integral is

Js ≡
∫

dDp

[p2 +m2]2
=

π
D
2 Γ(s− D

2 )

|m|2s−DΓ(s)
, 2sm2Js+1 = (2s−D)Js . (5.7)

Thus, we have reduced some three-loop vacuum bubble diagrams by applying methods for massive
two-loop propagators.
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5.4 Reduze 2

We will conclude this chapter about automated reductions of Feynman integrals by presenting version
2 of Reduze, which is basically used for the computations in this thesis, see Chapter 6. Reduze is an
implementation of the Laporta-algorithm in C++, enhanced by graph and matroid based algorithms for
the identification of equivalent topologies and integrals, written by A. von Manteuffel and C. Studerus
[30]. It is designed for a distributed reduction of dimensional regularized scalar Feynman diagrams
with an arbitrary number of loops and legs to master integrals.
To build Reduze, the computer system GiNaC [51] or Fermat has to be provided. Both perform
algebraic manipulations, whereas Fermat is more effective in polynomial greatest common divisor
(GCD) computations thanGiNaC, see [30]. In addition, Open MPI [52] may be linked for distributed
computations. With Berkeley DB [53], the equations to be reduced are stored in a database on
disc so that information which are too large for the main memory are handled and information of an
aborted run are restored.
To run Reduze, some configuration files and a job file with YAML [54] syntax have to be provided.
The configuration files define the integral families and kinematics, for example, the kinematics.yaml
that we used for the computations in this thesis is:

kinematics :

incoming_momenta: [kq]

outgoing_momenta: [q]

momentum_conservation: [kq, q]

kinematic_invariants:

- [xi, 2]

scalarproduct_rules:

- [[q,q], 1]

Integral families should be ordered according to their number of permutation symmetry generators
to improve up on the performance. Furthermore, a global.yaml file configures paths e.g., the Fer-

mat path. The job file lists all jobs, e.g. setting up sector mappings, selecting reductions, reduc-
ing identities and exporting them to e.g., Form [60] format. In addition, we can Wick rotate to
Euclidean space, that is multiplying Feynman diagrams with −1 for each propagator, by setting
the flag toggle metric convention:true. The metric in Minkowski space is diag(1,−1,−1,−1).
The job setup sector mappings should be executed first to improve the performance. The jobs
select reductions and reduce files reduce integrals listed in an input file. In the following, we
introduce parameters which some of the jobs depend on.
Integrals are indexed by integral families and sectors therein. An l-loop integral family is an ordered
set of n propagators which is minimal and complete, in the sense, that any scalar product of two loop
momenta or one loop and one leg momentum can be uniquely expressed as a linear combination of in-
verse propagators and kinematic invariants. A selection of t propagators {Dj1 , ..., Djt} ⊆ {D1, ..., Dn}
of an integral family determines a sector of this family. Its identification number is defined as
ID =

∑t
k=1 2

jk−1. Integrals in a sector have the generic form

I =

∫

dDk1 ... d
DklD

−r1
j1

... D−rt
jt

Ds1
jt+1

... D
sn−t

jn
, (5.8)

and we define r =
∑t

i=1 ri ≥ t and s =
∑n−t

i=1 si ≥ 0. The integral with r = t and s = 0 is called the
corner integral of this sector.
We may set some options to control the computation. With the t restriction option we may
restrict the range of the parameter t. The number of jobs which run in parallel is limited via
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max parallel jobs. To resume aborted runs the flag conditional:true may be set for jobs. Fur-
thermore, the results of terminated runs may be called in via alternative input directory. Thus,
we may first compute reductions for some parameters and in a second run extend the parameters.
We choose to use Reduze for our computations over others e.g., Fire, as it allows parallel computa-
tions and handles effectively a large number of integrals. Indeed, the time taken by it for a sequential
reduction of integrals is high compared with Fire 3.5 and Tarcer 1.97. As a benchmark we perform
the reduction of massive two-point two-loop on-shell Feynman diagrams

I(s1, s2, s3, s4, s5) =

∫

dDk1d
Dk2

1

[k21 −m2]s1
1

[k22 −m2]s2
1

[(k1 − p)2 −m2]s3
1

[(k1 − p)2 −m2]s4

× 1

[(k1 − k2)2 −m2]s5

∣

∣

∣

∣

p2=m2

. (5.9)

on a 32 Bit computer system with 1000,1 MiB main memory and Intel Core Duo CPU T2350 @
1,86GHz × 2 with Mathematica 8.0. In particular, we choose the integrals I(1, 1, 1, 1, 10) and
I(2, 3, 3, 3, 3) to be reduced. We make use of all symmetries, kinematics and IBP identities wherever
possible. For Reduze we set the range of IBP identities up to r = 14. The times measured in seconds
are for

I(1, 1, 1, 1, 10) : Reduze : 1884 ,

Fire : 200 ,

Tarcer : 9 . (5.10)

I(2, 3, 3, 3, 3) : Reduze : 1907 ,

Fire : 124 ,

Tarcer : 12 . (5.11)
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Chapter 6

Computation of the three-loop gap
equation

In this chapter we apply the resummed non-linear SU(N) Higgs model outlined in Chapter 3, to a
calculation of the gluon self-energy. The bare on-shell transverse and longitudinal self-energies ΠT

and ΠL are defined as

Πab
µν(p) ≡ δab

[(

δµν − pµpν
p2

)

ΠT

(

p2
)

+
pµpν
p2

ΠL

(

p2
)

]

. (6.1)

One may think of a gauge invariant pole of the transverse part of the full gauge field propagator in
analog to the pole mass of a quark, which is gauge independent to all orders in perturbation theory
[56]. The longitudinal part with a gauge dependent pole represents the unphysical Goldstone-like
bosons, common in Higgs-like theories. These components may be set to zero in the unitary gauge.
In a resummed perturbation theory, the pole of the transverse part of the bare gauge field propagator
gets shifted, from p2 = 0 in the original theory, to p2 = −m2, where we identify m to be the pole of
the full propagator

DT =
1

p2 +m2 −ΠT (p2)

p2=−m2+δp2

=

1

1−∂p2ΠT (p2)
∣

∣

p2=−m2

− ΠT (−m2)

1−∂p2ΠT (p2)
∣

∣

p2=−m2

+ δp2 +O
(

(δp2)
2
) (6.2)

and have expanded the self-energy near the pole. Thus, we are left with a massive propagator with
the residue Z

(

m2
)

DT ∝ Z
(

m2
)

p2 +m2
, Z

(

m2
)

=
1

1− ∂p2ΠT (p2)
∣

∣

p2=−m2

, (6.3)

if the self-consistent gap equation

0
!
=

ΠT (−m2)

1− ∂p2ΠT (p2)
∣

∣

p2=−m2

(6.4)

is valid. In the resummed prescription m2 → m2 − lm2 and g2 → lg2 and hence, the gap equation is

0 =
ΠT (p

2,m2 − lm2, g2l) + lm2

1− ∂p2ΠT (p2,m2, g2l)

∣

∣

∣

∣

p2=−m2

. (6.5)

