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Motivation

In QCD details of the phase structure like the exact position of phase transitions in
the grand canonical T−µ and the canonical T − n diagram (see Fig. 1) are only con-
jectured, and have yet to be found. In this context lattice field theory was established
but still finite density QCD is heavily impeded by the sign problem which relates to
the fact that Boltzmann factors in the partition functions are not strictly positive.
However, if we consider the strong coupling limit in lattice theory, the sign problem
is softened by virtue of the exact integration over the gauge fields occurring in the
partition function (see Sec. 3). If we further take the continuous time limit, baryons
become static. Hence, we can think of an algorithm which samples the density of
states g(B, T) through the underlying canonical distribution.
In this thesis we will calculate the canonical density of states g(B, T) using a combi-
nation of the continuous time worm algorithm [1] and the Wang-Landau method [2].
Notable is that in order to get the whole set {g(B, T)}B, we require one single sim-
ulation. Having the density of states we can then detect the double peak structure
of the grand canonical probability density p(µB, T, B) = g(B, T)e µBB/T/Z(µB, T) at
the first order transition line µc(T) with high precision (see chapter 5). Doing so for
various temperatures and extrapolating the results for different lattice volumes into
the thermodynamic limit V → ∞, we can determine the phase boundary of the co-
existence region in the T − nB plane for continuous time SC-LQCD.
The thesis is structured as follows: In chapter 1 we provide a short overview to QCD.
Chapter 2 introduces the theoretical approach to lattice QCD and in chapter 3 the
dual representation emerging in the strong coupling limit of lattice QCD is treated.
The Wang-Landau and other methods used are established in chapter 4. The results
of our approach can be found in chapter 5 and are discussed in chapter 6.

n

FIGURE 1: Schematic sketch of the conjectured QCD phase diagram in the
grand canonical (T−µ space) and canonical formalism (T−n space) [3].
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Chapter 1

Introduction to Quantum
Chromodynamics

The development of modern physics during the last century resulted in a success-
ful combination of 3 of the 4 fundamental forces in the well established standard
model of particle physics (SM). It combines electromagnetic, weak and strong interac-
tions in one theory of which the strong interaction is of main interest in this thesis.
The framework that describes strong interactions is known as quantum chromody-
namics(QCD) which essentially is a non-trivial gauge theory. The fermions that feel
the strong interaction, referred to as quarks, are massive, color-charged with spin- 1

2
and come in several flavors called up, down, strange, charm, bottom, and top. The
strong force arises from the exchange of color-charged spin-1 gauge bosons, the so
called gluons. Of interest is that the non-Abelian nature of QCD exhibits unique phe-
nomena like asymptotic freedom and confinement. The former implies that the coupling
gs decreases when approaching small interaction distances(�1 fm) leading to a free
field theory [4] and the latter states that only color-singlet states exists in the low
energy regime which is assumed to be the case in nature. In other words, quarks
are either deconfined in a quark gluon plasma in the large temperature region or
confined in hadrons in the low temperature region. Alongside to confinement of
quarks, we can observe the breaking of the chiral symmetry at low temperatures
resulting from non-zero masses of the quarks. Lattice simulations suggest that the
phase transition of both confinement to deconfiment and broken chiral symmetry to
chiral restoration may coincide at the same temperature Tc, but their connection is
yet unclear [5]. In order to perform calculations in quantum field theory, perturba-
tive approaches, which rely on expanding physical quantities in terms of the cou-
pling, are preferred. However, in QCD these methods fail at relevant distances(≈ 1
fm) and non-perturbative (numerical) methods have to be used.

1.1 Fermions in QCD

In QCD quarks come with an additional triplet quantum number called color. The
reason to include the color index arose from ambiguities in bound states consisting of
three quarks of the same kind(the baryons ∆++, ∆− and Ω− consist of uuu, qqq and
sss) seemingly violating the Pauli principle. The combination of the triplet quantum
number with the Yang Mills theory led to QCD, where the corresponding color trans-
formations are represented by elements of the SU(3) “color” group. The fermionic
QCD action SF[ψ, ψ̄, A] is a bilinear functional in the quark fields ψ and ψ̄ given by

SF[ψ, ψ̄, A] =
N f

∑
f=1

∫
d4x ψ

( f )
c

(
γµ(∂µδc d + iAµ,c d) + m( f )δc d

)
ψ̄
( f )
d , (1.1)
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where γµ with Dirac indices µ = 0, 1, 2, 3 are the 4×4 gamma matrices in Dirac space
which fulfill the relation

{γµ, γν} = 2gµν1

with respect to the Minkowski metric gµν = diag(−1, 1, 1, 1). Aµ is the gluonic field
representing a non-Abelian gauge field(see Sec. 1.2) carrying two color indices. Note
that the partial derivative ∂µ and the gauge field Aµ are contracted by the gamma
matrices γµ with respect to µ.

1.2 Gauge symmetry

In quantum field theory local gauge invariance is a substantial and powerful prin-
ciple for all fundamental interactions. One of the hints to gauge invariance was the
conclusion in quantum mechanics that the phase of the wave function could be cho-
sen arbitrarily at all space-time points,

ψ→ ψ eiφ(x) .

This led to a re-definition of the momentum operator in terms of covariant deriva-
tives,

i ∂µ → iDµ = i ∂µ + gAµ

in order to compensate the non-vanishing derivative of φ(x) using the redundant
degrees of freedom of the gauge field Aµ. Thus, the gauge fields themself have to
transform as

Aµ → Aµ +
i
g

∂µφ . (1.2)

We now introduce the color index as a new quantum number to the massive field
ψi(x), i = 1, . . . , Nc. In QCD we require invariance of the actions under local color
rotations of the quark fields i.e. we require invariance under the following transfor-
mations

ψi → Ωi j ψj ∧ ψ̄i → ψ̄j Ωj i , Ω ∈ SU(Nc) ,

where SU(Nc) is the special unitary group. Under this non-Abelian group the gauge
fields Aµ have to transform as follows

Aµ → Ω Aµ Ω−1 − 2i
g
(
∂µ Ω

)
Ω−1 .

Note, that we require for the gauge fields to be hermitian and traceless matrices
of the form Aµ = Aa

µTa, where Ta are the generators of the corresponding group
SU(Nc).
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Chapter 2

Lattice Quantum Chromodynamics

In this chapter a discretization of space-time will be employed in order to perform
ultra-violet regularization which leads to a lattice formulation of quantum chromo-
dynamics. In the framework of lattice quantum chromodynamic (LQCD) the path
integral formalism, introduced in the first section, becomes a basic tool for statistical
analysis of its thermodynamic quantities.

2.1 The path integral formalism

In quantum field theory the transition probability in terms of a path integral for a
scalar field φ(x), initially being in the initial state |φ, xi〉, attaining the final state
|φ, x f 〉 is given by [6]

〈φ, x f |φ, xi〉 =
∫ x f

xi

D[φ(x)] e−SE[φ(x)] , (2.1)

where x = (τ, x) is the Euclidean space-time position. Note, that the Euclidean time
is related to the Minkowski time by the so called Wick rotation t = −iτ, τ ∈ R. 1

The measure is given by

D[φ] = lim
N→∞

( m
2πiε

)N/2 N

∏
i=2

dφ(xi)

with the cut-off ε of the time interval (τi, τf ). The Euclidean action is given by

SE[φ(x)] =
∫ τf inal

τinitial

dτ LE[φ(x)] .

If we choose periodic boundary conditions in space position xi = x f , the transition
probability Eq. (2.1) equals the partition function of statistical physics:

Z(T) = tr[e−TĤ ] =
∫

d φ〈φ|e−TĤ |φ〉 =
∫
D[φ] e−SE[φ] ,

where we have dropped the explicit dependence of x for simplicity. For the expecta-
tion value of some operator Ô we then obtain

〈Ô〉T =
tr[Ôe−TĤ ]

tr[e−TĤ ]
=

1
Z(T)

∫
D[φ]O[φ]e−SE[φ] . (2.2)

1The metric gµν = diag(−1, 1, 1, 1) hence becomes δµν = diag(1, 1, 1, 1).
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Hence, on the right-hand side the operator-valued expression is replaced with a
functional expression by using the path integral formalism. The exponential in
Eq. (2.2) can be identified as Boltzmann weight. In the context of lattice field the-
ory the infinite dimensional integration of the path integral (2.1) becomes finite (see
Sec. 2.2) and statistical methods can be applied.

2.2 Discretization of fermions

The momentum cut-off in the lattice formulation of the quantum field theory serves
as regularization in order to remove divergencies in the ultra-violet sector.
To do so the continuous space-time is discretized restricting the fields to a 3+1 di-
mensional lattice

Λ = {n = (n0, n1, n2, n3)|n0 = 0, . . . , Nτ ; n1, n2, n3 = 0, . . . , Nσ} ,

where Nτ and Nσ is the temporal extent and the spatial extent, respectively. The lat-
tice is equipped with the spacing aτ and aσ. For the present we set a = aτ = aσ, and
hence the space-time position is x = an.
In the following, we want to find a discrete version of the fermionic action and there-
fore we first take a look at the action for free fermions S0

F in continuous space-time
which is 2

S0
F[ψ, ψ] =

∫
d4x ψ(x)

(
γµ∂µ + m

)
ψ(x) . (2.3)

On the lattice the fields are now restricted on the sites n and we have

ψ(n), ψ(n), n ∈ Λ .

The mass term simply becomes

mψ(x)ψ(x)→ mψ(n)ψ(n)

and for the partial derivative of the kinetic term we use the symmetric form of the
differential

∂µψ(x)→ ψ(n + µ̂)− ψ(n− µ̂)

2a
,

where µ̂ implies a unit into space-time direction on the lattice. The integral is re-
placed with a finite sum like ∫

d4x → a4 ∑
n

.

In order to get a dimensionless expression we absorb the factor
√

a3 into the fields
by defining

√
a3 ψ → ψ and

√
a3 ψ → ψ . Thus, a naive lattice version of the free

action can be of the form

S0
F[ψ, ψ] = ∑

n∈Λ
ψ(n)

( 3

∑
ν=0

γµ
ψ(n + µ̂)− ψ(n− µ̂)

2
+ am ψ(n)

)
. (2.4)

If we now want to include invariance under local rotations of color indices, we have
to introduce a so-called link variable Uµ which is the lattice analogon to the gauge
field Aµ. They are related by the path ordered transport equation and on the lattice

2Color and flavour components are implicit in the vectorial notation.
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the relation becomes (chapter 2 in [7])

Uµ(n) = eiaAµ(n) . (2.5)

We require invariance under the following local transformations

ψ(n)→ ψ(n)′ = Ω(n)ψ(n) ∧ ψ(n)→ ψ(n)′ = ψ(n)Ω(n)† .

The field Uµ(n) has the transformation property

Uµ(n)→ Uµ(n)′ = Ω(n)Uµ(n)Ω(n + µ̂)† .

Introducing the lattice gauge field Uµ in the kinetic term, we obtain the following
invariant expression:

ψ(n)′Uµ(n)′ψ(n + µ̂)′ = ψ(n)Ω(n)†Ω(n)Uµ(n)Ω(n + µ̂)†Ω(n + µ̂)ψ(n + µ̂)

= ψ(n)Uµ(n)ψ(n + µ̂) .

The naive lattice action for free fermions then generalizes to 3

SF[ψ, ψ, U] = ∑
n∈Λ

ψ(n)
( 3

∑
ν=0

γµ
Uµ(n)ψ(n + µ̂)−U−µ(n)ψ(n− µ̂)

2
+ am ψ(n)

)
,

(2.6)
which reproduces the continuous action Eq. (1.1) by taking the continuum limit
a→ 0.

Though, it turns out that this lattice version of the fermionic action comprises ad-
ditional poles in the propagator. Hence, it descibes the wrong number of flavors.
To make this apparent we consider the free fermion case U = 1 and rewrite (2.6) into
an explicit quadratic form

SF[ψ, ψ, U] = ∑
n,m∈Λ

ψ(n)D(n|m)ψ(m) , (2.7)

where the Dirac operator D(n|m) is given by

D(n|m) =
3

∑
µ=0

γµ
δn+µ̂,m − δn−µ̂,m

2
+ am δn,m .

