Reduction of Feynman integrals with integration by parts relations and the Laporta algorithm

Jan Möller, University of Bielefeld

MLWG

Goal

- Reduce many Feynman integrals to a small set of so-called master integrals:
- Use integration by parts relations (IBP) [K. G. Chetyrkin and F. V. Tkachov, Nucl. Phys. B 192 (1981) 159]
- and a systematic way to combine them:

The Laporta algorithm [S. Laporta, hep-ph/0102033]

Reduce Feynman integrals

- Why do we want to reduce Feynman integrals?
- Usually we are faced with many Feynman integrals in a state of the art perturbative computation
 - number of integrals ≠ number of diagrams
 - 1 Feynman diagram can result in thousands of Feynman integrals.
- ullet Typically millions of Fintegrals to compute o impossible without computer algebra

Reminder: Perturbative Expansion

- Any perturbative calculation consist of a combinatoric, algebraic and analytic part.
 - combinatoric: Wick contractions
 - algebraic: Feynman rules, gamma algebra, expansions, projections, tensor decompositions, etc. + reduction
- The former ones are well suited problems for automatization.
- BUT: in order to calculate master integrals human intervention unavoidable.
 - Ideal starting point: small set of master integrals.

Integration by parts relations I

• n-loop Feynman integral with m external momenta:

$$F(p_1,...,p_m) \equiv \int_{k_1,...,k_n} d^d k_1 ... d^d k_n \prod_i \frac{(p \cdot k)_i^{b_i}}{(q_i^2 + m_i^2)^{a_i}}$$

Integration by parts relations are generated by

$$\int_{k_1,\ldots,k_n} d^d k_1 \ldots d^d k_n \frac{\partial}{\partial k_j^{\mu}} \left(k_j^{\mu} \prod_i \frac{(p \cdot k)_i^{b_i}}{(q_i^2 + m_i^2)^{a_i}} \right) = 0$$

Zero-temperature massiv tadpole

- Example 1: $I(a) \equiv \int d^d k \frac{1}{(k^2+m^2)^a}$, Opt 1-loop fct. \rightarrow 1 IBP
- IBP relation $\partial_k k$:

$$0 = \int d^{d}k \partial_{k}k \frac{1}{(k^{2} + m^{2})^{a}}$$

$$= \int d^{d}k \left\{ D \frac{1}{(k^{2} + m^{2})^{a}} - 2a \frac{k^{2} + m^{2} - m^{2}}{(k^{2} + m^{2})^{a+1}} \right\}$$

$$= I(a)(D - 2a) + 2am^{2}I(a+1)$$

•
$$\Rightarrow I(a+1) = -\frac{D-2a}{2am^2}I(a)$$
, for $a \ge 1$.

Finite-temperature tadpole

- Example 2: $I(a,b) \equiv \sum_{n=-\infty}^{\infty} \int d^{D-1}k \frac{K_0^b}{(K^2)^a}, K^2 = \omega_n^2 + k^2$
- IBP relation $\partial_k k$:

$$0 = \oint_{K} \partial_{k} k \frac{K_{0}^{b}}{(K^{2})^{a}}$$

$$= \oint_{K} \left\{ (D - 1) \frac{K_{0}^{b}}{(K^{2})^{a}} - 2a \frac{(K^{2} - K_{0}^{2}) K_{0}^{b}}{(K^{2})^{a+1}} \right\}$$

$$= I(a, b)(D - 1 - 2a) + 2a I(a + 1, b + 2)$$

•
$$\Rightarrow I(a+1,b+2) = -\frac{D-1-2a}{2a}I(a,b)$$
, for $a \ge 1$.

Zero-temperature sunset propagator

- Example 3: $I_{a,b,c,d,e} \equiv \int_{p,q} \frac{1}{(p^2)^a ((p-k)^2)^b (q^2)^c ((q-k)^2)^d ((p-q)^2)^e}$
- 6 possible IBP relations: $\partial_p p, \partial_p q, \partial_p k, \partial_q p, \partial_q q, \partial_q k$
- Question: How do we combine the IBP relations to get a suitable reduction? In general not known → introduce unique ordering (Laporta algorithm)
- In this case we just take $\partial_p p \partial_p q$:

$$0 + 0 = \int_{p,q} \partial_p (p-q) \frac{1}{p^2 (p-k)^2 q^2 (q-k)^2 (p-q)^2}$$

• ... after two pages of algebra we find:

$$\frac{1}{2}(4-D)I_{1,1,1,1,1}=I_{1,1,2,1,0}-I_{1,1,2,0,1}$$

Laporta algorithm

- As mentioned before, in general it can be quite involved to find the correct combinations of IBP relations: brute force algorithm (1981 - 2000)
- "Solution" Laporta algorithm [S. Laporta, hep-ph/0102033]
 - Key idea: Introduce lexicographic ordering: prescription in order to decide what is the most complicated integral out of a set of integrals.
- Example: Let us consider once again the sunset propagator:

$$I_{a,b,c,d,e} \equiv \int_{p,q} \frac{1}{(p^2)^a ((p-k)^2)^b (q^2)^c ((q-k)^2)^d ((p-q)^2)^e}$$

- Obviously, $I_{1,1,1,1,1}$ is more difficult than $I_{1,1,2,0,1}$ or $I_{1,1,2,1,0}$.
- So, the first "rule" could be:
 - 1. Count positiv power of propagators $\sum_{a=e} \theta(\#)$, choose highest, if equal go to 2.

Lexicographic ordering

- 2. Compute abs. sum of powers of propagators $\sum_{a=e} |\#|$, choose highest, if equal go to 3.
- 3. Count zero propagators $\sum_{a=e} \delta(\#)$, choose lowest, if equal go to 4.
- 4. Choose integral with highest power on propagator e,d,c,b,a
- Example:

Rule	$I_{1,1,1,1,1}$	$I_{1,1,2,0,1}$	$I_{1,1,1,-1,1}$	$I_{1,1,1,2,1}$	$I_{2,1,1,1,1}$
1	5	4	4	5	5
2	5	5	5	6	6
3	0	1	0	0	0
4	-	-	-	d	а

Schematic of simple Laporta implementation