33
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We obtain the L-loop gap equation by truncating the equation after lL and setting l = 1. We can
generate the resummation mass-shift by a translation operator and subtract the on-shell condition
0 = p2 +m2 in the numerator, so that the L-loop gap equation reads

0 =

(

ep
2l∂m2

ΠT (p
2,m2, g2l)− p2 −m2

1− ∂p2ΠT (p2,m2, g2l)
+O

(

lL+1
)

)

p2=−m2, l=1

. (6.6)

Introducing the n-loop self-energies Π
(n)
T as

ΠT

(

p2,m2, g2l
)

≡
∑

n≥1

(

g2l
)n

Π
(n)
T

(

p2,m2
)

(6.7)

and the short form Π
(n)
ab ≡ ∂a

p2∂b
m2Π(n)

(

p2,m2
) ∣

∣

p2=−m2 the three-loop gap equation is

0 =m2 + g2
(

Π
(1)
00 −m2Π

(1)
01 +

1

2
m4Π

(1)
02 +m2Π

(1)
10 −m4Π

(1)
11

)

+ g4
(

Π
(1)
00 Π

(1)
10 −m2Π

(1)
00 Π

(1)
11 −m2Π

(1)
01 Π

(1)
10 +m2

(

Π
(1)
10

)2

+Π
(2)
00 −m2Π

(2)
01 +m2Π

(2)
10

)

+ g6
(

Π
(1)
00 Π

(1)
10 +Π

(1)
00 Π

(2)
10 +Π

(1)
10 Π

(2)
00 +Π

(3)
00

)

=m2 + g2
(

4−D

2
Π

(1)
00 − (4−D)m2

2
Π

(1)
01 − m4

2
Π

(1)
02

)

+ g4
(

(4−D)(2 −D)

4m2

(

Π
(1)
00

)2

−m2Π
(1)
00 Π

(1)
02 + (4−D)Π

(2)
00

)

+ g6
(

(2−D)2

4m4

(

Π
(1)
00

)3

+
2−D

m2

(

Π
(1)
00

)2

Π
(1)
01 +Π

(1)
00

(

Π
(1)
01

)2

+
8− 3D

2m2
Π

(1)
00 Π

(2)
00 +Π

(1)
00 Π

(2)
01 +Π

(1)
01 Π

(2)
00 +Π

(3)
00

)

, (6.8)

where we have rewritten the equation via
(

p2∂p2 +m2∂m2 +
4−D

2

)

ΠT

(

p2,m2m, g2
)

= 1 ·ΠT

(

p2,m2, g2
)

(6.9)

by means of dimensional analysis which yields ΠT ∼ mass2 and g2 ∼ mass4−D. For the ease of
computation, we rewrite the three-loop gap equation in terms of a dimensionless function Π̂ with

∂a
p2∂b

p2ΠT

(

p2
)

∣

∣

∣

∣

p2=−m2

≡
(

m2
)1−a−b∑

n≥1

[dim]nΠ̂
(n)
ab (6.10)

as

0 =

[

1 + [dim]
1

2

(

(4−D)Π̂
(1)
00 − (4−D)Π̂

(1)
01 − Π̂

(1)
02

)

+ [dim]2
(

(4−D)(2 −D)

4

(

Π̂
(1)
00

)2

− Π̂
(1)
00 Π̂

(1)
02 + (4 −D)Π̂

(2)
00

)

+ [dim]3
(

(2−D)2

4

(

Π̂
(1)
00

)3

+ (2−D)
(

Π̂
(1)
00

)2

Π̂
(1)
01 + Π̂

(1)
00

(

Π̂
(1)
01

)2

+
8− 3D

2
Π̂

(1)
00 Π̂

(2)
00 + Π̂

(1)
00 Π̂

(2)
01 + Π̂

(1)
01 Π̂

(2)
00 + Π̂

(3)
00

)]

m2 (6.11)
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where, in the MS scale µ2 = 4πe−γEµ2,

[dim] ≡ g2NJ(D,m)

m2(1 −D)

D=3−2ǫ
=

g2µ−2ǫN

8πm

(

µ

2m

)2ǫ 4ǫeǫγEΓ
(

1
2 + ǫ

)

(1 + ǫ)(1− 2ǫ)Γ
(

1
2

)

D=3−2ǫ
=

g2µ−2ǫN

8πm

(

µ

2m

)2ǫ
(

1− 3ǫ+O
(

ǫ2
))

(6.12)

with the massive one-loop tadpole integral

J(D,m) =

∫

dDk

(2π)D
1

k2 +m2
=

1

m2

(

m2

4π

)
D
2

Γ

(

1− D

2

)

. (6.13)

The functions Π̂(n) = Π̂(n)(D, ξ,N) are calculated from n-loop Feynman diagrams. We are interested

in computing Π̂
(1)
00 , Π̂

(1)
01 , Π̂

(1)
02 , Π̂

(2)
00 , Π̂

(2)
01 and Π̂

(3)
00 in dimensional regularization as for the three-loop

gap equation.

6.1 Method

The method for the computation involves the following points.

• We automatically create a model file and Feynman rules directly from the Lagrangian (3.7). In
case of three-loop self-energies we take into account vertices with up to seven legs.

• The self-energy diagrams are generated with QGraf.1 They are printed in Appendix A.

• We shift momenta to our conventions.

• Apply color and Lorentz projection, insert Feynman rules, perform color traces via Fierz-identity,
rewrite scalar products as inverse propagators, take derivatives for Π̂ab on the integrand level
and set the external momentum on-shell. The crossed-ladder diagrams number 554 to 574 vanish
after performing the color sum.

• We project onto the transverse part, identify symmetries and zero sectors, shift to master sectors
and get an intermediate result in terms of the generic dimensionless three-loop integrals

Î(m1, ...,m9; s1, ..., s9) =
1

J(D, 1)

∫

dDk1
(2π)D

dDk2
(2π)D

dDk3
(2π)D

1

[k21 +m1]s1
1

[k22 +m2]s2

× 1

[k23 +m3]s3
1

[(k1 − p)2 +m4]s4
1

[(k2 − p)2 +m5]s5

× 1

[(k1 − k3)2 +m6]s6
1

[(k2 − k3)2 +m7]s7
1

[(k3 − p)2 +m8]s8

× 1

[(k1 − k2)2 +m9]s9

∣

∣

∣

∣

p2=−1

. (6.14)

1To handle vertices with seven legs set parameter ( maxdeg=7 ) everywhere in the QGraf source file.
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The generic physical topologies are

≡Î(m1, ...,m9; s1, ..., s8, s9 = 0) , (6.15)

≡Î(m1, ...,m9; s1, ..., s7, s8 = 0, s9) , (6.16)

≡Î2loop , (6.17)

≡Î1loop . (6.18)

where the one- and two-loop topologies follow from the three-loop topology in various ways by
contracting appropriate lines.