Wick’s theorem tells us that the propagator is given be the inverse of the Dirac oper-
ator D(n|m)−1. The calculation of the inverse of D(n|m) is done in [7] by proceeding
as follows. First we change into Fourier space D̃(p|q) and then take advantage of
the diagonal form with respect to the variables p, q to get the inverse D̃(p|q)−1. The
propagator D(n|m)−1 is obtained by transforming back to the original space. The
propagator in momentum space is given by

D̃(p)−1 =
am1− i ∑3

µ=0 γµ sin(pµa)

(am)2 + ∑3
µ=0 sin(pµa)2

. (2.8)

The momenta are restricted to the first Brillouin zone pµ ∈ (−π
a , π

a ] and we will have
poles if either pµ = 0 or pµ = π

a for every µ = 0, 1, 2, 3. This results in a total of 16

3The orientations in directions µ̂ and −µ̂ of the link variable are related via Uµ(n)† = U−µ(n− µ̂).
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poles. So we have 15 additional poles which are referred to as doublers [7].

2.3 Staggered fermions

The idea of staggered fermions is to reduce the number of doublers as present in
the fermion action Eq. (2.6) from 16 to 4. This is done by a space-time dependent
transformation of the fields ψ(x) and ψ(x). 4

The fields are transformed as follows:

ψ(x) = γn0
0 γn1

1 γn2
2 γn3

3 ψ(x)′ = Γ(x)ψ(x)′

and
ψ(x) = ψ(x)′γn3

3 γn2
2 γn1

1 γn0
0 = ψ(x)′Γ(x)† .

Inserting this into Eq. (2.6) we will observe that this transformation leaves the mass
term unchanged because the γ-matrices fulfill γ2

µ = 1, and hence Γ(x)†Γ(x) = 1. For
µ 6= ν it holds γµγν = −γνγµ. The kinetic term then transforms as

ψ(x)γµψ(x) = ψ(x)′ Γ(x)†γµΓ(x)ψ(x)′ = (−1)∑
µ−1
i=0 ψ(x)′ψ(x)′

= ηµ(x)ψ(x)′ψ(x)′ ,

where the γ-matrices are absorbed into a space-time dependent sign function, the so-
called staggered phase ηµ(x) = (−1)∑

µ−1
i=0 . The fermionic action Eq. (2.6) then becomes

SF[ψ
′, ψ
′, U] = ∑

x
ψ(x)′

( 3

∑
ν=0

ηµ(x)
Uµ(x)ψ(x + µ̂)′ −U−µ(x)ψ(x− µ̂)′

2
+ am ψ(x)′

)
,

and therefore is diagonal in Dirac space which means we have the same equation
for every spinor component. Subsequently, we can reduce four equations to one
equation by defining

SF[χ, χ, U] = ∑
x

χ(x)
( 3

∑
ν=0

ηµ(x)
Uµ(x)χ(x + µ̂)−U−µ(x)χ(x− µ̂)

2
+ am χ(x)

)
,

(2.9)
where χ(x) and χ(x) are one dimensional spinor fields with only color indices. In
other words we put only one out of 4 spinor components on each lattice site which
divides the number of doubler by 4. For further details see [7].

2.4 Temperature in lattice QCD

In lattice QCD, we want to analyse thermodynamic properties for temperatures
other than T = 0. Hence, the temporal extent in the Euclidean action have to be
restricted by

SE[ψ, ψ] =
∫ β

0
dτ

∫
R3

d3x L[ψ, ψ] .

For the lattice Λ defined in section (2.2) this means we have to fix the temporal extent
at

aNτ =
1
T

= β . (2.10)

4The space-time position x is related to the lattice site n ∈ Λ by: x = an (see section 2.2).
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The Continuum limit is now taken by letting a → 0 keeping aNτ = β and a|Λσ|
fixed, where |Λσ| is the spatial size.
In order to get results for various temperatures with fixed spacing a we have to
use different temporal extents Nτ. Therefore, we are restricted to discrete set of
temperatures. In addition, there are only temperatures available not higher than
aT = 1/Nτ = 1/2 because for fermions we have to choose anti-periodic boundary
conditions in temporal direction which restricts its minimal size to Nτ = 2. Since
chiral restoration is given for temperatures at about aT ' 1.5, we could then not
study physics of interest.
To fix this problem we apply a slight modification to the fermionic action Eq. (2.6) of
the form

SF[ψ, ψ, U] =∑
x

ψ(x)
( 3

∑
ν=1

γµ
Uµ(x)ψ(x + µ̂)−U−µ(x)ψ(x− µ̂)

2

+ γ γ0
U0̂(x)ψ(x + 0̂)−U−0̂(x)ψ(x− 0̂)

2
+ am ψ(x)

)
.

where γ is the bare-anisotropy parameter. This modification implies that, if γ 6= 1, the
action is no longer symmetric with respect to exchanges of the temporal axis with a
spatial one. In particular, the correlation length ξτ in temporal direction will differ
from the spatial correlation length ξσ. At this point we can say that the lattice has
become anisotropic and the temporal spacing aτ varies with γ. We can argue that in
physical units the correlation length for different directions should equal each other
and the following holds

ξτ aτ = ξσ aσ

where aσ is the lattice spacing in spatial direction. Defining the γ-dependent anisotropy
parameter ξ = aσ/aτ and using Eq. (2.10) we can write

aσT =
ξ(γ)

Nτ
(2.11)

which allows us to change the temperature continuously at fixed aσ [8].

2.5 The chemical potential in lattice QCD

In order to include non-vanishing particle densities a chemical potential µ have to
be introduced on the lattice. In statistical physics we have for a quantum mechanical
system the grand canonical partition function

Z(T, µ) = tr[e−(Ĥ−µN̂)/T] ,

where N̂ is the particle number operator. The term µN̂/T gives rise to an additional
term in the lattice version of the fermionic action Eq. (2.6) which would be of the
form

∑
x

µ ψ(x)γ0ψ(x) ,

where we use that the space integral over the zero component of the Noether current
jµ = ψ(x)γ0ψ(x) is the particle number N = ∑x ψ(x)γ0ψ(x). However, this naive
approach would run into problems in the continuum limit a → 0 since the energy
density ε becomes proportional to (µ/a)2 instead of being ε ∝ µ4 [9]. A correct
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implementation would be the modification of the temporal link variable by multi-
plying it with the additional factor eaµ. The fermionic action Eq. (2.6) then becomes

SF[ψ, ψ, U] =∑
x

ψ(x)
( 3

∑
ν=1

γµ
Uµ(x)ψ(x + µ̂)−U−µ(x)ψ(x− µ̂)

2

+ γ0
eaµ U0̂(x)ψ(x + 0̂)− e−aµ U−0̂(x)ψ(x− 0̂)

2
+ am ψ(x)

)
. (2.12)

For the interpretation we take a look at the continuous Lagrangian with chemical
potential µ which is given by

L[ψ, ψ] = ψ(x)
(

γµ

(
∂µ + igAµ(x)

)
+ γ0µ + m

)
ψ(x)

= ψ(x)
(

γµ

(
∂µ + igAµ(x) + µδµ,0

)
+ m

)
ψ(x) .

Hence, the chemical potential could be understood as imaginary part of the (scalar)
gauge potential. So we have to introduce the gauge fields Uµ(x) = eiaAµ(x) with the
new gauge potential Aµ → Aµ − iµδµ,0 . Thus, we have U0(x)→ eaµ U0(x) .
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Chapter 3

Strong coupling lattice QCD at
finite baryon-number density

To study finite baryon densities on the lattice either a fixed non-zero baryon chem-
ical potential µB or a fixed non-zero baryon number B has to be introduced in the
partition function leading to a grand canonical and canonical formulation, respec-
tively. Both formulations, the grand canonical with fixed µB and the canonical with
fixed B, suffer from negative Boltzmann factors occurring in the partition function
which is referred to as sign problem. In strong coupling lattice QCD (SC-LQCD)
with staggered fermions and gauge fields from SU(Nc), Rossi and Wolff [10] intro-
duced a new representation of the partition function in which this problem softens.
The idea is that by taking the limit β→ 0, the Wilson plaquette term, describing the
gluonic part (see Chapter 2 in [7]), is suppressed and we can integrate out the gauge
and subsequently the fermion fields explicitly. It turns out that the partition func-
tion becomes equal to a system of monomers, dimers and polymers (see Sec. 3.1).
By additionally taking the continuous time limit, the baryons become static and the
sign problem is completely absent (see Sec. 3.3).

3.1 The monomer, dimer and polymer model

In the strong coupling limit (β → 0) the partition function with Grassmann valued
staggered fermion fields, SU(Nc) gauge fields and the quark chemical potential µq
is given by

Z(µq, T, mq) =
∫
D[χ, χ]D[U] eSF [χ,χ,U] , (3.1)

where the staggered action for one flavor is (for a short derivation see section 2.3) 1

SF[χ, χ, U] = ∑
x

{
3

∑
µ=0

ηµ(x)
(

χ(x)Uµ̂(x)χ(x + µ̂)− χ(x + µ̂)U†
µ̂(x)χ(x)

)
+ 2amq χ(x)χ(x)

}
(3.2)

We provide the system, described by Eq. (3.1), with periodic boundary conditions
with respect to spatial directions and anti-periodic boundary conditions in tempo-
ral direction. Note, that the temporal link variable is prescripted with U±0̂(x) →
γ e±aτµq U±0̂(x), where γ is the anisotropic-coupling paramerter from section 2.4 and
the exponential e±aτµq of the chemical potential is derived in section 2.5. To integrate
over the gauge fields Uµq the partition function Eq. (3.1) is rewritten into the more

1The fields in the action Eq. (2.9) are rescaled by the factor χ→ i
√

2χ i and χ→ i
√

2χ to cancel the
sign in the exponential of the partition function and the 1/2 factor appearing in the action. We also
rewrite ∑x χ(x)Uµ(x)†χ(x − µ̂) to the equivalent form ∑x χ(x + µ̂)Uµ(x)†χ(x) w.r.t. the boundary
conditions.
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advantageous form:

Z =
∫

∏
x

dχ(x)dχ(x) e2amqχ(x)χ(x) ∏
µ

dUµ̂(x) eηµ(x)
(

χ(x)Uµ̂(x)χ(x+µ̂)−χ(x+µ̂)U†
µ̂(x)χ(x)

)
≡
∫

∏
x

dχ(x)dχ(x) e2amqχ(x)χ(x) ∏
µ

z(x, µ) . (3.3)

Performing the integration over one single link Uµ on site x (see appendix A) we get

z(x, µ) =
Nc

∑
k=0

{
(Nc − k)!

Nc!k!

((
ηµ̂(x)γδ0,µ

)2
χ(x)χ(x)χ(y)χ(y)

)k
}

+
1

Nc!

((
ρ(x, y) χ(x)χ(y)

)Nc + (−1)Nc
(
ρ(y, x) χ(y)χ(x)

)Nc
)

=
Nc

∑
k=0

{
(Nc − k)!

Nc!k!

((
ηµ̂(x)γδ0,µ

)2 M(x)M(y)
)k
}

+
(
ρ(x, y)

)Nc B(x)B(y) + (−1)Nc
(
ρ(y, x)

)Nc B(y)B(x) , (3.4)

where y is related to x by y = x + µ̂ and k ≡ kµ̂(x) ∈ {0, . . . , Nc} is referred to as
mesonic link variable (occupation number). Additionally, we have

ρ(x, y) = ηµ̂(x)

{
γ exp(±aτµq), (y− x) = ±1
1 else

.

The fermionic fields χ(x) and χ(x) are absorbed into mesonic fields M(x) and (anti)baryonic
fields B(x) and B(x) by defining

M(x) ≡ χ(x)χ(x) ,

B(x) ≡ 1
Nc!

εi1,...,iNc
χi1(x) · · ·χiNc

(x) and B(x) ≡ 1
Nc!

εi1,...,iNc
χiNc

(x) · · · χi1(x) .

