Abgabe 17.06. vor der Vorlesung

Aufgabe 76: Drei mal Green (2+2+2=6 Punkte)

- (a) Jemand behauptet, der 2D translationsinvariante Operator $\Delta_2=\partial_x^2+\partial_y^2$ habe die Greensche Funktion $G(\vec{\rho})=\frac{1}{4\pi}\ln\left(\rho^2+\varepsilon^2\right)$, $\vec{\rho}:=(x,y)$, wobei das G-Verhalten bei $\rho\to 0$ vorsichtshalber epsilontisch eingebettet wurde. Stimmt das? [Werten Sie also $\Delta_2\,G$ aus, und prüfen per $\int\!d^2r\,...$ nach, ob sich eine Darstellung der 2D Deltafunktion ergeben hat. Wie immer ist $\varepsilon=0^+$]
- (b) Zeigen Sie, daß $G=\theta(t)\,e^{-\gamma t}\frac{1}{\Omega}\,\sin\left(\Omega t\right)\,$ mit $\Omega=\sqrt{\omega_0^2-\gamma^2}\,$ die Greensche Funktion von $\partial_t^2+2\gamma\partial_t+\omega_0^2\,$ ist. Als Spezialfall können Sie daraus $G(t)=?\,$ des Operators $L=\partial_t^2+2\gamma\partial_t$ gewinnen. [und sparen sich hierzu das Nachprüfen.]
- (c) $L=t\,\partial_t$ ist kein translationsinvarianter Operator. Welche allgemeine Greensche Funktion G(t,a) hat er? Bereich sei 0< t, a< T. Mittels G erhalte man dann die allgemeine Lösung von $t\,\dot{v}=f(t)$. [Und daß $v_{\mathrm{allg}}(t)$ richtig ist, sieht man im Kopf.]

Aufgabe 77: Greensche Funktion von Δ_r (2+1=3 Punkte)

Der Operator $\Delta_r \equiv \frac{1}{r} \partial_r^2 r$ ist nicht translationsinvariant. Seine Greensche Funktion G(r,a) hängt also nicht vom Differenzargument ab. Bereich: positive r-Halbachse.

- (a) Ermitteln Sie jene spezielle Greensche Funktion, welche bei r < a verschwindet.
- (b) G(r,a) liefert Ihnen nun eine spezielle Lösung $V_{\rm sp}=?$ von $\Delta_r\,V(r)=4\pi\gamma m\,\rho(r)$ [Bem.: Ihre Antwort hat sicherlich, wie in **A63a**, die Form $\int ... + \int ...$, wobei Sie (zur Kontrolle) nach Umformen eines Terms dieser Summe per $\int_0^r ... = {\rm const} \int_r^\infty ...$ in der Nähe der dortigen Antwort landen könnten.]

Aufgabe 78: Gradient (2+2+1=5 Punkte)

- (a) Bilden Sie vier mal den Gradienten, nämlich von $\phi = y$, yz, $\frac{1}{r}$ und \vec{E} \vec{r} ($\vec{E} = \vec{\text{const}}$).
- (b) Wir sind in Zermatt, und sehen das Höhenprofil $h=h_0\arctan(f)$, $f=e^{-x}+y^2$ (hier in dimensionslosen Einheiten). Welchen ungefähren Verlauf hat die Äqui-h-Linie f=2? Längs welcher Kurve zeigt der 2D Gradient ∇h genau nach Westen und entlang welcher anderen Kurve genau nach NW?
- (c) Kontrollieren Sie bitte in Zermatt noch, ob (wie es sich gehört) ∇h bei (x,y)=(0,1) senkrecht auf der dortigen Äqui-h-Linie steht.