• After that we reduce the set of integrals to a set of master integrals via Reduze 2. We automat-
ically create a job file and the input files containing the integral families and the integrals. As
the three-loop computation is quite involved, we divide it. For the first reduction we set s = 3,
in a second one s = 5 and the third reduction is subdivided via t restriction.

We provide the results for Π̂
(2)
01 and Π̂

(3)
00 in [55]. That of Π̂

(1)
00 , Π̂

(1)
01 , Π̂

(1)
11 and Π̂

(2)
00 are given in [2]. The

results for Π̂
(1)
12 and Π̂

(1)
03 , which are present in the four-loop gap equation, are printed in Appendix B.

6.2 Checks

Making use of the relations [50]

Î(1, 1, ξ, ξ) =
1

−3 +D

(

Î(2, 0, ξ, 0)− (−1 + 4ξ)Î(2, 1, ξ, ξ)
)

,

Î(1, 1, 1, ξ) =
1

−3 +D

(

2Î(2, 0, ξ, 0)− Î(2, 0, 1, 0) + (−4 + ξ)Î(2, 1, 1, ξ)
)

,

Î(a+ 1, 0,m, 0) =
1− D

2

am
Î(a, 0, 1, 0) , (6.19)

we checked that the coefficients in Π̂
(1)
12 and Π̂

(1)
03 are not singular in ξ. We confirmed the results of

the one- and two-loop computations in [2]. Additionally, we verified the dimensional relation (6.9) for
n = 1, i.e.

Π̂
(1)
1,b−1 = Π̂

(1)
0,b +

2b−D

2

Π̂
(1)
0,b−1

m2
(6.20)

up to b = 3. We confirmed that Π̂
(1)
00 and also the combinations Π̂

(1)
10 − Π̂

(1)
01 = −D−2

2 Π̂
(1)
00 from (6.20),

Π̂
(2)
00 +Π̂

(1)
00 Π̂

(1)
10 and Π̂

(2)
00 +Π̂

(1)
00 Π̂

(1)
01 are gauge independent. Thus, the one- and two-loop gap equations
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are gauge invariant. However, we have not found any gauge invariant combinations including Π̂(3).
This is manifest in the three-loop gap equation.

6.2.1 Gauge variance of the three-loop gap equation

The three-loop gap equation is gauge invariant if, and only if, (6.14) is gauge invariant in each order
in g2. Investigating the g2 part of (6.14), i.e.

(4−D)Π̂
(1)
00 − (4−D)Π̂

(1)
01 − Π̂

(1)
02 (6.21)

we identify a non-vanishing ξ-dependent master integral K ′′
1 in Π̂

(1)
02 , though not in Π̂

(1)
00 and Π̂

(1)
01 , see

[2]. Hence, the g2 part of the three-loop gap equation is not gauge invariant.

In addition, we could try to write down a generic gauge invariant combination of Π̂
(1)
02 and Π̂

(1)
03 , as

both are linear combinations of the same master integrals, such as

(aD + b)Π̂
(1)
02 + Π̂

(1)
03 (6.22)

with ξ-independent constants a and b. This is motivated by the g2 part of the four-loop gap equation

0 =m2

[

1 + g2
1

2

(

(4−D)
(

Π̂
(1)
00 − Π̂

(1)
01

)

+
4−D

2
Π̂

(1)
02 +

2

3
Π̂

(1)
03

)

+O
(

g4
)

]

. (6.23)

However, they are linearly independent in the sense that (6.22) is gauge variant for any a and b.
The potentiality to express the gap equation in terms of massive derivatives and the inevitable ap-

pearance of ξ-dependent master integrals in Π̂
(1)
02 and Π̂

(1)
03 in the g2 part of the three- and four-loop

gap equations implies, that the full gap equation is gauge variant. Thus, a question comes up.

6.3 What to do next?

We have checked that the resummed non-linear SU(N) Higgs model is BRS invariant, see section 3.3.
Moreover, the pole mass of the quark is gauge independent to all orders in perturbation theory [56].
Thus, one may guess, that the pole of the transverse part of the full gauge field propagator (6.2) is
gauge invariant order by order in perturbation theory and represents a physical mass. However, here
we are left with a gauge variant gap equation at three-loop and beyond. This should be resolved before
one proceeds with the computation of the three-loop gap equation, that is calculating the emerging
master integrals, renormalizing the theory and solving the gap equation with respect to the mass.
Moreover, the mass is of interest as for the convergence property, since no additional parameter to
tune exists, since the gauge coupling drops out of the effective expansion parameter.
A possible next step is to compute the three-loop thermodynamic pressure via bubble diagrams to
check the gauge dependence. If it is gauge invariant then the mass considered here is not the proper
gauge invariant quantity, else the theory considered here ought to be modified. Before we will outline
the calculation of master integrals in the next section, we conclude this one by collecting some remarks

on the computation and the results of Π̂
(2)
01 and Π̂

(3)
00 .

The result of Π̂
(2)
01 is a sum of 30 master integrals, where each of them is multiplied with a ratio of

polynomials in D and ξ. 13 of the master integrals decouple in a product of two one-loop master
integrals and 2 of them have negative parameters, i.e. some momenta in the numerator. They may
be transformed by specifying a file with preferred integrals. One may check the number of master
integrals by a method proposed by R.N. Lee and A.A. Pomeransky recently [57]. The computation

of Π̂
(3)
00 is quite involved due to GCD errors as a consequence of hardware limitations. Thus, we set

restrictions to control the computation, that is we limit the number of parallel jobs, the number of
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parallel processes and/or write the equations in a database on disc, whenever required. The result
will be made available when the computation is done. One may check that no master integrals are
related by a symmetry. This may happen due to an incomplete specification of the symmetries in
the setup and also within the computation by Reduze though the relevant symmetries are initially
set. A possible next step is to optimize the reduction by Reduze e.g., via a sensible tuning of the
parameters t and s, as they dominate the computation time. Actually, the computation is most
complex for sectors with parameters around some t = (tmax − tmin)/2 where s is maximal. Anyway,
one should mind that the reduction is complete, as the reduction of integrals associated with some t
and s may involve sectors with higher parameters.



Chapter 7

Calculations of the sunset-type
master integrals

In section 4.3 we have discussed how to solve master integrals numerically with high precision by
means of solving appropriate difference equations. There, we have encountered the Euclidean zero-
point sunset-integrals with one mass parameter

S(l, D, x) =

[∫

dDp

p2 + 1

]−l ∫
dDk1
k21 + 1

...

