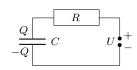
Abgabe 29.05. *vor* der Vorlesung

Aufgabe 59:
$$xy' + y = 2x$$
 — fünf Wege nach Rom $(0.5+0.5+0.5+1+0.5+1=4)$ Punkte

Ausnahmsweise wird hier die Physik erst weiter unten nachgereicht. Zur obigen Dgl soll die allgemeine Lösung $y_{\rm allg}(x)$ erhalten werden, und zwar unabhängig voneinander

- (a) durch Lösen der hom. Dgl und Raten einer speziellen Lsg. der inhomogenen,
- (b) als Anwendungsbeispiel zur P-Q-Formel,
- (c) mittels Neuer Funktion u, y = x + u, und Trennung der Variablen (TdV),
- (d) über Neue Variable τ , $x =: e^{\tau}$, und Variation der Konstanten (VdK),
- (e) per sofortiger Variation der Konstanten.
- (f) Physik: Am skizzierten RC-Glied wird zu t=0 die konstante Spannung U angelegt, Q(0) = 0. Jemand schraubt ständig am Kondensator, so daß $C(t) = (1+\omega t)/(R\omega)$ ist. Allgemein gilt $L\ddot{Q} + R\dot{Q} + Q/C = U$. Aber hier ist L=0. Wie führt dies auf die y-Dgl? Also ist Q(t)=?



Aufgabe 60: Weltmodell I (1+2=3 Punkte)

Vielleicht läßt sich das aus $|\dot{N}=(G-S)N$, $N(0)=N_0$ folgende Übervölkerungsproblem der Erde (N=Gesamtbevölkerung, G=Geburtenrate, S=Sterberate) dadurch entschärfen, daß man die Raten gemäß $G - S = \alpha/(1 + \gamma t)^{\lambda}$ sanft angleicht ($\lambda > 0$).

- (a) Welche Zukunft ergibt sich daraus? N(t) = ?
- (b) Für welche Werte $\lambda > \lambda_0 = ?$ bleibt N bei $t \to \infty$ endlich? Welche Lösung hat das N-Problem bei genau $\,\lambda=\lambda_0\,?\,$ Sei $\,\lambda=2$, $\,\alpha=\gamma\,$ und $\,N_0=6,6\,{
 m Mrd.}$, wie viele ($N_\inftypprox?$) werden wir dann noch?

Aufgabe 61: Mehr Dgln (1+1+2+1=5 Punkte)

- (a) Welche allgemeine Lösung $y_{\text{allg}}(x)$ hat y' + y = x? [hom Lsg; spez Lsg raten \Rightarrow allg Lsg.]
- (b) Welche allgemeine Lösung $y_{\mbox{\tiny allg}}(x)$ hat $y'+y^2=e^xy^2$? [z.B. per TdV; oder neue Fkt 1/y]
- (c) Aus $\frac{1}{1+\omega t}\dot{v}+\gamma v=k$ soll y'+xy=x werden. Wie geht das? $y_{\rm allg}(x)=?$
- (d) Können Sie aus dem nebenstehenden System zweier gekoppelter Dgln erster Ordnung eine Dgl zweiter Ordnung für $v_1(t)$ basteln? Wie lautet der ER für $v_1(t)$? Und dessen Lösung?

$$\dot{v}_1 = \omega \, v_2 \quad , \quad v_1(0) = 0$$

$$\dot{v}_2 = -\omega \, v_1 \quad , \quad v_2(0) = v_0$$