Aufgabe 17:

Die allgemeine Logarithmusfunktion ist über den natürlichen Logarithmus definiert als Abbildung von $\mathbb{R}^+ \to \mathbb{R}$ durch $\log_b(x) := \frac{\ln(x)}{\ln(b)}$. Zeigen Sie für $b \in \mathbb{R}^+ \setminus \{1\}$ und $x,y \in \mathbb{R}^+$ sowie $z \in \mathbb{R}$:

- (a) $\log_b(xy) = \log_b(x) + \log_b(y)$
- (b) $\log_b(x^z) = z \log_b(x)$
- (c) $b^{\log_b(x)} = x$
- (d) $\log_b(b^z) = z$
- (e) $\log_b(\frac{1}{x}) = -\log_b(x)$
- (f) $\log_b(1) = 0$
- (g) $\log_b(b) = 1$

[Hinweis: Benutzen Sie dazu die Funktionalgleichungen ln(xy) = ln(x) + ln(y) und $ln(x^y) = y ln(x)$.]

Aufgabe 18:

- (a) Können Sie $\log_2(8)$, $\log_3(81)$, $\log_5(5^n)$ berechnen?
- (b) Wie löst man die Gleichung $9 \cdot 3^{(x^2)} = 27^x$ nach x auf?

Aufgabe 19:

(a) Schreiben Sie a^x als Potenz von b.

(a2) $\operatorname{arcosh}(x) = \ln(x + \sqrt{x^2 - 1})$

(b) Drücken Sie $\log_a(x)$ mit Hilfe des Logarithmus zur Basis b aus.

Aufgabe 20: (*)

(a) Zeigen Sie, dass die Umkehrfunktionen der hyperbolischen Funktionen (vgl. **Ü16**) gegeben sind durch

(area cosinus hyperbolicus)

- (a1) $\operatorname{arsinh}(x) = \ln(x + \sqrt{x^2 + 1})$ (area sinus hyperbolicus)
 - [Hinweis: auf beiden Seiten der Gleichung sinh anwenden]
- (b) Auf welchen Intervallen sind diese Funktionen definiert?
- (c) Skizzieren Sie die Graphen dieser Funktionen.