Risenmagnetowiderstand

Julian Donner

Physikalisches Proseminar, 2013

Inhalt

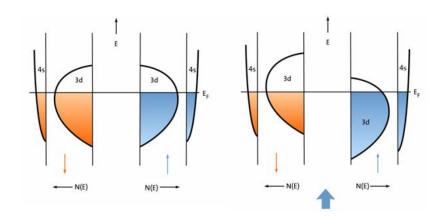
- Einleitung und Motivation
- Anisotroper Magnetowiderstand
- Riesenmagnetowiderstand
 - Vorüberlegung
 - Aufbau und Funktion
 - Historisches
 - Anwendungen
- Quellen

Einleitung: Magnetowiderstand

- Magnetoresistiver Effekt (Magnetowiderstand) = Änderung des Widerstandes eines ferromagnetischen Leiters durch ein äußeres Magnetfeld
- ⇒ Änderung des Stromflusses abhängig vom Magnetfeld
- ⇒ messen

Motivation

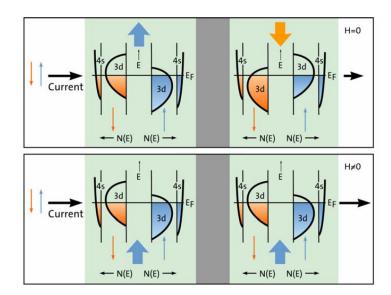
• Hauptverwendung: Auslesen von Daten auf Magnetscheiben


Arten magnetoresistiver Effekte

- AMR-Effekt (anisotrope magnetoresistive effect)
- GMR-Effekt (giant magnetoresistive effect)
- CMR-Effekt (colossal magnetoresistive effect)
- ...

Anisotroper Magnetowiderstand

- 1857 von William Thomson entdeckt
- Äußeres Magnetfeld erhöht Widerstand in ferromagnetischen Materialien
- Unterschied verschiedener Raumrichtungen maximal 3 bis 4 Prozent
- kaum Verbesserungsmöglichkeiten


Riesenmagnetowiderstand: Vorüberlegung

Riesenmagnetowiderstand: Vorüberlegung

- Zustandsdichte wird für "spin up" und "spin down" bei anliegendem Magnetfeld unterschiedlich verschoben
- → Unterschiedliche Zustandsdichte auf Höhe der Fermi-Energie
- ⇒ Leitungselektronen werden unterschiedlich gestreut

Riesenmagnetowiderstand: Aufbau und Funktion

Riesenmagnetowiderstand: Historisches

- Entdeckung: 1988 (Albert Fert, Peter Grünberg)
- Nobelpreis: 2007
- Vorraussetzung: Herstellung von nm-dicken Schichten

Riesenmagnetowiderstand: Anwendungen

- ab 1997: in Festplatten
- ansonsten f
 ür Magnetfeldsensoren (zB. in Automobilen)
- Vorteil: Effekt erhöht Widerstand um 6 bis 8 Prozent
- Erhöhung um bis zu 100% möglich durch mehrere Schichten

Quellen

- nobelprize.org (2007 wissenschaftlicher Hintergrund)
- Wikipedia (allgemeine Infos)