Inserting Eq. (3.4) into the full integral Eq. (3.3) and taking the product over x and µ,
possible contributions in the product in Eq. (3.3) come from integrals of the type∫

dχ(x)dχ(x) e2amq χ(x)χ(x)(χ(x)χ(x)
)nD(x)

=
∞

∑
`=0

1
`!

∫
dχ(x)

(
2amqχ(x)χ(x)

)`
(χ(x)χ(x))nD(x)

=
Nc!

(Nc − nD(x))!
(
2amq

)Nc−nD(x)
=

Nc!
(nM(x))!

(
2amq

)nM(x) . (3.5)

For the last equation we used the integral relation of Grassmann variables
∫

dξdξ̄ ξξ̄ =
1 and nD(x)∈{0, . . . , Nc} is the site dependent dimer number which tells us how
much mesonic links(dimers) M(x)M(y) are touching the site x, i.e. nD(x)=∑µ̂=±0̂,...,±3̂ kµ̂(x).
We replaced Nc − nD(x) with nM(x) which we will refer to as the monomer number.
Hence, contributions on site x come from combinations of mesonic links and addi-
tional fields coming from the mass term (see Eq. 3.5), called monomers, where both
are related via the constraint

nM(x) ≡ Nc − nD(x) . (3.6)
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Baryonic fields have contributions in the product term, if there is a product of an
incoming baryonic link B(y)B(x) with an outgoing baryonic link B(x)B(z) for y =
x + µ̂ 6= x + ν̂ = z because baryonic fields already contain all necessary Grassmann
variables χi(x), i ∈ {1, . . . , Nc}. Thus, we can derive an additional constraint

∑
ρ̂=±0̂,...,±3̂

bρ̂ = 0 , (3.7)

where the baryonic link variable bρ̂ ∈ {−1, 0, 1} is bµ̂ = −1 for the incoming baryonic
link and bν̂ = 1 for the outgoing one.

Possible configurations (see Fig. 3.1) consist of sites connected by oriented self-

x x + µ̂
kµ̂

(M(x)M(x + µ̂))k (M(x))nM

x x + µ̂

B̄(x + µ̂)B(x)

x x + µ̂

B̄(x)B(x + µ̂)

FIGURE 3.1: The right figure outlines the graphical notation of monomers
and mesonic(top) and baryonic(bottom) link variables for SU(3), where the
left figure shows a illustrative configuration in 2-dimensional MDP system.
Grey dots denotes lattice sites.

avoiding baryonic loops satisfying the constraint (3.7). Combinations of monomers
and dimers, fulfilling (3.6), make up the remaining sites.

To summarize, integrating out the fields χ, χ̄ and U leads to a new representation of
the partition function Eq. (3.1) through a new variable set {nM, k, `} following the
(local) color constraint

Nc = nM(x) + ∑
µ̂=±0̂,...,±d̂

(
kµ̂(x) +

Nc

2
|bµ̂(x)|

)
(3.8)

which combines both constraints (3.6) and (3.7), where

• nM(x) ∈ {0, . . . , Nc} denotes the monomer number and results from mesonic
fields M(x)nM which are generated by the mass term e 2amχ̄χ.

• the mesonic link occupation number kµ̂ ∈ {0, . . . , Nc} arising from non-oriented
mesonic hoppings (M(x)M(x + µ̂))k.

• And baryon loops ` coming from oriented baryon hoppings B̄(x)B(x + µ̂)
forming self-avoiding oriented loops. We can assign to each site x ∈ ΛB a
baryon link variable bµ̂/ν̂(x) = ±1, where µ̂ is the outgoing direction and ρ̂ the
incoming one.
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The full partition function in the new representation becomes

Z = ∑
{nM , k, `}

∏
x∈ΛM , µ̂

(
Nc − kµ̂(x)

)
!

Nc!kµ̂(x)!
γ2kµ̂(x)δ0̂,µ̂ ∏

x

Nc!
nM(x)!

(
2amq

)nM(x) ∏
`

ω(`)

(3.9)

, where the first term is the contribution of the mesonic part with the set ΛM contain-
ing all mesonic sites , the second is the contribution of the monomers and the last is
the baryonic contribution and is given by the product of

ω(`) = σ(`) ∏
(x,µ̂)∈Cpath(`)

1
Nc!

γNcδµ̂,0̂ exp
(

NcNτr`aτµq
)

over the loops `, where the sign σ(`) is

σ(`) = (−1)r`+N−(`)+1 ∏
x,µ̂∈Cpath(`)

ηµ̂(x) . (3.10)

The following parameters characterize the loop geometry: The winding number r`
in 0̂-direction, the number of links in negative directions N−(`) and the path Cpath(`)
containing all sites sites and directions {x, µ̂} visited by the baryonic loop.

3.2 The sign

For µB = 0 the system, given by Eq. (3.9), has strictly positive weights after perform-
ing a resummation [11]. However, for finite baryon density the sign problem is still
present. Though, within the dual representation it is mildened and we can overcome
it by performing sign reweighting of observables using the ”average sign” given by

〈O〉 ≡
〈σO〉||
〈σ〉||

, 〈σ〉|| = exp(
V
T

∆ f ) ,

where V is the lattice volume and ∆ f ≡ f (T, µ, mq) is the difference in the free energy
which reflects the severity of the sign [4].

3.3 The continuous time limit

In this section we will derive a continuous time version of the partition function in
the dual representation. The advantage of having a continuous time formulation is
that lattice artifacts, coming from the discretization, are prevented. Further, we can
design algorithms which estimates critical temperatures more precisely without the
necessity of extrapolations in time direction. Another benefit is that baryons become
static, hence the sign problem completely disappears.
In order to vary the temporal lattice spacing continuously we introduced in sec-
tion 2.4 the bare coupling γ which controls the lattice temperature by the relation

aT =
ξ(γ)

Nτ
,
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where ξ(γ) is the anisotropy parameter. Its functional dependence on γ is unknown
but results from non-perturbative studies, done in [12], suggest that

ξ(γ) = κγ2 +
γ2

1 + λγ4 , κ = 0.781 ,

where the coefficient λ is given by λ = κ/(1 + κ) such that ξ(1) = 1. Thus, for large
γ the temperature behaves as aT = κγ2/Nτ which is a significant improvement over
aT = γ2/Nτ suggested by mean field approximations.
The goal in the continuous time formulation is to remove the dependence on γ and
Nτ in Eq. (3.9) by taking the limits γ→∞ and Nτ→∞ keeping κγ2/Nτ = aT fixed,
thus replacing them with the temperature aT.

3.3.1 γ and Nτ large

We start by considering the chiral limit, mq = 0, in which monomers are absent.
Therefore, the set Λ decomposes into the two disjoint subsets Λ = ΛM tΛB, where
ΛM contains all sites connected with dimers and ΛB contains all sites connected with
baryonic links. In the following, we can rewrite Eq. (3.9) by pulling out the overall
factor γNc|Λ| such that all spatial dimers and spatial baryonic links obtain a factor
γ−2 and γ−Nc , respectively. We have:

Z(γ, Nτ) = ∑
{k, `}

∏
x∈ΛM , µ̂

(
Nc − kµ̂(x)

)
!

Nc!kµ̂(x)!
γ2kµ̂(x)δ0̂,µ̂ ∏

x∈Λ
Nc! ∏

`

ω(`) , for mq = 0

= ∑
{k, `}

γ(∑x∈ΛM ,µ̂ 2kµ̂δµ̂,0̂+∑x∈ΛB ,µ̂ Nc|bµ̂|δµ̂,0̂) ∏
x∈ΛM , µ̂

(
Nc − kµ̂(x)

)
!

Nc!kµ̂(x)! ∏
x∈Λ

Nc! ∏
`

ω′(`)

= ∑
{k, `}

γNc|Λ|+(∑x∈ΛM ,µ̂ 2kµ̂δµ̂,ı̂+∑x∈ΛB ,µ̂ Nc|bµ̂|δµ̂,ı̂) ∏
x∈ΛM , µ̂

(
Nc − kµ̂(x)

)
!

Nc!kµ̂(x)! ∏
x∈Λ

Nc! ∏
`

ω′(`)

= γNc|Λ|
(

∑
{k, `}

∏
x∈ΛM

(
3̂

∏
ı̂=1̂

(Nc − k ı̂)!
k ı̂!

γ−2k ı̂

)
(Nc − k0̂)!

k0̂! ∏
`∈ΛB

ω̃(`)

)
,

(3.11)

where we used that

Nc|Λ| = ∑
x∈ΛM ,µ̂

2kµ̂ + ∑
x∈ΛB ,µ̂

Nc|bµ̂|

=

(
∑

x∈ΛM ,µ̂
2kµ̂δµ̂,ı̂ + ∑

x∈ΛB ,µ̂
Nc|bµ̂|δµ̂,ı̂

)
+

(
∑

x∈ΛM ,µ̂
2kµ̂δµ̂,0̂ + ∑

x∈ΛB ,µ̂
Nc|bµ̂|δµ̂,0̂

)

for a system in the chiral limit. The baryonic part is first substituted by

ω′(`) = σ(`) ∏
(x, µ̂)∈Cpath(`)

1
Nc!

exp
(

NcNτr`aτµq
)

.

and lastly becomes

ω̃(`) = σ(`) ∏
(x, µ̂)∈Cpath(`)

γ−Ncδµ̂, ı̂ exp
(

NcNτr`aτµq
)

. (3.12)
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Furthermore, the factor
1

Nc!|Λ|
=

1
Nc!|ΛM |Nc!|ΛB|

.

coming from the mesonic- and baryonic part in Eq. (3.11) becomes the same for all
weights, and hence cancels the factor Nc!|Λ| coming from the remanent monomer
part. In the subsequent calculations the overall factors in front of the partition func-
tion can be omitted since they cancel for observables due to the weighting (2.2).

Considering large γ and Nτ we make the following observations:

• All spatial dimer with k ı̂(x) > 1 are suppressed. Single spatial dimers survive
since the summation over Nτ sites is proportional toO(γ2). Thus, the mesonic
contribution becomes

=
l

γ→∞
∏

x∈ΛM

(
δk ı̂, 0 + δk ı̂, 1

γ−2

Nc

)
(Nc − k0̂)!

k0̂!
.

• In temporal direction dimers can either arrange in 2-1-chains (= ·−·) with con-
tributions (Nc − k0̂)!/k0̂! = 1/2, 2 for altering k0̂ = 2, 1 or 3-0-chains (≡· ·)
with contributions (Nc− k0̂)!/k0̂!=1/3, 3, when fixing color to Nc = 3. Hence,
temporal dimer chains of any length do not change the partition function. For
future notation dimer chains without any spatial dimer attached are referred
to as static mesonic lines.

• In the mesonic product the only contributions come from sites x connected
with single spatial dimers. These sites can be interpreted as vertices either
having a T-form or a L-form with contributions vT = 2√

3
γ−1 = v̂Tγ−1 and

vL = γ−1 = v̂Lγ−1 (see Fig. 3.2), where v̂T = 2/
√

3 and v̂L = 1. The mesonic
part in the vertex formulation is given by

=
l

γ→∞
∏

x∈ΛM

vT
nT(x) vL

nL(x) ,

where nT(x) = 0, 1 and nL(x) = 0, 1 is the number of vertices on site x ∈ ΛM.
Note, one spatial dimer corresponds to two vertices and the number of spatial
dimers connected to a dimer chain is always even.

• The lattice becomes bipartite and spatial dimers are now oriented being emit-
ted/absorbed from an ”emission site”/”absorption site” lowering/rising the
“state” of dimer chains. These states can be interpreted as quantum num-
bers in the Hamiltonian formulation of continuous time which has “spin” rais-
ing/lowering operators. For Nc = 3, the “spin states” for the four different
static mesonic lines range within {3/2, 1/2,−1/2,−3/2} [13].