∫

dDkl
k2l + 1

1

[(k1 + ...+ kl)2 + 1]x
. (7.1)

Recall, that l labels the number of loops and D the dimension. The master integrals are obtained for
x = 1. The one-loop sunset-integral is

S(1, D, x) =
Γ
(

x+ 1− D
2

)

Γ(x+ 1)Γ
(

2− D
2

) . (7.2)

For higher loops, the divergent parts are calculated for D = 4− 2ǫ as [58] (with normalization 1/ǫ for
each loop in their equation (51))

S(2, 4− 2ǫ, 1) =− 3

2

[

1 + 3ǫ+O
(

ǫ2
)]

, (7.3)

S(3, 4− 2ǫ, 1) = +
4

2

[

1 +
23

2 · 3ǫ+
5 · 7
22

ǫ2 +O
(

ǫ3
)

]

, (7.4)

S(4, 4− 2ǫ, 1) =− 5

2

[

1 +
2 · 7
3

ǫ+
11 · 83
2332

ǫ2 +
7 · 1667
2433

ǫ3 +O
(

ǫ4
)

]

, (7.5)

S(5, 4− 2ǫ, 1) = +
6

2

[

1 +
11

2
ǫ+

29 · 43
2332

ǫ2 +
37 · 67 · 73

25335
ǫ3 +

197 · 4561
2734

ǫ4 +O
(

ǫ5
)

]

. (7.6)

Additionally, S(5, 4− 2ǫ, 1) has been calculated with four more orders in ǫ as (their equation (85))

S(5, 4− 2ǫ, 1) =3 + 16.5ǫ+ 51.95833ǫ2 + 125.6715ǫ3 + 259.9876ǫ4 + 347.3551ǫ5 − 2453.494ǫ6

− 31545.55ǫ7 − 311303.1ǫ8 +O
(

ǫ9
)

. (7.7)

We would like to demonstrate the use of difference equations and factorial series by calculating sunset-
integrals up to five loop in dimensional regularization around four and three dimensions in higher
orders and with a high accuracy.1

1In one dimension the master integral is S(l, 1, 1) = 2l/(l + 1), analytically.
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7.1 Difference equations and recurrence relations

The difference equations for the sunset-integrals S(l, D, x) are

rl
∑

j=0

pl,j(D, x)
Γ(x + j)

Γ(x + 1)
S(l, D, x+ j) = clΓ(l + 1)S(1, D, x) . (7.8)

Here, the polynomials pl,j and constants cl read [59]

l = 1 (r1 = 1) : p10 = x(−2 +D − 2x) ,

p11 = 2(x+ 1) ,

c1 = 0 . (7.9)

l = 2 (r2 = 2) : p20 = x(−2 +D − x) ,

p21 = −3 +D − 2x ,

p22 = 3 ,

c2 = −1 . (7.10)

l = 3 (r3 = 2) : p30 = x(−6 + 3D − 2x)(−2 +D − x) ,

p31 = 2
(

24− 17D+ 3D2 + 27x− 10Dx+ 7x2
)

,

p32 = 16(−3 +D − x) ,

c3 = 2 . (7.11)

l = 4 (r4 = 4) : p40 = x(4 − 2D + x)(2 −D + x)(6 − 3D + 2x) ,

p41 = 360− 399D+ 147D2 − 18D3 + 526x− 405Dx+ 78D2x+ 234x2 − 93Dx2

+ 32x3 ,

p42 = −144 + 129D− 27D2 − 2x+ 21Dx+ 20x2 ,

p43 = 9(−42 + 9D − 16x) , p44 = 90 ,

c4 = 2 .

l = 5 (r5 = 4) : p50 = x(−6 + 3D − 2x)(−10 + 5D − 2x)(−2 +D − x)(−4 + 2D − x) ,

p51 = 2
(

24− 17D+ 3D2 + 24x− 10Dx+ 4x2
)

×
(

120− 98D + 20D2 + 87x− 36Dx+ 15x2
)

,

p52 = −4
(

−1248 + 932D− 196D2 + 8D3 − 2130x+ 1180Dx− 148D2x− 975x2

+294Dx2 − 129x3
)

,

p53 = −128
(

150− 83D+ 11D2 + 85x− 26Dx+ 11x2
)

,

p54 = −768(−6 + 2D − x) ,

c5 = 4 . (7.12)

To solve these difference equations we implement the approach via the π and ρ operators in the com-
puter algebra system Form 4.0 [60] as discussed in section 4.3. For the solutions of the characteristic
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equation (4.25) µl and the indicial equation (4.29) Kl we deduce

l = 1 : µ(1) ∈ {1} , K(1) ∈
{

−D

2

}

. (7.13)

l = 2 : µ(2) ∈
{

−1

3
, 1

}

, K(2) ∈
{

−D

2
+

1

2

}

. (7.14)

l = 3 : µ(3) ∈
{

−1

8
, 1

}

, K(3) ∈
{

−D

2

}

. (7.15)

l = 4 : µ(4) ∈
{

− 1

15
,−1

3
, 1

}

, K(4) ∈
{

−D

2
,−D

2
+ 1

}

. (7.16)

l = 5 : µ(5) ∈
{

− 1

24
,−1

8
, 1

}

, K(5) ∈
{

−D

2
− 1,−D

2

}

. (7.17)

where µ(4) = 1 and µ(5) = 1 are roots of multiplicity two.
In section 4.3.1 we have determined the first two five-loop coefficients

a
(5)
0 =

S(4, D, 1)

Γ
(

2− D
2

) ,

a
(5)
1 =

1

Γ
(

2− D
2

)

(

D(2 +D)

4
S(4, D, 1) +

4−D

2
S(4, D, 2)− 2S(4, D, 3)

)

. (7.18)

The same analysis holds for the first two-, three-, and four-loop coefficient

a
(l)
0 =

S(l − 1, D, 1)

Γ
(

2− D
2

) l > 1 . (7.19)

where S(0, D, 1) = 1. All further coefficients are determined by these initial ones and the recurrence
relations.
We can now set the homogeneous solution to zero and solve the inhomogeneous difference equation
with these coefficients. Note, that no pair K(l), µ(l) excluding

(

µ(5) = 1, K(5) = −D/2− 1
)

satisfies
the condition (4.43) for a non-zero homogeneous solution. Here, the inhomogeneity yields K = −D/2
and µ = 1 in each order. The recurrence relations for these values are printed in Appendix C.
The abscissa of convergence is finite concerning the condition (4.46) and the factorial series diverges
for x ∈ {−D/2 − n, n ∈ N}, which is not relevant here. As a way of illustration, let us explicitly
derive the abscissa of convergence for the one-loop sunset-integral. The recurrence relation (C.1) can
be rewritten as

a(1)s =

[(

s+ D
2 − 1

)

!
]2

s!
a
(1)
0 . (7.20)

Recalling the Stirling’s approximation for large factorials

Γ(z) =

√

2π

z

(z

e

)2
(

1 +O
(

1

z

))

, (7.21)

the large-s behavior of the terms in the factorial series (4.14) is

a
(1)
s

Γ
(

x+ D
2 + s+ 1

) ∼ s
D
2
−2−x s ≫ 1 . (7.22)

Thus, the abscissa of convergence is λ = D/2 + 1 ∼ O(1).
Singularities in ǫ emerge in terms of the roots of the polynomials pl,0(D, x) of the difference equations.
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This reduces the number of orders in ǫ when iterating to x = 1. Here, we find that pn,0(4, 2 ≤ x ≤
n) = 0 and pn,0(3, 1 ≤ x ≤ n/2) = 0. Recall, that each iteration in x increases the error of the master

function by maxj

∣

∣

∣1/µ
(l)
j

∣

∣

∣.

