[Abgabe 04.02 vor der Vorlesung]

Aufgabe 42: Störungsrechnung ausprobieren (1.5+2.5=4 Punkte)

- (a) In Aufgabe **34,36** hatten wir zu $\ddot{x}=2\,a\,\omega^2\,e^{-x/a}-\frac{1}{a}\,\dot{x}^2$, $\dot{x}(0)=0$, x(0)=0 die exakte Lösung $x(t)=a\ln(1+\omega^2t^2)$ erhalten. Per Störungsrechnung erster Ordnung in ω^2 sollte sich also $x(t)=a\,\omega^2t^2$ ergeben. Wie?
- (b) Auch zu $v = -\lambda (1 + \omega t) v$, $v(0) = v_0$ kennen wir mit $v(t) = v_0 e^{-\lambda t \lambda \omega t^2/2}$ die exakte Lösung (bestätigen Sie dies durch Einsetzen). Worauf sollte also Störungsrechnung erster Ordnung in ω führen? Welchen ER erfüllt $v^{(0)}$? Mit welcher Lösung? Der ER für $v^{(1)}$ sieht nur im ersten Moment kompliziert aus, denn Übergang zu einer neuen Funktion u via $v^{(1)} = e^{-\lambda t} u$ vereinfacht die Differentialgleichung. Demnach ist $v^{(1)} = ?$ Schließlich notieren wir $v^{(0)} + v^{(1)}$ und vergleichen mit obiger Erwartung.

Aufgabe 43: Störungsrechnung anwenden (5 Punkte)

Die Story: Mitte 2008 geht der Teilchenbeschleuniger LHC am CERN (Schweiz) in Betrieb. Dabei misslingt die Kalibrierung, und kurzzeitig entwischen ein paar Teilchen nach oben, bewegen sich also im Gravitationspotential $V=-\gamma mM/r$. Die Fluchtgeschwindigkeit ist weit überschritten, d.h. für alle x ist $E\gg V(x)$, oder auch: γ ist winzig. Später (die Erde ist aus Sicht des Teilchens längst punktförmig) wird ein solches Teilchen auf einem fernen Planeten registriert, nämlich zur Zeit $t_1=a/v_0$ bei $x(t_1)=a$ mit $\dot{x}(t_1)=v_0$. Zu welcher Zeit t_0 ist das Teilchen am LHC verlorengegangen?

Erde
$$v_0$$

Was zu tun ist: Der ER für x(t) enthält natürlich $\ddot{x}=-\gamma M/x^2$ als Dgl und die beiden oben angegebenen Daten zur Zeit t_1 . Welche drei ER's für $x^{(0)}$, $x^{(1)}$ und $x^{(2)}$ entstehen bei Störungsrechnung nach γ ? Lösen Sie die ersten beiden. Aus welcher Gleichung ist t_0 zu ermitteln? Welche zwei (der vier) Terme in $x(t)=x^{(0)}(t)+x^{(1)}(t)$ kann man dabei vernachlässigen? Wer t_0 sogar explizit anzugeben vermag, verdient 2 Zusatzpunkte.

Aufgabe 44: Störungsrechnung (1+0.5+0.5+2=4 Punkte)

Eine (bei Glatteis) auf der x-Achse mit $v(0)=v_0$ startende Person m erfährt die Reibungskraft $-m\alpha v+m\beta \frac{1}{t}\ln\left(\frac{v}{v_0}\right)$.

- (a) ER für v(t)?
- (b) Hat der β -Term überhaupt bremsende Wirkung? Warum?
- (c) Der Faktor β ist sehr klein. Dimension von $\beta \Rightarrow \beta \ll ?$ als Bedingung.
- (d) Welchen Beitrag $v^{(1)}(t)$ liefert Störungsrechnung erster Ordnung in β ?

Hinweise zur Klausur

- Anmeldung in Listen (in Übung oder Vorlesung), oder per Email, bis 4.2.08
- Klausur I: 11.2.08 von 9:30-11:30 in H6 (mind. 10min vorher da sein)
- $\bullet~$ Klausur II: 31.3.08 von 9:30–11:30 in H1 (mind. 10min vorher da sein)
- erlaubt: Spickzettel, eigene Ü-Lsn, Vorl-Skript, Physik mit Bleistift
- nicht erlaubt: Computer, Taschenrechner, Handy
- ca. 20 Seiten leeres Papier mitbringen, Name und Matr-Nr je oben rechts
- Studentenausweis und Personalausweis mitbringen