• The sum in Nτ is of order O(γ2). Hence, for Nc = 3 spatial baryonic con-
tributions are suppressed by γ−1 = γ2/γ3. Only contributions from baryonic
loops in time direction remain (static baryons). Since Nτ is even and the wind-
ing number becomes r` = −1, 1 for antibaryons and baryons the sign (3.10)
is always positive and the sign problem is absent. Thus, we can rewrite the
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baryonic contribution as follows:

∏
`⊂ΛB

ω̃(`) =
l

γ→∞
∏

x∈Λ3
B

e3r`µqaτ Nτ = e3µqB aτ Nτ ,

where B is the baryon number and Λ3
B denotes a spatial slice of the full set ΛB.

The partition function Eq. (3.11) in terms of vertices for Nc = 3 becomes

Z(γ, Nτ) =
l

γ→∞
∑
G

eµBB aτ Nτ ∏
x∈ΛM

vT
nT(x)vL

nL(x) , µB = 3µq , (3.13)

where G = {nT, nL, B} denotes the configuration space of all possible vertex config-
urations combined with static baryons. Fig 3.2 shows a possible configuration of a
MDP system for Nτ and γ large.

x

nL(x) = 1

x

nT(x) = 1

FIGURE 3.2: Graphical notation of the vertices (left) and example configura-
tion in a 2-dimensional MDP discrete time system for γ and Nτ large (right).
The bipartite structure of the MDP-CT system is indicated by the red (emis-
sions site) and blue (absorption site) colored sites. Oriented spatial dimers
are indicated by orange arrows.

3.3.2 The Nτ → ∞ & γ→ ∞ limits

To eliminate the Nτ and γ dependence in the Nτ and γ limit we change the summa-
tion in Eq. (3.13) such that we can properly approximate the contributions in time
direction using the following set of equivalence classes:

Γk ≡
{
G ′ ⊂ G

∣∣∣∣∣ n~x(t) ∼ n~x(t
′) , k = ∑

x

nT(x) + nL(x)
2

; nx, nx′ ∈ G ′, nx ≡ nT/L(x)

}
.

(3.14)
Thus, G ′ denotes an equivalence class containing vertices equal up to time shifts

and with a total number of k spatial dimers.
In the following step, we will introduce an auxiliary construction in order to estimate
the number of possibilities to distribute spatial dimers at a dimer chain in a certain
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k(~x,ı̂) spatial dimers

(~x, Nτ − 1)

(~x + ı̂, Nτ − 1)

(~x, 0)

(~x + ı̂, 0)

t

V2

FIGURE 3.3: Schematic view on a cubic lattice, where only the time slices
of the two spatial sites ~x, ~x + ı̂ ∈ V2 are shown. The bipartite structure of
the MDP-CT system is indicated by the colors red (emissions site) and blue
(absorption site). Arrows symbolise emitted spatial dimers, where the green
ones are connected with neighboring positions of~x or~x + ı̂ omitting direction
ı̂ or −ı̂, respectively.

direction. The number of spatial dimers attached at a dimer chain in direction ı̂ is
given by k(~x,ı̂) ≡ ∑Nτ

t=1 k ı̂(~x, t), where k ı̂ is the mesonic link variable from Sec. 3.1. We
now argue that the number of available positions to distribute spatial dimers at is
equal or even larger than(

Nτ

2
− K(~x,ı̂)

)
≡
(

Nτ

2
− ∑
± ̂, ̂ 6=ı̂

k(~x, ̂) − ∑
± ̂, ̂ 6=−ı̂

k(~x+ı̂, ̂)

)
, (3.15)

where the 1/2 factor is due to the even-odd decomposition and here we assume that
spatial dimers from other directions fully take away possible positions. 2 It follows
that in this case the number of possibilities to distribute all k spatial dimers is given
by

∏
~x∈Λ3

M , ı̂

{(
Nτ

2
− K(~x,ı̂)

)(
Nτ

2
− K(~x,ı̂) − 1

)
· · ·
(

Nτ

2
− K(~x,ı̂) − k(~x,ı̂)

)}

≈
l

Nτ→∞
∏

~x∈Λ3
M , ı̂

(
Nτ

2

)k(~x,ı̂)

=

(
Nτ

2

)k

, with k = ∑
~x∈Λ3

M , ı̂

k(~x,ı̂)

2Which is in general not the case because spatial dimers coming from directions other than ı̂ can
share the same position (see Fig. 3.3), where here the word position rather denotes a slot to attach a
spatial dimer at.
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while letting Nτ become large. We now make use of the fact that (3.15) is a lower
bound of the true number of available positions. This includes that the true number
of possibilities to distribute all spatial dimers admits the same limit (Nτ/2)k.

Hence, for large Nτ the contributions in time direction for the set of equivalence
classes Γk can be approximated by the factor (Nτ/2)k for a total number of k spatial
hoppings. Finally, we pull out the γ−2k factor of the product over the spatial hop-
pings (we remind that vT = 2√

3
γ−1 = v̂Tγ−1 and vL = γ−1 = v̂Lγ−1) and take the

limits γ → ∞ and Nτ → ∞. Doing so, the continuous time partition function for
Nc = 3 is given by

ZCT(µB, T) = ∑
k∈2N

(
Nτ

2γ2

)k

∑
G ′∈Γk

e µBBaτ Nτ v̂NT
T v̂NL

L

= ∑
k∈2N

(
1

2aT

)k

∑
G ′∈Γk

e µBB/T v̂NT
T (3.16)

We used the relations of Nτ with the temperature given by aτ Nτ = 1/T and Nτ/γ2 =
1/aT. The factor κ in Nτ/κγ2 = 1/aT can be omitted by rescaling the temper-
ature appropriately. The number of spatial hoppings are decomposed into k =
(NT + NL)/2 with NT/L = ∑x nT/L(x). Note that we can now explicitly identify
the baryon weighting e µBB/T in the new partition function. For more information
see the article [1].
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Chapter 4

Methods

4.1 The microcanonical density of states from the Wang-Landau
method

In the following section the Wang-Landau method [2] is introduced which comprises
substantial advantages over conventional approaches.
The general idea is that a modified random walk in the energy surface is employed
in order to sample the microcanonical density of states Ω(E) (DoS). Once the DoS
is sampled, we can calculate various observables for arbitrary temperatures using
that the canonical partition function is related to the microcanonical density by the
following Laplace transformation

Z(T) = ∑
E

Ω(E)e−E/kT . (4.1)

Compared to other Monte Carlo methods which directly sample in the canonical
probability distribution the Wang-Landau method exhibits a huge advantage pro-
viding an exact expression of the partition function.

At the beginning of the simulation, the DoS ΩWL(E) is initialized with small values,
e.g. ΩWL(E) = 1 for all energies E. Starting from an arbitrary configuration with
energy E we perform a random walk to propose a new configuration with energy
E′, 1 where the new energie E′ is proposed with the implicit probability

P(E′) =
Ω(E′)

∑E Ω(E)
. (4.2)

In the following, we adapt a Metropolis acceptance propabilty Paccept(E→ E′) to the
transition which is defined by

Paccept(E→ E′) ≡ min
{

ΩWL(E)
ΩWL(E′)

, 1
}

.

The transition probability then becomes

P(E→ E′) ≡ P(E′)Paccept(E→ E′) =
Ω(E′)

∑E Ω(E)
Paccept(E→ E′) ,

We now modify ΩWL(E) or ΩWL(E′), if either the transition is rejected or accepted
by multiplying the respective DoS with a modification factor f > 1. In addition, we

1Naturally, the random walk should be carried out in such a way that it reflects the desired prob-
ability distribution. As an example, to get the microcanonical DoS in a spin system such as the Ising
model the random walk is realised by flipping the Ising spins.
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increment the corresponding histogram H(E) at E or E′ by 1 . 2

Note that this updating scheme will take into account that, if the random walk pro-
poses the energy E′ more often than some other energy E, i.e. Ω(E′) > Ω(E), then
transitions to E′ become more unlikely accepted than transitions to E, so that we ob-
tain ΩWL(E′) > ΩWL(E). Due to this dynamics of the algorithm it approaches detail
balance up to an accuracy which depends on the modification factor f

P(E→ E′) ≈ P(E′ → E) .

Thus, if Ω(E′) > Ω(E), the acceptance probabilities become

Paccept(E→ E′) =
ΩWL(E)
ΩWL(E′)

∧ Paccept(E′ → E) = 1

and we can directly write the transition probabilities as

P(E→ E′) ≈ P(E′ → E)
Ω(E′)

∑E Ω(E)
ΩWL(E)
ΩWL(E′)

≈ Ω(E)
∑E Ω(E)

⇔ ΩWL(E)
ΩWL(E′)

≈ Ω(E)
Ω(E′)

.

For the case Ω(E′) < Ω(E) the proof is analog. Hence, the ratio of the DoS converges
to the true ratio with an error in the accuracy proportional to ln( f ) considering the
exponent.

In order to get a better accuracy the modification factor f should be reduced, for
which we additionally sampled the histogram H(E). Due to the detailed balance
property this histogram flattens up to a difference proportional to the ratio Ω(E)/Ω(E′)
of the densities. We now define a flatness condition by the margin δ of the mean
H̄ = 1/N ∑E H(E), N being the number of energies, which should not be exceeded
by |H(E)− H̄| for every energy E. Every time this condition is fulfilled, we reduce
the modification factor, reset all histogram entries to zero and continue the algorithm
with a finer accuracy. The modification of f should follow a recipe which decreases
f in order to approach 1 relatively fast. Doing so, the simulation is finished, if f is
smaller than some value f f inal .
Note, the margin δ and f f inal serves as control parameter whereas the former con-
trols how long ΩWL is modified for a given f and the latter determines at which
accuracy level we want to stop. We should also consider to choose f large enough
to quickly reach all possible energies.

Once the simulation is done, we want to extract the approximation for the DoS
Ω(E) out of ΩWL(E). Since the ratio ΩWL(E)/ΩWL(E′) converges to the true ra-
tio Ω(E)/Ω(E′) we can argue that the sampled DoS ΩWL(E) approximates Ω(E) up
to some factor C. Thus, we have

ΩWL(E) ≈ C Ω(E) , ∀ E (4.3)

2Obviously, if we perform the random walk without the acceptance probability, accepting all en-
ergies immediately, the normalized histogram H(E)/ ∑E H(E) would converge to the DoS Ω(E). If
we do so, we have to keep in mind that the number of sweeps ∑E H(E) have to be a multiple of the
number of all possible configurations in order to get a good accuracy which makes this method highly
inefficient.
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The factor C can be obtained by using the knowledge about Ω(E) in the ground state
E0. Hence,

ΩWL(E0) = C Ω(E0)

⇔ C =
ΩWL(E0)

Ω(E0)
(4.4)

Substituting Eq. (4.4) into Eq. (4.3) and solving for Ω(E) we get the following for-
mula to get the approximation of the true DoS:

Ω(E) ≈ Ω(E0)

ΩWL(E0)
ΩWL(E) .

Due to the fact that the energy range scales with the size of the system, it is rec-
ommended to perform the algorithm within parts of the whole range. In this case
we have to adjust ΩWL(E) to the respective boundary states. Note that it suffices to
sample within the first half of the total energy range, if the DoS is symmetric.
To circumvent storaging extremly large numbers the logarithmic DoS should be up-
dated instead. The update scheme then turns to

ln(ΩWL(E))→ ln(ΩWL(E)) + ln( f )

and the recipe to extract the approximation of ln(Ω(E)) becomes

ln(Ω(E)) ≈ ln(ΩWL(E))− ln(ΩWL(E0)) + ln(Ω(E0)) .

4.2 The Wang-Landau algorithm applied to the Ising model

To test the Wang-Landau algorithm, it is applied to the Ising model for dimensions
d = 2, 3 and constrained to nearest neighbor interaction. In the following the Wang-
Landau method is compared with other Monte Carlo methods by considering the
results for the energy expectation values for various temperatures.