7.2 Higher order and high precision calculations

We now compute the expansion of the factorial series (4.14) in Mathematica 9.0 [61]. To appreciably
accelerate the calculation time, we implement our own algorithm for the solution of the recurrence
relations given in Appendix C. Additionally, we evaluate Γ-functions by hand whenever possible.
Furthermore, we renormalize the coefficients as → as/Γ(x+1−K+s) which comes along with several
improvements: Firstly, we can cancel some Γ-functions by hand before the calculation. Secondly,
we readily notice the convergence of the coefficients, that is we do not have to calculate some large
numerator and denominator separately and subsequently cancel them. Lastly, the master functions
are summed up as U(x) = Γ(x+ 1)

∑

s as.
We estimate the accuracy of our numerical results by comparing them with the known analytical
ones (7.6) and the numerical results in four dimension [62] and in three dimensions [63] for which the
divergences read

S(2, 3− 2ǫ, 1) = +
1

ǫ
,

S(3, 3− 2ǫ, 1) = −8

ǫ
,

S(4, 3− 2ǫ, 1) = +
45

ǫ
. (7.23)

We print the parameters used in our calculations and the numerical results around four and three
dimensions in Appendices (D) and (E), respectively. For each result we present the first fifty correct
digits. In principle, we may easily compute higher orders and with higher precision.
In conclusion, let us point out some empirical aspects we have encountered in our computation. As
we vary xmax and keep smax fixed, we notice that there exists a long range of values for xmax for which
the number of correct digits is maximal and almost stable. We keep 5000 digits in each step of our
calculation. However, we find that the number of correct digits can not be permanently increased by
increasing the number of the correct digits of the inhomogeneity, e.g. we get about 200 correct digits
in (D.2) taking into account the first 300 correct digits in (D.1). From our results we may speculate
that

S(l, 4, 1) = (−1)l+1 l + 1

2
, (7.24)

S(l ≥ 2, 3− 2ǫ, 1) = (−1)l
(l − 1)2

(

3l−2 + 1
)

2
ǫ−1 +O

(

ǫ0
)

. (7.25)



Chapter 8

Conclusion and outlook

In this thesis we have studied the three-dimensional Yang-Mills theory based on the non-linear SU(N)
Higgs model. We handled the infrared divergences encountered in the bare perturbative theory at
finite temperature by adding and subtracting a covariantly coupled scalar field, which induces a gauge
field mass, i.e. gluon mass. This dynamically generated pole mass regulates the infrared divergences
and is self-consistently determined by a gap equation.
As an application, we computed the transverse part of the gluon self-energy from the three-loop gap
equation up to three loop for the first time. This involves the reduction of a large set of Feynman
diagrams to some smaller set of master integrals. We presented some computer systems for the
automated Feynman integral reduction and performed the reduction in the context of the gap equation
via Reduze 2, which is based on the Laporta-algorithm. We confirmed the known results for the one-
and two-loop gap equation as reported in [2]. Importantly, we notice that the gap equation itself is
gauge variant at three-loop and beyond. However, we could not resolve this, which indicates that
either the theory ought to be modified or the gap equation does not yield a mass, which is physical. A
future step is to compute the three-loop thermodynamic pressure at equilibrium via bubble diagrams
to check the gauge dependence, which may rule out one of the possibilities. The pressure up to two
loop in four-dimensional gauge theories has been studied in [64]. Moreover, the result of the three-loop
gap equation has to be checked. In particular, a separate reduction by [65] yields a different result
than ours.
In addition, we numerically calculated the Euclidean zero-point sunset-type master integrals with
one mass parameter up to five loop in the dimensional regularization scheme around four and three
dimensions for the first time. This was done via the difference equations approach proposed by Laporta
and its solution by means of a set of recurrence relations and factorial series. Our result is correct up
to more than fifty digits when compared with known integrals in the literature. The reduction of the
master integrals is quite involved, whereas we notice that the evaluation of the factorial series may
easily be done with higher precision and to higher orders.
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Appendix A

Three-loop self-energy diagrams

and Π̂
(3)
00

All 895 numbered three-loop self-energy diagrams and their contribution to Π̂
(3)
00 , as discussed in

Chapter (6): Each diagram is multiplied with its inverse symmetry factor and minus signs for each
closed fermionic loop. External gluon lines are represented by fat lines, which are not yet cut in view
of a compact depiction. Full, wiggly and dotted lines denote scalars, gluons and ghosts, respectively.
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1

2615

+
1

2 616
− 1617 +

1

2618
+

1

2619
− 1620

− 1621 − 1622 − 1623 − 1624 +
1

2625

+
1

2 626
− 1627 +

1

2628
+

1

2629
− 1630

− 1631 − 1632 − 1633 − 1634 − 1635



56 APPENDIX A. THREE-LOOP SELF-ENERGY DIAGRAMS AND Π̂
(3)
00

− 1636 − 1637 − 1638 − 1639 − 1640

− 1641 − 1642 − 1643 − 1644 − 1645

− 1646 − 1647 − 1648 − 1649 − 1650

− 1651 − 1652 − 1653 − 1654 − 1655

− 1656 − 1657 − 1658 − 1659 − 1660

− 1661 − 1662 − 1663 − 1664 − 1665

− 1666 − 1667 − 1668 − 1669 − 1670

− 1671 + 1672 + 1673 − 1674 − 1675

+ 1676 + 1677 − 1678 − 1679 − 1680

− 1681 − 1682 − 1683 − 1684 − 1685

− 1686 − 1687 + 1688 + 1689 − 1690

− 1691 + 1692 + 1693 − 1694 − 1695



57

− 1696 − 1697 + 1698 − 1

2699
− 1

2700

+ 1701 + 1702 + 1703 − 1704 − 1705

− 1706 − 1707 − 1708 + 1709 − 1

2710

− 1

2 711
+ 1712 + 1713 + 1714 − 1715

− 1716 − 1717 − 1718 − 1719 − 1720

+
1

2 721
+

1

2 722
− 1723 + 1724 − 1725

− 1726 − 1727 − 1728 − 1729 +
1

2730

+
1

2 731
− 1732 + 1733 − 1734 − 1735

− 1736 − 1737 + 1738 − 1

2739
− 1

2740

+ 1741 + 1742 + 1743 − 1744 − 1745

− 1746 − 1747 − 1748 + 1749 − 1

2750

− 1

2 751
+ 1752 + 1753 + 1754 − 1755



58 APPENDIX A. THREE-LOOP SELF-ENERGY DIAGRAMS AND Π̂
(3)
00

− 1756 − 1757 − 1758 − 1759 − 1760

+
1

2 761
+

1

2 762
− 1763 + 1764 − 1765

− 1766 − 1767 − 1768 − 1769 +
1

2770

+
1

2 771
− 1772 + 1773 + 1774 − 1

2775

− 1

2 776
+ 1777 + 1778 + 1779 − 1780

− 1781 − 1782 − 1783 − 1784 − 1785

− 1786 − 1

2 787
+

1

4 788
+

1

4 789
− 1

2790

+
1

2 791
− 1792 − 1793 − 1

2794
+

1

2795

− 1

2 796
+

1

4 797
+

1

4 798
− 1799 − 1800

− 1801 − 1802 − 1803 − 1804 − 1805

− 1806 − 1807 − 1808 − 1809 − 1810

− 1811 − 1812 − 1813 − 1814 − 1815
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− 1816 − 1817 − 1818 − 1819 +
1

