
[2 Stunden Bearbeitungszeit, Name auf jedes Blatt, kein Skript, keine anderen Hilfsmittel.]

Aufgabe 1: Atwoodsche Fallmaschine (2+4=6 Punkte)

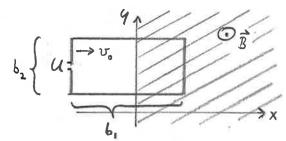
Zwei Gewichte (Massen m und 3m) im homogenen Erdschwerefeld (g) seien mit einer masselosen Schnur über eine drehbare zylinderförmige Rolle (homogen verteilte Masse 2m, Radius R) verbunden.

- (a) Zeigen Sie, dass das Trägheitsmoment der Rolle bezüglich ihrer Drehachse $I=mR^2$ ist.
- (b) Wählen Sie den Rotationswinkel φ der Rolle als generalisierte Koordinate und stellen Sie die Lagrangefunktion und die Bewegungsgleichung auf. Welche Beschleunigung erfährt die Masse m?

Aufgabe 2: Newton mit Reibung und Lorentzkraft (6 Punkte)

Ein Teilchen (Masse m, Ladung q) erlebe die Reibungskraft $-m\gamma\vec{v}$ sowie ein Magnetfeld $\vec{B}=(0,0,B(t))$ mit genau einer solchen Stärke und zeitlichen Abnahme, dass es auf einer Kreisbahn (Radius R) bleibt. Die Bahnkurve des Teilchens wird durch $\vec{r}(t)=(c,s,0)\,R$ mit $c\equiv\cos(f(t))$ und $s\equiv\sin(f(t))$ beschrieben, die Anfangsbedingungen seien f(0)=0 und $\vec{v}(0)=(0,v_0,0)$. Bestimmen Sie f(t) und B(t).

Aufgabe 3: Viererimpuls-Erhaltung (4 Punkte)


Ein ruhender Kern (Masse M=5m) zerplatze in drei gleiche Teile (je Ruhemasse m). Auch ihre 3-Impuls-Beträge sind gleich, nämlich $|\vec{p}|=?$ Skizzieren Sie die drei \vec{p} 's.

Aufgabe 4: Elektrostatik: parallele Kreisringe (6 Punkte)

Zwei Kreisringe (Radius R) seien homogen mit q und -q geladen. Die Ringe seien parallel zur xy-Ebene ausgerichtet und haben ihre Mittelpunkte bei (x,y,z)=(0,0,b) und (0,0,-b). Geben Sie die Ladungsdichte $\rho(\vec{r})$ an und berechnen Sie das elektrostatische Potential $\phi(\vec{r})$ bis zum Dipolmoment.

Aufgabe 5: Induktion in bewegter Leiterschleife (6 Punkte)

Eine rechteckige Leiterschleife (Seitenlängen b_1 und b_2) liege in der xy-Ebene und bewege sich mit konstanter (nichtrelativistischer) Geschwindigkeit $\vec{v}=v_0\,\vec{e}_x$. Im Bereich $x\geq 0$ wirke ein konstantes homogenes Magnetfeld $\vec{B}=B_0\,\vec{e}_z$. Berechnen und skizzieren Sie die in der Leiterschleife induzierte Ringspannung U(t).

Aufgabe 6: Rotierende geladene Hohlkugel (2+2+3=7 Punkte)

Eine Kugel (Radius R, Mittelpunkt im Ursprung) trage die homogen auf der Oberfläche verteilte Flächenladungsdichte $\sigma = Q/(4\pi R^2)$ und rotiere mit Winkelgeschwindigkeit ω um die z-Achse.

- (a) Wie lautet die Ladungsdichte $\rho(\vec{r})$ und die durch die Rotation erzeugte Stromdichte $\vec{j}(\vec{r})$?
- (b) Bestimmen Sie das erzeugte magnetische Moment $\vec{m}=\frac{1}{2c}\int \mathrm{d}^3r\ \vec{r} imes\vec{j}$. [Resultat: $\vec{m}\sim\vec{e}_z$]
- (c) Berechnen Sie Vektorpotential $\vec{A}(\vec{r}) = (\vec{m} \times \vec{r})/r^3$ und magnetische Flussdichte $\vec{B}(\vec{r})$ in Dipolnäherung.