The Hamiltonian of the d-dimensional Ising model without an external field is given
by

H = J ∑
〈i,j〉

sisj (4.5)

with the exchange energy J and the spin variable si ∈ {−1, 1}.The 〈i, j〉 denotes the
sum over nearest neighbor interaction. The modification factor is initialized with
f = e1 and we will reduce it by applying the square root every time the flatness
condition is fulfilled. The DoS is set to ΩWL(E) = 1 for all energies. The flatness con-
dition δ have to be appropriately chosen for the given energy range in order to keep
the algorithm running long enough even within small ranges. It should be defined
as some percentage of the mean H̄. In order to calculate a statistical error the density
can be sampled various times. For the precision we choose f f inal = exp(10−8) and
for one simulation we go through the following steps:

1. Choose a random lattice configuration σ and compute the energy Eold with Eq.(4.5).

(a) By flipping the spin on a randomly chosen site a new configuration with
energy Enew is proposed.
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(b) Perform the Metropolis acceptance step. So check if p < Paccept(Eold →
Enew) = min

{
ΩWL(Eold)
ΩWL(Enew)

, 1
}

with probability p ∈ (0, 1):

If accepted update as follows:
• H(Enew)→ H(Enew) + 1
• ln(ΩWL(Enew))→ ln(ΩWL(Enew)) + ln( f )
• and set Eold = Enew.

Else update:
• H(Eold)→ H(Eold) + 1
• ln(ΩWL(Eold))→ ln(ΩWL(Eold)) + ln( f )
• and return to previous configuration σ.

(c) Check if flatness condition is reached. H(E) should fulfill δ > |H̄−H(E)|
for every E: 3

If true reset the histogram H(E) and continue with 2.
Else return to step 1a).

2. Reduce the modification factor according to f →
√

f and check if f < f f inal :

If true continue with 3.

Else return to step 1a).

3. Leave the loop, normalize ln(ΩWL(E)) by subtracting for every energy E with
minE{ln(ΩWL(E))} and adjusting the result to the ground state.

To compare the Wang-Landau algorithm with Monte Carlo algorithms which sam-
ple through the canonical distribution we perform various simulations for a square
lattice of size V = 82 and a cubic lattice of size V = 43. Once we have sampled the
DoS, we can use Eq. (4.1) to calculate the energy expectation value via the formula

〈E〉T = −∂ ln (Z(T))
∂β

, Z(T) = ∑
E

Ω(E)e−E/kT

where β = 1/kT. The expectation value for energy E is then

〈E〉T =
∑E E Ω(E)e−βE

∑E Ω(E)e−βE .

In Fig. 4.1 and 4.2 the results of both simulations for square and cubic lattices, are
plotted with roughly same number of sweeps (∼ 109). We can observe that the ac-
curacy decreases, if the number of updates relaxes to a larger energy range. If we
choose a higher precision and smaller flatness condition, the error can be further
decreased which on the other hand leads to more calculation time. However, the
advantage of the Wang-Landau method is that once we have generated ΩWL(E), we
can calculate observables for arbitrary temperatures. If we now choose an arbitrary
fine temperature cut-off, we can find pseudocritical points with high precision such
that very accurate extrapolations can be done (see section 4.4), whereas other Monte
Carlo methods require many simulations to achieve that.

3In practice this should be done after a certain amount of sweeps depending on the size of the lattice
to save computation time.



4.2. The Wang-Landau algorithm applied to the Ising model 25

0.0 0.5 1.0 1.5 2.0 2.5 3.0
T

0.8

1.0

1.2

1.4

1.6

1.8

2.0

<
E

>
/N

Ising model 4x4
Wang-Landau
cluster
heatbath
worm

0.0 0.5 1.0 1.5 2.0 2.5 3.0
T

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

<
E

>
/N

FIGURE 4.1: The solid line shows the resulting energy expectation value by
using the density of states Ω(E) of a square lattice of size L = 4 in the Ising
model generated via the Wang-Landau method. For comparison the results
for the cluster/heatbath/worm algorithm [14] using the software package
ARIADNE, developed by Unger et al, are shown.
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FIGURE 4.2: The solid line shows the resulting energy expectation value by
using the density of states Ω(E) of a cubic lattice of size L = 4 in the Ising
model generated via the Wang-Landau method. For comparison the results
for the cluster/heatbath/worm algorithm [14] using the software package
ARIADNE, developed by Unger et al, are shown.
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4.3 Finite-Size Scaling

For a finite Ising system the specific heat does not diverge as well as the peak loca-
tions are slightly shifted (see Fig. 4.4). Such finite size effects arise from the fact that
the correlation length ξ of the system is prevented from becoming larger than ξ ≈ L.
At this point, the system of size Ld already becomes effectively ordered, where d
is the dimension. On infinite scale the correlation length diverges near the critical
point and follows some power law

ξ ∝ |t|−ν ,

where
t ≡ T − Tc

is the reduced temperature. For a finite sized system, the correlation length reaches
its maximum ξ ≈ L for T approaching Tc and we get

ξ ≈ L ∝ |TL − Tc|−ν , (4.6)

where TL is the pseudocritical point for which we obtain the proportionality to ξ ≈
L. We now consider the specific heat near the critical temperature which also obeys
a power law

CV(T) =
〈E2〉T − 〈E〉2T

T2 ∝ |T − Tc|−α , (4.7)

where α is the critical exponent for the specific heat. Following the same argument
as above, we assume that for some pseudocritical point the maximum of the specific
heat will be attained in a finite sized system. It turns out that it can be identified
with the same TL. Hence,

CV,max ∝ |TL − Tc|−α . (4.8)

Combining Eq. (4.6) and Eq. (4.8) we obtain

CV,max ∝ |T − Tc|−α ∝ L
α
ν .

Rewriting this we get

TL − Tc = const · L− 1
ν ≡ c · L− 1

ν . (4.9)

So in order to get the critical exponent ν we have to apply a power law fit using the
pseudocritical points TL from different maxima of the specific heat CV . For more
details see [15].

4.4 Finite-Size scaling applied to the Ising model

In this section finite size scaling is done in order to obtain the critical temperature of
the 2D Ising model. Here, we take advantage of the density of states, generated via
the Wang-Landau method, in order to calculate the specific heat and determine the
peak locations with high precision.

In the following the, DoS ΩWL(E) is sampled for the lattice volumes V = 162, 322

and 502 (see Fig. 4.3). Note, in the 2D Ising model it is possible the compare the
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data with the exact solution of the DoS provided by [16] 4 , where the relative er-
ror/deviation is given by ε(X) = |(X − Xexact)/Xexact|. In Tab. 4.1, the maximal
relative error and the number of sweeps for each volume is listed. We have chosen
appropriately small flatness conditions for smaller lattice sizes such that the algo-
rithm is modifying the respective densities long enough. We now choose a temper-
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FIGURE 4.3: The density of states for 2D Ising model from the Wang-Landau
method compared to the exact data from [16]. Because the data for both re-
sults coincides the relative error ε(X) = |(X − Xexact)/Xexact|, where X =
log(ΩWL(E)), is shown in the inset figure. Note the normalized energy range
E/N ∈ [−2, 2] is considered to compare different volumes V = L× L.

L δ/N̄ εmax[in %] #Sweeps

16 0.01 0.9 2× 108

32 0.05 1.2 5× 109

50 0.1 0.5 7× 109

TABLE 4.1: Relative error of Wang-Landau simulated densities with respect
to exact data in a 2D Ising model for different L× L volumes.

ature cut-off {T1, T2|∆T = 0.0001}, ∆T denoting the step size, and compute specific
heat CV for every temperature step using

CV(T) =
〈E2〉T − 〈E〉2T

T2 . (4.10)

4The Mathematica program which is proposed here is restricted up to L = 50.
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Xexact)/Xexact| (inset figure), where Xexact is calculated via Eq. (4.10) using the
exact DoS from [16], for 2D Ising model and different volumes V = L× L.
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critical points TL obtained from the specific heat using the DoS, generated via
the Wang-Landau method in the 2D Ising model.
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Comparing the data with the exact result (see Fig. 4.4) the error within all data points
is not bigger than 0.58%.
In order to apply finite size scaling, the peak locations TL of the specific heat are
identified for the distinct lattice volumes (see Sec. 4.3). The fit, see Eq. (4.9), has three
parameters Tc, c and ν, where we have for the critical exponent ν = 1 in the 2D
Ising model. Performing the error weighted fit using the pseudocritical points TL,
we obtain Tc = 2.2699(9) which is close to the literature value of Tc = 2.2691.

4.5 The worm algorithm in SC-QCD

To generate configurations according to the distribution of a system, described by
Eq. (3.9), Monte Carlo techniques such as the directed path algorithm (dpa) from [17]
can be used. The dpa is essentially a worm algorithm with the feature that back-
tracking is not allowed.
In the MDP system the worm is split in two different updates in order to update
the mesonic and baryonic part independently. Before going through the worm up-
dates in more detail, we discuss an interesting feature when changing into the dual
representation with the new variables kµ̂, bµ̂ and nM. In this picture the partition
function (3.9) can be decomposed in two parts by extending the parameter set on
every site x to all directions (nM, kµ̂, bµ̂, µ̂ = ±0̂, . . . ,±3̂). Thus, we can rewrite the
partition function into

Z = ∑
{nM , k, b}

∏
{xa}

Wa(xa) ∏
{xp}

Wp(xp) σ(nM, k, b) (4.11)

with

Wa(x) = ∏
µ̂=±0̂,...,±3̂

((
Nc − kµ̂

)
!

Nc!kµ̂!
e3bµ̂(δµ̂,0̂+δµ̂,−0̂)aτµq

)
Nc!

nM(x)
(
2amq

)nM(x) (4.12)

and
Wp(x) = ∏

µ̂=±0̂

(
γ2kµ̂+3|bµ̂|

) Nc!
nM(x)!

(
2amq

)nM(x) . (4.13)

Now the lattice is split in two separate set of sites, the active sites {xa} and the
passive sites {xp}. Using the bipartite representation Eq. (4.11) the worm update
scheme consists of active site updates and passive site updates.

Starting with the mesonic update, a worm head and tail in form of monomers is
introduced on a site which is connected to at least one dimer violating the constraint
Eq. (3.6). Per definition, this site is active. In the following, the worm head moves
through passive (active) sites restoring (violating) the constraint Eq. (3.6) by remov-
ing (producing) dimers in turns until the worm head removes a monomer on an
active site. Note, in the chiral limit the worm head propagates through the lattice
until the tail is removed. During the update worm estimators are accumulated ev-
ery time the worm performs passive site updates.
In contrast to the mesonic update, the worm head and tail of the baryonic worm
is placed either on a baryonic site or on a site with a triple dimer attached. The
worm head propagates through the lattice accepting only sites connected with ei-
ther baryonic links or a triple dimer converting them into each other, respectively.
The baryonic update is finished when the worm head removes the tail.
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Updating in this way, every possible configuration can be reached and ergodicity
is fulfilled. Both, the mesonic- and the baryonic worm, satisfy the detailed balance
condition

W(C)P(C′|C) = W(C′)P(C|C′) ,

where W(C) = ∏xa
Wa(xa)∏xp

Wp(xp) is the weight of the worm configuration C
and P(C|C′) is the transition probability from configuration C to C′. A detailed proof
can be found in [4]. Note, that this algorithm does not suffer from critical slowing
down for small masses like it was the case for the MDP-update used in [11], whose
efficiency was dependent on the quark mass.

4.6 Worm algorithm in CT-limit

In order to generate configurations in the mesonic part of the continuous time sys-
tem, described by Eq. (3.16), we will use a worm-type algorithm similar to the di-
rected path algorithm mentioned in Sec. 4.5. Similar to the bipartite lattice in the
dual representation the lattice in the continuous time limit can be decomposed into
emission- and absorption sites. Again, the mesonic- and baryonic part are treated
independently.

Initially, the worm head and tail are located at an absorption site and violate the
constraint Eq. (3.6). Subsequently, the worm head propagates through the lattice
restoring (violating) the constraint every time it visits emission (absorption) sites.
The algorithm either stops at an absorption site connected to a spatial dimer which
is then deleted or generates a spatial dimer at an emission site. The typical distance
at which a spatial dimers is emitted is given by the Poisson process

P(∆β) = exp(−λ∆β) ,

where

∆β ∈ [0, β = 1/aT] and λ = dM(x, t)/4 , dM(x, t) = 2d−∑
µ

nB(x + µ̂) .