2820

+
1

2 821
− 1822 +

1

2823
+

1

2824
− 1825

− 1826 − 1827 − 1828 − 1829 − 1830

+ 1831 + 1832 − 1833 − 1834 − 1835

− 1836 − 1837 − 1838 − 1839 − 1840

+ 1841 − 1

2842
− 1

2843
+ 1844 − 1

2845

+
1

4 846
+

1

4 847
− 1

2848
+

1

4849
+

1

4850

+ 1851 + 1852 − 1853 − 1854 + 1855

+ 1856 − 1

2 857
− 1

2858
+ 1859 + 1860

+ 1861 − 1862 − 1863 − 1864 − 1865

− 1866 + 1867 − 1

2868
− 1

2 869
+ 1870

+ 1871 + 1872 − 1873 − 1874 − 1875



60 APPENDIX A. THREE-LOOP SELF-ENERGY DIAGRAMS AND Π̂
(3)
00

− 1876 − 1877 − 1878 − 1879 − 1880

− 1881 − 1882 +
1

2883
+

1

2 884
− 1885

+ 1886 − 1887 − 1888 − 1889 − 1890

− 1891 + 1892 − 1893 +
1

2 894
+

1

2895



Appendix B

D-dimensional results for Π̂
(1)
12 and

Π̂
(1)
03

The D-dimensional results for the derivatives of the one-loop self-energies Π̂
(1)
12 and Π̂

(1)
03 as given by

(6.10). Th results are given in terms of master integrals K and ratios of polynomials a and b.

Π̂
(1)
12 = a1K1 + a2K

′
1 + a3K

′′
1 + a4K2 + a5K

′
2 (B.1)

Π̂
(1)
03 = b1K1 + b2K

′
1 + b3K

′′
1 + b4K2 + b5K

′
2 (B.2)

a1 =
1

24

(

330− 749D+ 472D2 − 106D3 + 8D4
)

a2 =
1

8(−1 + 4ξ)

(

−6 + 60ξ − 216ξ2 − 4D2ξ(1 + 2ξ) +D
(

−3 + 16ξ + 80ξ2
))

a3 =
1

4(−4 + ξ)

(

4D2(−14 + 5ξ)− 6
(

36 + 16ξ − 15ξ2 + 2ξ3
)

+D
(

272− 36ξ − 34ξ2 + 5ξ3
))

a4 =
1

12(−4 + ξ)

(

−736− 89D3(−4 + ξ) + 8D4(−4 + ξ) + 22ξ + 36ξ2 + 36D2(−37 + 9ξ)

+D
(

1852− 376ξ − 15ξ2
))

a5 =
1

4ξ(−4 + ξ)(−1 + 4ξ)

(

−D3ξ(−4 + ξ)(−1 + 4ξ) +D2
(

24− 64ξ − 115ξ2 + 38ξ3
)

−12
(

−4 + 6ξ + 43ξ2 − 28ξ3 + 4ξ4
)

+D
(

−72 + 176ξ + 433ξ2 − 215ξ3 + 20ξ4
))

(B.3)
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62 APPENDIX B. D-DIMENSIONAL RESULTS FOR Π̂
(1)
12 AND Π̂

(1)
03

b1 =
1

6

(

429− 803D+ 472D2 − 106D3 + 8D4
)

b2 =
−3

2(−1 + 4ξ)

(

2 + (−19 + 3D)ξ + 2(−5 +D)2ξ2
)

b3 =
3

2(−4 + ξ)

(

−52 + 4D2(−3 + ξ)− 28ξ + 23ξ2 − 3ξ3 +D
(

64− 8ξ − 7ξ2 + ξ3
))

b4 =
1

24(−4 + ξ)

(

−145D3(−4 + ξ)− 11D4(−4 + ξ) + 3D5(−4 + ξ) +D2(−3396 + 831ξ)

−2D
(

−2560 + 541ξ + 18ξ2
)

+ 4
(

−440− 7ξ + 27ξ2
))

b5 =
3

4ξ(−4 + ξ)(−1 + 4ξ)

(

16 + 64ξ − 554ξ2 + 234ξ3 − 24ξ4 −D3ξ(−4 + ξ)(−1 + 4ξ)

+D2
(

8 + 8ξ − 163ξ2 + 42ξ3
)

+ 4D
(

−6− 9ξ + 137ξ2 − 43ξ3 + 2ξ4
))

(B.4)

K1 = Î(1, 1, 1, 1)
D=3−2ǫ

= −1

2
ln 3 +O(ǫ)

K ′
1 = Î(1, 1, ξ, ξ)

D=3−2ǫ
= −1

2
ln

2
√
ξ + 1

2
√
ξ − 1

+O(ǫ)

K ′′
1 = Î(1, 1, 1, ξ)

D=3−2ǫ
= −1

2
ln

√
ξ + 2√
ξ

+O(ǫ)

K2 = Î(1, 0, 1, 0) = 1

K ′
2 = Î(1, 0, ξ, 0) = ξ

D−2

2 (B.5)



Appendix C

Sunset integrals: Recurrence
relations

The recurrence relations for the sunset-type integrals (7.1) up to five loop as for the coefficients of the
factorial series (4.14), see Chapter (4). They are deduced from the difference equations (7.8).

+ a
(1)
s−1

−1

4
(−2 +D + 2s)2

+ a(1)s s = 0 (C.1)

+ a
(2)
s−2

3

16
(−4 +D + 2s)(−2 +D + 2s)2

+ a
(2)
s−1

−1

8
(−2 +D + 2s)(−6 + 5D + 14s)

+ a(2)s (1 + 2s) = a(1)s (C.2)

+ a
(3)
s−3

−1

12
(−6 +D + 2s)(−4 +D + 2s)2(−8 + 3D + 2s)

+ a
(3)
s−2

1

48
(−4 +D + 2s)

(

440 + 41D2 + 4s(−111 + 25s) + 2D(−137 + 78s)
)

+ a
(3)
s−1

1

24

(

−11D2 +D(90− 110s)− 8(−2 + s)(−10 + 13s)
)

+ a(3)s

3

2
= a

(1)
s−1 (C.3)
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64 APPENDIX C. SUNSET INTEGRALS: RECURRENCE RELATIONS

+ a
(4)
s−5

−15

1024

(

D + 2(−5 + s))(−8 +D + 2s)2(−6 +D + 2s)2(−4 +D + 2s)2
)

+ a
(4)
s−4

9

256
(−8 +D + 2s)(−6 +D + 2s)2(−4 +D + 2s)2(−22 + 3D + 9s)