The “Decay constant” λ for spatial dimer emissions is space-time dependent when
baryons are present. The dependence is given by d(x, t) which is the number of
mesonic neighbors at a given coordinate.
Thus, the Poisson process assures that the spatial dimers are exponentially distributed.
Other than in the directed path algorithm there is no need for a baryonic worm.
Positive- and negative oriented static baryons can be exchanged with static mesonic
lines without any spatial dimer attached. The Wang-Landau method, see next sec-
tion (Sec. 4.7), used in this thesis will take care of these updates.

4.7 The Wang-Landau applied to the MPD-CT model

In chapter 3 section 3.3 a new representation of the partition function given by
Eq. (3.16) was established in the continuous time limit of the MDP (MDP-CT) model.
The exponential eµBB/T can be identified as the integral kernel of a Laplace transfor-
mation in the baryon number B. We now rewrite the sum using the canonical DoS
g(B, T) for fixed B and T. It follows that the grand canonical representation Eq. (3.16)
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admits the Laplace transformation of canonical DoS:

Z(µB, T) =
V

∑
B=−V

g(B, T) e µBB/T , V = |Λ3| . (4.14)

Due to the fact that baryons become static in the continuous time limit the Wang-
Landau method, introduced in Sec. 4.1, can be adapted to obtain the set {g(B, T)}B
which is the subject of this section.

To sample DoS g(B, T) we employ the Wang-Landau method to closed loop con-
figurations, yielded by mesonic worm updates (Sec. 4.6). In this case the sampling
would be done in the baryon number which is given by B = B+− B−, where B+ and
B− denotes baryons and anti-baryons. However, it is more efficient to keep track of
the resummation P = B++B−which we refer to as polymer number. The advantage
is that sampling in the number of blocking polymers P ∈ {0, V} requires only half
of the simulation range of the baryon number B∈ {−V, V}. Another benefit is that
analytical cross-checks in the large temperature limit can easily be done.
The weight of a configuration with P polymers is given by ω(P)= (2 cosh(µB/T))P

and is related to the baryon weight by a binomal transformation:

w(P, µB/T) =
(

e µB/T + e−µB/T
)P

=
V

∑
B+=0

(
P

B+

)
e µBB+/T e−µB(P−B+)/T

= ŵ(P) e µBB/T

using that B− = P− B+. The DoS g(B, T) in the baryon number B can be obtained
via the convolution

V

∑
P=0

g(P, T)w(P, µB/T, B) =
V

∑
P=0

g(P, T) ŵ(P, B) e µBB/T (4.15)

= g(B, T) e µBB/T ,

where polymer weight g(P, µB/T, B) is restricted to a fixed baryon number B =
B+ − B− = 2B+ − P. The same holds for the binomial transformation. Hence,

ŵ(P, B) =
V

∑
B+=0

B=2B+−P

(
P

B+

)
.

In the following, the sampling of the density g(P, T) can be realised by simply per-
forming the mesonic worm and Wang-Landau updates in turns. In more detail, after
every mesonic worm update we loop through the volume and propose changes in
the state of static sites 5 , accepting these with a Wang-Landau probability given by

paccept(Pold → Pnew) = min
{

gWL(Pold, T)
gWL(Pnew, T)

, 1
}

,

5Static sites can admit either Nc + 1 possible mesonic states or the polymer state. If we would
sample in the baryon number B, we have to distinguish between the baryon and anti-baryon states.
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while accepting dynamic sites immediately since Pold = Pnew holds. The state den-
sity gWL(P, T) is initialized with small values and, analog to Sec. 4.1, we switch to a
logarithmic updating scheme. After choosing an arbitrary configuration with poly-
mer number P, the simulation consists of the following steps:

1. A mesonic worm update is carried out and subsequently a loop through the
volume is started:

• If the site is static (no spatial dimer attached), a new state out of Nc + 2
possible states is proposed. Thus, the polymer number becomes P →
P + dP, where the change is dP = 0,±1 for the cases if we interchange
either two mesonic states, a mesonic state with a polymer or the reverse,
respectively. The proposal is accepted if p < min{ gWL(P,T)

gWL(P+dP,T) , 1} for some
random number p ∈ (0, 1):

If accepted:
– H(P + dP)→ H(P + dP) + 1
– ln(gWL(P + dP, T))→ ln(gWL(P + dP, T)) + ln( f )

Else reject new state and update:
– H(P)→ H(P) + 1
– ln(gWL(P, T))→ ln(gWL(P, T)) + ln( f )

• Otherwise immediately update ln(gWL(P, T)) → ln(gWL(P, T)) + ln( f )
and H(P)→ H(P) + 1.

2. Check if the flatness condition is reached. H(P) should fulfill δ > |H̄ − H(P)|
for every P:

If true reset the histogram H(P) and continue with 3.

Else repeat step 1.

3. Reduce the modification factor according to f →
√

f and check if f < f f inal :

If true terminate the simulation and normalize ln(gWL(P, T)).

Else return to step 1.

To get the approximated g(P, T) we use the recipe proposed in section 4.1 using that
for the ground state P = V (hence all sites are occupied by polymers) we simply have
g(V, T) = 1. A statistical error can be calculated by performing various simulations
for g(P, T).
The DoS is an important tool since we can use it to investigate the grand canonical
probability distribution for µB 6= 0 from which we can get information about the
phase boundaries at the first order nuclear transition (see Sec. 5).
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Chapter 5

Results

In this thesis we aim for the sampling of the canonical density of states (DoS) in
a MDP-CT system with the SU(3) gauge group using the Wang-Landau method
combined with the worm algorithm (see Sec. 4.7). In the first section the results
are cross-checked for a spatial volume of size V = 43 to assure validity. We pro-
ceed with calculating the canonical DoS for different lattice volumes. Doing so we
can study the double peak structure of the grand canonical probability density in
thermodynamic limit V → ∞. In more detail, by identifying the peak locations for
different lattice extents we detect the boundaries of the mixed phase in the canoni-
cal phase diagram. Using finite size scaling will yield the peak locations, hence the
phase boundaries of the mixed phase, in the limit (V → ∞) of continuous time lattice
SC-QCD.

5.1 Cross-checks

In this section the binomial transformation between the polymer and baryon DoS is
investigated. We considered a MDP-CT system with a spatial volume of size V = 43.
Furthermore, the obtained results for the expected polymer and baryon number are
compared with data sampled through important sampling of closed loop configura-
tions generated by mesonic worm and additional baryon updates [1].

The DoS g(P, T) is sampled in the polymer resummation P = B+ + B− for vari-
ous temperatures (Fig. 5.1) following the steps, described in Sec. 4.7. We used for
the precision a limit of f f inal = 10−8 and a flatness condition of δ = 0.05 · H̄ . In the
following, the DoS g(B, T) in the baryon number can be obtained by using the bino-
mial transformation from Eq.( 4.15). In order to verify the binomal transformation,
we also sample the density g(B, T) directly in the baryon number. The deviation of
both results is shown in the inset of Fig. 5.2. Note that the error does not exceed
0.17% which assures that the binomial transformation between the densities in B
and P is correct.
To conclude this section, the resulting expectation values for the polymer and baryon
densities for temperatures down to aT=1.0 are compared with the results, obtained
through important sampling of configurations generated via mesonic worm updates
and subsequent baryon updates. The expected baryon density is given by

〈B/V〉 = ∑B B/V g(B, T)w(B, µB/T)
∑B g(B, T)w(B, µB/T)

, w(B, µB/T) = e µBB/T (5.1)

for fixed temperature T and chemical potential µB, whereas the expected polymer
density can by calculated by substituting g(P, T) and w(P, µB/T) = (2 cosh(µB/T))P
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FIGURE 5.1: Logarithmic density of states g(P, T) of a MDP-CT system of size
V = 43 in the polymer resummation P = B+ + B− for different temperatures.
The statistical error for 10 simulations of g(P, T) is small, and is hence shown
in the extra inset figure. The color for the respective temperature coincides
for both figures.
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FIGURE 5.2: The density of states g(B, T) of a MDP-CT system of size
V = 43, sampled directly in the baryon number B (dashed lines), is com-
pared with g(B, T), obtained through the binomial transformation(Eq. 4.15)
of g(P, T)(solid lines). The deviation is shown in the inset figure since the
data for both, simulations in B and P, is indistinguishable. The analytic re-
sult refers to appendix B.
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FIGURE 5.3: The solid lines shows the resulting expected polymer density
using the density of states g(P, T) of a MDP-CT system of size V = 43, gener-
ated with the Wang-Landau method. For comparison, the Wang-Landau data
is plotted against results, obtained by important sampling of configurations
generated via mesonic worm and additional baryon updates.
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ated with the Wang-Landau method. For comparison, the Wang-Landau data
is plotted against results, obtained by important sampling of configurations
generated via mesonic worm and additional baryon updates.
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in Eq. (5.1). In Fig. 5.3 and 5.4, we can observe that the Wang-Landau result matches
with the important sampling data with high precision.

5.2 Grand canonical and canonical phase diagram in SC-LQCD

To study the grand canonical and canonical phase diagram in continuous time SC-
LQCD in the limit V→∞ we consider the grand canonical probability density which
is given by

p(µq, T, B) = g(B, T) e 3µqB/T/Z(µq, T) , Z(µq, T) =
V

∑
B=−V

g(B, T) e 3µqB/T . (5.2)

The DoS is generated in the polymer resummation P and we calculate g(B, T) via
the binomial transformation. Hence, we can cover the canonical phase diagram in
the baryon and polymer density, while performing simulations only for P.
The advantage of the Wang-Landau method is that we first obtain the canonical DoS
g(B, T) in order to evaluate (5.2). Thus, it does not only avoid many simulations
for chemical potentials aµq near the phase transition because of the exact expression,
but also overcomes slow kinetics when directly sampling in p(µq, T, B) near aµc(T).
Note that we express the temperature and chemical potential in dimensionless lat-
tice units, where for the temperature a rescaling with κ is needed (see Sec. 3.3). For
simplicity we omitted the rescaling in future calculations.

Due to the first order phase transition at aµc(T) the grand canonical probability
distribution is expected to admit a steep double peak structure, when considering
the thermodynamic limit. This characteristic double peak structure corresponds to
the split of the phase boundary below the tricritical point in the canonical phase dia-
gram exhibiting the coexistence phase, where the peak locations n(1)

B,c and n(2)
B,c reflect

its boundaries.
In the finite sized MDP-CT system instead we rather observe a softened double peak
structure at a deviating pseudocritical point aµL(T) caused by finite size effects.

In the following, the grand canonical probability distribution (Eq. 5.2) is scanned
in aµq using some arbitrary small step size ∆aµq

1 in order to find µq = µL(T) 2 and

the respective densities n(1)
B,L and n(2)

B,L at which the probability is maximal. This is
done for temperatures in the range [0.4, 0.92], where for each temperature the DoS is
sampled for the volumes V = 43, 63 and 83. For temperature aT = 0.95 we have a
chosen larger volume set(V = 83, 103 and 123) since the peak locations for volumes
smaller than V = 83 becomes ambiguous.

In order to obtain information about the accuracy of the Wang-Landau method
we can extract the pseudocritical points for various simulations of g(B, T) and com-
pute the resulting statistical error. The accuracy control parameters used and the
statistical error for yielding the pseudocritcal points are shown in Tab. 5.1. Since the
error for yielding aµL(T) is of magnitude ∼ 10−4 − 10−5, it is reasonable to choose a
step size not smaller than ∆aµL = 10−5 for finding the pseudocritical point.

1Note that we can find the aµL(T) with arbitrary high precision since we can evaluate the exact
expression (5.2).

2We started from some reasonable close aµq and used the step size to approach aµL. While observ-
ing the maxima, we have found the best approximation for aµL when the maxima location performs a
sudden jump.