+ a
(4)
s−3

−1

768
(−6 +D + 2s)(−4 +D + 2s)2

(

7416 + 43D2 + 4D(−461 + 310s) + 4s(−1963 + 523s)
)

+ a
(4)
s−2

−1

64
(−4 +D + 2s)

(

29D3 −D2(123 + 25s)− 4D(92 + s(−277 + 147s))

+ 4(396 + s(−952 + 11(67− 17s)s))
)

+ a
(4)
s−1

1

48

(

19D3 +D2(−153 + 110s)− 2D(−151 + 2s(47 + 63s))

− 12(2 + s(45 + s(−101 + 50s)))
)

+ a(4)s

4

3
s(2−D + 2s) = a

(1)
s−1 (C.4)

+ a
(5)
s−6

1

160
(5D + 2(−8 + s))(D + 2(−6 + s))(D + 2(−5 + s))2(−8 +D + 2s)2(−6 +D + 2s)2

+ a
(5)
s−5

−1

480
(D + 2(−5 + s))(−8 +D + 2s)2(−6 +D + 2s)2

×
(

109D2 + 38D(−39 + 10s) + 4(908 + s(−387 + 37s)))

+ a
(5)
s−4

1

7680
(−8 +D + 2s)(−6 +D + 2s)2

(

3389D3 +D2(−94874 + 32278s)

+D(679432+ 12s(−34694+ 5285s)) + 8(−164552+ s(135322 + s(−36085 + 3041s)))
)

+ a
(5)
s−3

−1

1920
(−6 +D + 2s)

(

240D4 +D3(−24779 + 12058s) +D2(347814 + 16s(−17988+ 3713s))

+ 4D(−415954+ s(468347 + s(−175529 + 21810s)))

+ 96(26596+ s(−36758 + s(18882 + s(−4241 + 347s))))
)

+ a
(5)
s−2

1

1920

(

− 261D4 + 6D3(−921 + 850s) + 4D2(38523 + s(−46134+ 13699s))

+ 8D(−109878+ s(165645 + s(−82619 + 13494s)))

+ 32(45192+ s(−80384 + s(53045 + 7s(−2182 + 229s))))
)

+ a
(5)
s−1

−1

240
(−1 + s)

(

8256 + 18D2 + 56s(−178+ 47s) + 3D(−883 + 934s)
)

+ a(5)s

15

8
(−1 + s)s = a

(1)
s−2 (C.5)



Appendix D

Sunset master integrals: Numerical
results around 4D

The numerical results for the sunset-type master integrals (7.1) up to five loop for D = 4−2ǫ deduced
from the recurrence relations given in Appendix C by means of factorial series (4.14). For each result
we present the first fifty correct digits and several orders in ǫ. See Chapter (7) for more details.
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66 APPENDIX D. SUNSET MASTER INTEGRALS: NUMERICAL RESULTS AROUND 4D

S(2, 4− 2ǫ, 1; smax = 5000, xmax = 2000; & 810 correct digits) =

− 1.5000000000000000000000000000000000000000000000000

− 4.4999999999999999999999999999999999999999999999999ǫ

− 6.9841391419658116640976565666915843963568954855462ǫ2

− 18.008781623546167999995208131175285565081204822870ǫ3

− 27.994223563675178705954762267256549167991061415150ǫ4

− 72.003786597988568173982086832097577257369663979771ǫ5

− 111.99749833554743962025539910121146396234513990701ǫ6

− 288.00165889594361462413210083202734513521610523660ǫ7

− 447.99889753939191138684622763845184953766743107074ǫ8

− 1152.0007336071958360002850123669099850407609081484ǫ9

− 1791.9995114692005222998001916010057263384433930059ǫ10

− 4608.0003254725892109160869499295546766823934227857ǫ11

− 7167.9997831036545103420678803851075633389052600310ǫ12

− 18432.000144563541809913232083488205811049928314515ǫ13

− 28671.999903637877376811639293657347026097642585727ǫ14

− 73728.000064235996741481161927327978169139264943596ǫ15

− 114687.99995717816655041457799393757664324527054306ǫ16

− 294912.00002854702405583264265294205219377138601124ǫ17

− 458751.99998096899635447027799732378155117699074281ǫ18

− 1.1796480000126871975417998953891960745292749031887 · 106ǫ19

+O
(

ǫ20
)

(D.1)
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S(3, 4− 2ǫ, 1; smax = 5000, xmax = 1000; & 220 correct digits) =

+ 1.9999999999999999999999999999999999999999999999999

+ 7.6666666666666666666666666666666666666666666666666ǫ

+ 17.499999999999999999999999999999999999999999999999ǫ2

+ 22.916666666666666666666666666666666666666666666666ǫ3

+ 21.251791051291519988256891363094132988559488247378ǫ4

− 184.23000510529848342108563128392064450073752779056ǫ5

− 661.11058615335383325470884105246026525585456567192ǫ6

− 3685.0547793816988056942265778437044852138001929237ǫ7

− 10050.975403938380587540545542001918710459704591699ǫ8

− 42319.974546413261809360663719261771965221909456931ǫ9

− 108418.43440062975771692491717556958327646321159009ǫ10

− 419852.46289091247862674300972973441506701524599367ǫ11

− 1.0511049134837356223678364836797815977040480742134 · 106ǫ12

− 3.9398611678167161492356697745609208030064759602941 · 106ǫ13

− 9.7691760902806825489317578086747903667151669459552 · 106ǫ14

− 3.6115427543261748524793870003744229572884698388656 · 107ǫ15

− 8.9177232960968241895534317572083763600706677307860 · 107ǫ16

− 3.2769237832551753927085415179300726330738468340616 · 108ǫ17

+O
(

ǫ18
)

(D.2)

S(4, 4− 2ǫ, 1; smax = 5000, xmax = 400; & 100 correct digits) =

− 2.5000000000000000000000000000000000000000000000000

− 11.666666666666666666666666666666666666666666666666ǫ

− 31.701388888888888888888888888888888888888888888888ǫ2

− 67.528935185185185185185185185185185185185185185185ǫ3

− 140.22054328754050776933771050005766373065616848378ǫ4

− 573.53470046065660579886343669973365466645294764018ǫ5

− 2756.2198220328144457906175407656473785544019931195ǫ6

− 18239.925674593858237547497549504688038056799315188ǫ7

− 86167.478580009225683821281651000589024819735006633ǫ8

− 468163.76600358235076045808377411086825064850857429ǫ9

− 1.9766111122449754711675386267930893270193924292711 · 106ǫ10

− 9.5732368372865826632908040420883087576334267731634 · 106ǫ11

− 3.8075628927521927433002680387742496676725430194334 · 107ǫ12

− 1.7420703399889628095774056908950096592126067744181 · 108ǫ13

+O
(

ǫ14
)

(D.3)