5.2. Grand canonical and canonical phase diagram in SC-LQCD 37

aT L δ/H̄ f f inal ε(aµL(T)) ε(n(1)
B,L(T)) ε(n(2)

B,L(T))

| 4 0.1 10e-07 5.1e-04 2.1e-04 5.2e-04
0.4 6 0.15 10e-07 4.9e-04 3.3e-03 2.3e-03
| 8 0.2 10e-05 3.5e-03 1.7e-03 1.7e-3

| 4 0.05 10e-08 2.8e-04 0 1.4e-03
0.5 6 0.1 10e-08 7.7e-05 1.4e-03 4.4e-04
| 8 0.15 10e-07 0 e 0 4.9e-04

| 4 0.05 10e-08 2.0e-04 0 2.8e-03
0.6 6 0.1 10e-08 6.7e-05 8.3e-04 8.3e-04
| 8 0.15 10e-08 3.2e-05 6.2e-04 9.3e-04

| 4 0.05 10e-08 5.6e-05 0 0
0.7 6 0.1 10e-08 3.8e-05 0 0
| 8 0.15 10e-08 3.0e-05 6.2e-04 0

| 4 0.05 10e-08 8.7e-05 7.8e-03 0
0.8 6 0.1 10e-08 1.0e-04 1.9e-03 8.3e-04
| 8 0.15 10e-08 3.1e-05 6.2e-04 9.3e-04

| 4 0.05 10e-08 2.1e-04 7.8e-03 0
0.92 6 0.1 10e-08 1.9e-04 4.6e-03 2.7e-03

| 8 0.15 10e-08 1.6e-05 2.1e-03 1.3e-03

| 8 0.15 10e-07 2.2e-05 5.1e-03 4.9e-03
0.95 10 0.2 10e-07 1.4e-04 1.2e-03 8.4e-03

| 12 0.3 10e-06 4.0e-04 1.4e-02 4.8e-02

TABLE 5.1: Accuracy control parameters and statistical errors ε obtained for
the pseudocritical points n(1)

B,L(T), n(2)
B,L(T) and aµL(T) for temperatures 0.4 ≤

aT ≤ 0.95. The data is obtained by evaluating the probability distribution
(Eq. 5.2) using the DoS generated via the Wang-Landau method in a MDP-CT
system, where for the statistical error 10 simulations for g(P, T) were done.
The peak locations may sometimes coincide for all simulations with the same
V and aT which results in zero error.

The results for the probability distribution at aµL(T), admitting the double peak
structure, are shown for different volumes and for temperatures below aT ≈ 1.0 in
Fig. 5.5. 3

Having identified the pseudocritical points for various lattice volumes we can now
apply finite size scaling in order to get the critical points aµc(T), n(1)

B,c(T) and n(2)
B,c(T)

at aT. The respective fitting functions are of the form

aµL = aµc + CL−3 , nB,L = nB,c + C̃L−1 (5.3)

with coefficients C and C̃. In Fig. 5.9, the resulting weighted fit for aµc, n(1)
B,c and n(2)

B,c
is explicitly shown for temperatures within [0.5, 0.95].

3Considering the intermediate part of the distribution for temperature aT = 0.7 in Fig. 5.5 we find
that the probability already decreases down to 10−8 which is the reason why conventional Monte Carlo
algorithms become unfeasible when approaching aµL(T).



38 Chapter 5. Results

0.0 0.2 0.4 0.6 0.8 1.0 1.2
B/V

10 55

10 49

10 43

10 37

10 31

10 25

10 19

10 13

10 7

10 1

p(
B)

aT=0.4

L=4 a L=0.7699
L=6 a L=0.7678
L=8 a L=0.7718

0.0 0.2 0.4 0.6 0.8 1.0 1.2
B/V

10 35

10 31

10 27

10 23

10 19

10 15

10 11

10 7

10 3

p(
B)

aT=0.5

L=4 a L=0.7683
L=6 a L=0.7619
L=8 a L=0.7606

0.0 0.2 0.4 0.6 0.8 1.0 1.2
B/V

10 35

10 31

10 27

10 23

10 19

10 15

10 11

10 7

10 3

p(
B)

aT=0.6

L=4 a L=0.7622
L=6 a L=0.7546
L=8 a L=0.7526

0.0 0.2 0.4 0.6 0.8 1.0 1.2
B/V

10 10

10 8

10 6

10 4

10 2

p(
B)

aT=0.7

L=4 a L=0.7503
L=6 a L=0.7409
L=8 a L=0.7384

0.0 0.2 0.4 0.6 0.8 1.0 1.2
B/V

10 10

10 8

10 6

10 4

10 2

p(
B)

aT=0.8

L=4 a L=0.7312
L=6 a L=0.7199
L=8 a L=0.7168

0.0 0.2 0.4 0.6 0.8 1.0 1.2
B/V

10 10

10 8

10 6

10 4

10 2

p(
B)

aT=0.85
L=4 a L=0.7188
L=6 a L=0.7067
L=8 a L=0.7034

0.0 0.2 0.4 0.6 0.8 1.0 1.2
B/V

10 10

10 8

10 6

10 4

10 2

p(
B)

aT=0.9
L=4 a L=0.7047
L=6 a L=0.692
L=8 a L=0.6885

0.0 0.2 0.4 0.6 0.8 1.0 1.2
B/V

10 10

10 8

10 6

10 4

10 2

p(
B)

aT=0.92
L=4 a L=0.6987
L=6 a L=0.6856
L=8 a L=0.6822

0.0 0.2 0.4 0.6 0.8 1.0 1.2
B/V

10 10

10 8

10 6

10 4

10 2

p(
B)

aT=0.95
L=8 L=0.67249
L=10 L=0.67089
L=12 L=0.67079

FIGURE 5.5: Grand canonical probability distribution p(µL, T, B) (Eq. 5.2) at
aµL(T) for temperature 0.4 ≤ aT ≤ 0.95, where for each aT we evaluated
p(µL, T, B) for the spatial extents L = 4, 6 and L = 8.

Performing the extrapolation (weighted fit of Eqs. 5.3) using aµL(T), the transition
line aµc(T) in the thermodynamic limit (see solid line in the top of Fig. 5.6) can be
identified. Additionally extrapolating the peak locations n(1)

B,L and n(2)
B,L, we get the

boundary of the coexistence phase (see the solid line in the bottom of Fig. 5.6).
Note, in the cross-over region we used aµc(T) obtained by measuring chiral observ-
ables [4] at the second order phase transition. In order to obtain nB,L(T) (no more
double peak) at the cross-over, we inserted aµc(T) into the probability distribution
Eq. (5.2), where the DoS was generated for the according temperatures. Performing
the extrapolation using nB,L(T) for different volumes, we get nB,c(T) at the cross-
over region.

To obtain the canonical phase diagram with respect to the polymer number P, hence
in the T − nP plane, the steps above are repeated using the probability distribution

p(µq, T, P) = g(P, T)
(
2 cosh(3µq/T)

)P /Z(µq, T) . (5.4)

The corresponding double peak structure at aµL(T) at the nuclear transition is dis-
played in Fig. 5.7. Extrapolating once again, we get the profile for the coexistence
region in the T − nP plane shown in Fig. 5.8 and Tab. 5.2.
The obtained data for the critical points for B and P is additionally listed in Tab. 5.2.
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FIGURE 5.6: The profile of the grand canonical (top) and canonical (bottom,
in the baryon density nB = B/V) phase diagram for continuous time lat-
tice SC-QCD in the thermodynamic limit, obtained from the Wang-Landau
method (solid line). Above aT ≈ 1.0 the data (dashed line) is obtained by
measuring the chiral susceptibility at the second order transition, where addi-
tional simulations for the DoS are necessary to determine the peak locations.
The shaded areas within [0.95, 1.0] denotes location where the tricritical point
(TCP) is expected.
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FIGURE 5.7: Grand canonical probability distribution p(µL, T, P) (Eq. 5.4) at
aµL(T) for temperature 0.4 ≤ aT ≤ 0.95, where for each aT we evaluated
p(µL, T, P) for the spatial extents L = 4, 6 and L = 8.
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FIGURE 5.8: The profile of the grand canonical (top) and canonical (bottom,
in the polymer density nP = P/V) phase diagram for continuous time lat-
tice SC-QCD in the thermodynamic limit, obtained from the Wang-Landau
method (solid line). Above aT ≈ 1.0 the data (dashed line) is obtained by
measuring the chiral susceptibility at the second order transition, where addi-
tional simulations for the DoS are necessary to determine the peak locations.
The shaded areas within [0.95, 1.0] denotes location where the tricritical point
(TCP) is expected.
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aT aµc n(1)
B,c n(2)

B,c

0.4 0.767± 0.002 0.0037± 0.0009 0.967± 0.002

0.5 0.7594± 0.0001 0.0275± 0.0003 0.931± 0.001

0.6 0.75125± 0.00004 0.059± 0.001 0.8632± 0.0006

0.7 0.73674± 0.00004 0.0979± 0.0001 0.741± 0.003

0.75 0.7266± 0.0001 0.149± 0.001 0.675± 0.001

0.8 0.71478± 0.00008 0.192± 0.001 0.6062± 0.0007

0.85 0.7012± 0.0001 0.2685± 0.0009 0.535± 0.001

0.9 0.6862± 0.0001 0.3535± 0.0001 0.4796± 0.0003

0.92 0.67984± 0.00006 0.399± 0.001 0.455± 0.001

0.95 0.669± 0.001 0.415± 0.001 0.454± 0.004

aT aµc n(1)
P,c n(2)

P,c

0.4 0.767± 0.002 0.0037± 0.0009 0.967± 0.003

0.5 0.7594± 0.0001 0.0275± 0.0003 0.932± 0.001

0.6 0.75125± 0.00004 0.059± 0.001 0.862± 0.001

0.7 0.73674± 0.00004 0.0988± 0.0004 0.7476± 0.0006

0.75 0.7266± 0.0001 0.1514± 0.001 0.684± 0.005

0.8 0.71479± 0.00008 0.1961± 0.0008 0.605± 0.001

0.85 0.7012± 0.0001 0.272± 0.001 0.5542± 0.0006

0.9 0.6862± 0.0001 0.3634± 0.0003 0.4873± 0.0007

0.92 0.67985± 0.00007 0.4071± 0.0004 0.4693± 0.0003

0.95 0.669± 0.001 0.455± 0.004 0.464± 0.008

TABLE 5.2: Results for the critical points aµc, n(1)
B/P,c and n(2)

B/P,c in the thermo-
dynamic limit of continuous time SC-LQCD from the Wang-Landau method.
The error is obtained by calculation of the residuals which reflects the quality
of the weighted fit.
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FIGURE 5.9: Fits for finite size scaling to obtain the critical points n(1)
B,c(T),

n(2)
B,c(T) and aµc(T) for temperatures in [0.5, 0.95] in the limit V → ∞ of con-

tinuous time lattice SC-QCD using the fitting functions (5.3), where each fit is
weighted with respect to the statistical error yielded for various simulations.
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Chapter 6

Discussion and Outlook

We introduced a new method within the continuous time SC-QCD framework. With
this method at hand we studied the phase boundary in the grand canonical and
canonical diagram, respectively. Our results are shown in Fig. 5.6 and Fig. 5.8, where
we performed the thermodynamic limit V → ∞.
The simulations were done for temperatures aT ∈ [0.4, 0.95], where we obtained
the DoS for the baryon number B = B+ − B− and the polymer resummation P =
B++ B−. Note that this approach is still impeded by the problem that computational
effort increases with decreasing temperature. The reason is that the mesonic worm
has to propagate increasingly longer for small P (or B) within the lattice when the
temperature becomes small. 1

Furthermore, our diagram is extended for temperatures at the cross-over using data
from chiral observables [4], where the transition to our data near the tricritical point
appears to be consistent. However, near aT ≈ 0.95, the error becomes large due to
the fact that the double peak structure becomes difficult to detect on the volumes
used. Thus, finding the correct peak locations becomes numerical demanding but
still possible when choosing larger lattice volumes. We can also observe that for
decreasing temperature the left and right phase boundary of the canonical diagram
approaches the values n(1)

c = 0 and n(2)
c = 1, respectively. This agrees with the Sil-

ver Blaze phenomenon which states that at aT = 0 thermodynamic observables are
independend of µq up to a critical value µc [18].