68 APPENDIX D. SUNSET MASTER INTEGRALS: NUMERICAL RESULTS AROUND 4D

S(5, 4− 2ǫ, 1; smax = 5000, xmax = 300; & 50 correct digits) =

+ 2.9999999999999999999999999999999999999999999999999

+ 16.500000000000000000000000000000000000000000000000ǫ

+ 51.958333333333333333333333333333333333333333333333ǫ2

+ 125.67152777777777777777777777777777777777777777777ǫ3

+ 259.98755787037037037037037037037037037037037037037ǫ4

+ 347.35511621947869278784248007038522165842747787156ǫ5

− 2453.4942454258297103333314558980752922357517163385ǫ6

− 31545.548328529725289178386528451320539035565109951ǫ7

− 311303.08546321740196730118767152744288471857174571ǫ8

− 2.1328778596605256014630145649245347705696249341140 · 106ǫ9

+O
(

ǫ10
)

(D.4)



Appendix E

Sunset master integrals: Numerical
results around 3D

The numerical results for the sunset-type master integrals (7.1) up to five loop for D = 3−2ǫ deduced
from the recurrence relations given in Appendix (C) by means of factorial series (4.14). For each result
we present the first fifty correct digits and several orders in ǫ. See Chapter (7) for more details.
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70 APPENDIX E. SUNSET MASTER INTEGRALS: NUMERICAL RESULTS AROUND 3D

S(2, 3− 2ǫ, 1; smax = 4000, xmax = 1600; & 650 correct digits) =

+ 1.0000000000000000000000000000000000000000000000000ǫ−1

+ 0.3781395675673424720879475381426034537120383061500

− 0.1136827413881355130917202863035557713116575932986ǫ1

+ 0.1332134196894298225978638511598028024143891036497ǫ2

− 0.1277903581281796200982415671610602485296797933157ǫ3

+ 0.1264142054263889953795587150124052840749165498397ǫ4

− 0.1256874949669492167364347517506945123823156538280ǫ5

+ 0.1253388815518373728773531277425536420521622608106ǫ6

− 0.1251678276242975434189629770165446473426113863422ǫ7

+ 0.1250833940766870800075961392413496053681465283044ǫ8

− 0.1250415274509847937671718351421994335810409702719ǫ9

+ 0.1250207080923352933708541983857544238471094404037ǫ10

− 0.1250103357178572403904524712907828879851598142847ǫ11

+ 0.1250051618021410946979326035115542148927177648433ǫ12

− 0.1250025788950378662536162503611728402567532167478ǫ13

+ 0.1250012887820142595352861146096364350722676740250ǫ14

− 0.1250006441699555019440767335895637046809363269027ǫ15

+ 0.1250003220114877456922949718828749896917202277176ǫ16

− 0.1250001609812952905096272411232034972265603898097ǫ17

+ 0.1250000804825100642226652097182968902631929730329ǫ18

− 0.1250000402385454768779413575141336556530183075937ǫ19

+O
(

ǫ20
)

(E.1)
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S(3, 3− 2ǫ, 1; smax = 4000, xmax = 800; & 170 correct digits) =

− 7.9999999999999999999999999999999999999999999999999ǫ−1

− 41.819290222081750098648572113338349821583995700471

− 306.56670836117969234565314308183288372305605689341ǫ

− 1505.2007494737001361075465574572281316970229990020ǫ2

− 11039.361100029234007792382459529428209079928693002ǫ3

− 54185.444518126452015045190023364491994341293807843ǫ4

− 397417.99759794782308439780280919214801222373305393ǫ5

− 1.9506760263117442194390413986335635418115970205817 · 106ǫ6

− 1.4307046649232887481205954186404061018449991907390 · 107ǫ7

− 7.0224339723324225581399407528938208592593806554633 · 107ǫ8

− 5.1505367476065546848079569972590290609490730396149 · 108ǫ9

− 2.5280762368735740540466734580669327228973756687244 · 109ǫ10

− 1.8541932281865980247735365593742327022617814153379 · 1010ǫ11

− 9.1010744540201614788240448196773728894728873569311 · 1010ǫ12

− 6.6750956213052709607430430657688646930658108067215 · 1011ǫ13

− 3.2763868034685916705884000783096060523868974321969 · 1012ǫ14

− 2.4030344236672010014314704789342686916929210515583 · 1013ǫ15

− 1.1794992492490303201601616906588255648032766510887 · 1014ǫ16

− 8.6509239252015050194139673432581229596696258598050 · 1014ǫ17

− 4.2461972972965607691753073896395990372644680741539 · 1015ǫ18

+O
(

ǫ19
)

(E.2)
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S(4, 3− 2ǫ, 1; smax = 4000, xmax = 400; & 70 correct digits) =

+ 44.999999999999999999999999999999999999999999999999ǫ−1

+ 356.74185362516898696329455764639778570997975601834

+ 3163.2279808545629061448803021582882305381604996163ǫ

+ 18912.375050914134201095680716789527468086882352786ǫ2

+ 138631.68341208858694544411836368879758049566502014ǫ3

+ 777993.92660042526612420897733035769523866301956529ǫ4

+ 5.3868190464314742684866593226516939459187460032185 · 106ǫ5

+ 2.9562162405836728858924285015627635473087880811161 · 107ǫ6

+ 2.0026274119232176120053570360503468314994220125666 · 108ǫ7

+ 1.0891079363353494093993214990026879987211089353332 · 109ǫ8

+ 7.3108547849302487367350500193941043857813483915307 · 109ǫ9

+ 3.9605807124049408489220257349990960842083768631800 · 1010ǫ10

+ 2.6481310991353753387867988287012617317559187524817 · 1011ǫ11

+ 1.4321757990962136612185089176300905697656829426137 · 1012ǫ12

+ 9.5592293594054532817680656371142167547377346580272 · 1012ǫ13

+ 5.1660196649541254569836587101648557102720632820182 · 1013ǫ14

+ 3.4454757537887121432036090791894627176503628610415 · 1014ǫ15

+ 1.8613969654967830506447594992387277163902911295868 · 1015ǫ16

+O
(

ǫ17
)

(E.3)

S(5, 3− 2ǫ, 1; smax = 4000, xmax = 200; & 50 correct digits) =

− 224.00000000000000000000000000000000000000000000000ǫ−1

− 2265.0653101210043021793441537319170549127575440548

− 23860.049754813988350879710541522805117507449131499ǫ

− 169712.34196716622558061879130824537096449366502149ǫ2

− 1.4490646307198905479661706117890996549166303009131 · 106ǫ3

− 9.6353063852297695174993890936654008319827928487015 · 106ǫ4

− 8.5028112331807278820447206602259586485233925433786 · 107ǫ5

− 5.8043012813653065746444776004197510185806720171013 · 108ǫ6

− 5.8141517002351507058420665404126520660351086979347 · 109ǫ7

− 4.1965658805756350043729211850641794599262788227871 · 1010ǫ8

− 4.7482076475272333540283342830149910731259950254950 · 1011ǫ9

− 3.5769691318468790151406664007621822307784715448044 · 1012ǫ10

− 4.3473679284918823948701249881559398836490436366825 · 1013ǫ11

− 3.3469132445890228254851830701672949932156999805515 · 1014ǫ12

+O
(

ǫ13
)

(E.4)
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