Up to some small deviation we can argue that our results for the phase bound-
aries for both the canonical and grand canonical diagram are representative for the
boundaries of a discrete time system which also involves dynamic baryons. The de-
viation is small because baryons are heavy and large fluctuations in spatial direction
within configurations are rare.

In this thesis we determined the profile of the canonical phase diagram in the strong
coupling and chiral limit of LQCD. However, we are interested in weaker couplings
and finite quark masses. Hence, future studies may comprise β-corrections which is
done by including plaquette contributions from the gauge action before integrating
out the gauge fields [19]. By adapting the Wang-Landau method to a discrete time
system (see appendix C), it is possible to incorporate finite β and finite quark mass
corrections.

1For future investigations it is highly recommended to perform the Wang-Landau in a parallel fash-
ion as mentioned in Sec. 4.1, when going to smaller temperatures. Especially, when the baryon number
approaches zero, we suggest to pick ranges as small as possible.
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Appendix A

One-link integral for N f = 1

Following the arguments of [4] we first rewrite the one-link integral from Eq. (3.4)
into a more compact form

z(x, µ) =
∫

dUµ(x) exp
(

ηµ(x)
(

χ(x)Uµ(x)χ(x + µ̂)− χ(x + µ̂)Uµ(x)†χ(x)
))
(A.1)

≡
∫

SU(Nc)
dUµ(x) exp

(
ηµ(x)tr[Um† + mU†]

)
.

The matrix m is (m)i,j ≡ χi(x)χj(y), writing out the color indices i, j = 1, . . . , N
explicitly. The position y is related to x by y = x + µ̂. For simplicity we will omit the
factor ηµ̂(x) in further calculations.
The fermionic action Eq. (3.2) is invariant under the gauge transformations

χ(x)→ Ω(x)χ(x) ∧ χ(x)→ χ(x)Ω(x)† for Ω(x) ∈ SU(Nc) ,

In addition, we know from chapter 3 in [7] that the Haar measure dU is likewise
left and right invariant under SU(Nc) transformations. Thus, the one-link integral
z(x, µ) itself is gauge invariant and could be expressed as a function of gauge in-
variant objects of the form tr[mm†], . . . , tr[(mm†)k], det[m] and det[m†] for k ∈ N+.
Furthermore, every term tr[(mm†)k] with k ≥ Nc could be written as a combination
of expressions tr[mm†], . . . , tr[(mm†)i], det[m] and det[m†] for i < Nc using the Caley-
Hamilton theorem which states: Given any invertable matrix A of size N × N and the
characteristic polynomial pc(λ) = det[A− λ1] we have pc(A) = 0.
Now, we are left with N + 1 gauge invariant expressions, and hence the one-link
integral can be expanded into

z(x, µ) = ∑
k1,..., kN+1

ak1,..., kN+1 det[m]k1 det[m†]k2tr[mm†]k3 · . . . · tr[(mm†)N−1]kN+1 .

(A.2)
Due to the nilpotency of the Grassmann variables χ and χ, the summation in Eq. (A.2)
is limited to Nc and for the determinants det[m] and det[m†] we have seperate terms.
Thus,

z(x, µ) =
Nc

∑
k=0

{
αktr[(mm†)k]

}
+ a det[m] + b det[m†]

≡
Nc

∑
k=0

{
αk
(

M(x)M(y)
)k
}
+ a (−1)Nc Nc!B̄(y)B(x) + b Nc!B̄(x)B(y) , (A.3)
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where we removed the trace notation by defining

tr[mm†] = χi(x)χj(y)χj(y)χi(x) = χi(x)χi(x)χj(y)χj(y)

≡ M(x)M(y) .

Further, we get rid of the determinant notation by writing out the definition explic-
itly and defing as follows

det[m] = εi1,..., iNc
m1,i1 · . . . ·mNc,iNc

=
1

Nc!
εi1,..., iNc

εj1,..., jNc
mi1,j1 · . . . ·miNc ,jNc

≡ (−1)Nc Nc!B̄(y)B(x)

det[m†] = Nc!B̄(x)B(y) ,

where we have set

B(x) ≡ 1
Nc!

εi1,...,iNc
χi1(x) · · · χiNc

(x) and B̄(x) ≡ 1
Nc!

εi1,...,iNc
χiNc

(x) · · · χi1(x) .

To determine the coefficients a and b we compare Eq.(A.3) with the series expansion
of Eq.(A.1),

z(x, µ) = ∑
k,`

1
k!`!

∫
SU(Nc)

dU
(

χ(x)Uχ(y)
)k (
−χ(x)U†χ(x)

)`
.

Terms of the form ∼ B̄(x)B(y) are generated by the summands k = Nc and ` = 0,
and thus we have the equality

b B̄(x)B(y)Nc! =
1

Nc!

∫
SU(Nc)

dU (χ(x)Uχ(y))Nc

=
1

Nc! ∑
i1 ...iNc

∑
j1 ...iNc

∫
SU(Nc)

dU Ui1,j1 · · ·UiNc ,jNc

A.5
|
=

1
Nc!Nc! ∑

i1...iNc

∑
j1...iNc

εi1 ...iNc
εj1 ...jNc

χi1(x)χj1(y) · · · χiNc
(x)χjNc

(y)

= B̄(x)B(y) , (A.4)

where in the penultimate step we performed the SU(Nc) integration using∫
SU(Nc)

dU Ui1,j1 · · ·UiNc ,jNc
=

1
Nc!

εi1...iNc
εj1...jNc

(A.5)

derived in section 3.1.3 in [7]. From Eq.(A.4) we conclude that b = a = 1/Nc! . To
determine the coefficients αk we integrate Eq.(A.1) and Eq.(A.3) over χ(x) and χ(x)
with the extra factor eχ(x)χ(x):∫

dχ(x)dχ(x)
∫

dUµ e χ(x)χ(x)+χ(x)Uµχ(y)−χ(y)U†
µχ(x) = e χ(y)χ(y)

and ∫
dχ(x)dχ(x) eχ(x)χ(x)

Nc

∑
k=0

{
αktr[(mm†)k]

}
=

Nc

∑
`=0

α`
Nc!

(Nc − `)!
(χ(y)χ(y))` .
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Setting both equations equal and comparing the coefficients we get

αk =
(Nc − k)!

Nc!k!
.

The one-link integral thus becomes

z(x, µ) =
Nc

∑
k=0

{
(Nc − k)!

Nc!k!

(
M(x)M(y)

)k
}
+ B(x)B(y) + (−1)Nc B(y)B(x) . (A.6)

for gauge group SU(Nc).
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Appendix B

Analytic high Temperature
Cross-check

In this section a cross-check is done for sampled DoS of a MDP-CT system with a
spatial volume of size V = 43 using analytic limit case solutions.

In the high temperature region the mesonic worm rarely introduces spatial dimers
leading to a configuration space merely consisting of static mesons and polymers.
Thus for the limit T → ∞, the state density approximates the analytic solution

g(P, T → ∞) ≈
(

V
P

)
4V−P , (B.1)

where the factor Nc + 1 = 4 accounts for the different mesonic “spin states”. The
analytic limit is indicated by the dashed line in Fig. B.1. We can observe that the
relative error ε(X) = |(X − Xexact)/Xexact|, with Xexact = log(g(P, ∞)), already lies
within the statistical error for the temperatures aT = 6, 9.

For completeness we compare the expected baryon density (5.1), obtained by g(P, T),
with the analytic solution in the high temperature limit given by

〈B/V〉 =
T
V

∂

∂µB
ln (Z(µB, T))

≈
l

T→∞

sinh(µB/T)
2 + cosh(µB/T)

, (B.2)

where we have used that the partition function approaches the analytic solution

Z(µB, T) = ∑
P

g(P, T)w(P, µB/T)

B.1
l≈
l

T→∞
∑
P

(
V
P

)
4V−P (2 cosh(µB/T))P

= (4 + 2 cosh(µB/T))V .

In Fig. B.2, we can observe that for rising temperature our data again coincides with
the analytic solution (B.2).
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FIGURE B.1: Plot of the results for the density of states of a MDP-CT system
of size V = 43 for rising temperature, where the dashed line indicates the
analytic high temperature solution (B.1). The dashed/solid line in the inset
figure shows the deviation/statistical error for the respective temperature.
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FIGURE B.2: Results for the expectation value of the baryon density(solid
lines), obtained by g(P, T) of a MDP-CT system of size V = 43, for rising
temperature. The analytic high temperature solution (B.2) is indicated by the
dashed lines.
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Appendix C

Cross-check with exact data

In a MDP system of size V = 23× 2 it is possible to cross-check the density of states,
generated via the Wang-Landau method within a discrete time context, with an ex-
act solution worked out by the Emmy Noether group (J. Kim and W. Unger). Doing
so we can get information about the accuracy of the Wang-Landau method.

The Wang-Landau method in a MDP system is implemented in a similar way as
in the MDP-CT system. However, in this case we have to exclude dynamic baryons,
only allowing baryons to propagate in temporal direction. We then perform mesonic
worm updates and subsequently loop through the whole spatial volume, identifying
static and dynamic sites and proposing new states for static ones, while immediately
accepting dynamic ones.
This approximation, which becomes exact in the continuous time limit, has also only
small deviation from the full result for Nτ = 2. In the chiral limit, the exact enuma-
ration, mentioned above, emlpoys the following solution for the partition function

Z(µq, T) =
Vs

∑
P=0

NcV

∑
κ=0

C(κ, P)γκ(2 cosh(µq/T))P (C.1)

=
Vs

∑
P=0

g(P, T) (2 cosh(µq/T))P , T = γ2/Nτ ,

where Vs = 23 is the spatial volume, the exponent κ of γ arises from the following
summation of the link variables in temporal direction: ∑x (2k0̂(x) + Nc|b0̂(x)|) (see
Eq. 3.9 when taking the chiral limit). The coefficients C(κ, P) are given by the ta-
ble C.1. Note that κ only takes multiple values of 4. The high temperature result
g(P, T → ∞) is in fact identical to the contribution of g(P, T) from the highest sec-
tion κ = 48. In Fig. C.1, we can observe that the Wang-Landau data matches with
the exact data within the error.
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FIGURE C.1: The density of states for baryon number B (top) and polymer
resummation P (bottom) in a MDP system of size V = 24 from the Wang-
Landau method compared to the exact solution which is calculated by using
g(P, T) = ∑NcV

κ=0 C(κ, P)γκ with the bare coupling γ.
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κ
P 0 1 2 3 4 5 6 7 8

0 8.57e+10 - - - - - - - -
4 1.0e+10 - - - - - - - -
8 2.85e+12 - - - - - - - -
12 3.49e+12 2.16e+10 4.86e+07 - - - - - -
16 2.3e+12 6.1e+10 5.03e+08 - - - - - -
20 9.29e+11 6.51e+10 1.36e+09 - - - - - -
24 2.46e+11 3.7e+11 1.71e+09 - - - - - -
28 4.49e+10 1.27e+10 1.17e+09 3.5e+07 5.76e+05 - - - -
32 5.87e+09 2.82e+09 1.17e+08 3.26e+07 9.72e+05 - - - -
36 5.66e+08 4.26e+08 1.19e+08 1.54e+07 9.16e+05 1.88e+04 1.92e+02 - -
40 4.11e+07 4.51e+07 1.96e+07 4.21e+06 4.62e+05 2.42e+04 5.33e+02 - -
44 2.18e+06 3.28e+06 2.05e+06 6.83e+05 1.28e+05 1.28e+04 5.33e+02 - -
48 6.55e+04 1.31e+05 1.15e+05 5.73e+04 1.79e+04 3.58e+03 4.48e+02 3.2e+01 1.0e+00
high aT 6.55e+04 1.31e+05 1.15e+05 5.73e+04 1.79e+04 3.58e+03 4.48e+02 3.2e+01 1.0e+00

TABLE C.1: The coefficients C(κ, P) calculated by Exact enummeration in the
Emmy Neother group in order to evaluate the density of states g(P, T) =

∑NcV
κ=0 C(κ, P)γκ with the bare coupling γ.
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