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1. Introduction
Since its inception, lattice gauge theory has made tremendous progress and has become a
standard tool of modern high energy physics. Especially in the field of Quantum Chromody-
namics, the fundamental theory of the strong interaction, lattice gauge theory is often the only
method to obtain reliable predictions as perturbative methods are only applicable at very high
energies. Albeit its success, there is a special class of problems where even the methods of
lattice gauge theory are inhibited. At their heart, most lattice gauge theory methods are elab-
orate importance sampling Monte Carlo methods that use the Boltzmann weight e−SE , where
SE is the euclidean action of the system. As such, their applicability relies on the probability
interpretation of e−SE . There are, however, certain cases where the action becomes complex,
for example for QCD at finite density or for theories with a topological θ-term. Consequently,
e−SE is no longer positive definite and cannot be used for importance sampling. This is known
as the sign problem. Over the years, many interesting approaches to solve it have been pro-
posed. Among the most promising ones are the complex Langevin method, Lefschetz thimbles
and dual formulations. Complex Langevin methods has its roots in the stochastic quantization
procedure. Based on a stochastic differential equation, the complexified fields are evolved in
a fictious Langevin time and expectation values are obtained by averaging over the Langevin
time. This method completely avoids the need for real actions but it suffers from convergence
problems under certain circumstances [1]. The Lefschetz thimble approach is also based on
complexifying the fields and tries to solve the sign problem by deforming the integration mani-
fold into “thimbles” on which the phase of the Boltzmann factor is constant [2]. At the current
stage, this method has only been succesfully applied to low dimensional systems. Both of
these methods have in common that they are quite general and not neccesarily restricted to
QCD. In contrast, the dual formulation approach is applied on a case-by-case basis and aims
to transform the degrees of freedom of the physical system into a representation with positive
weights, usually by rewriting them in terms of integer occupation numbers. Such a dual rep-
resentation was for example found for QCD in the strong coupling limit [3],[4]. The invention
of the worm algorithms for this system revived the interest in strong coupling lattice QCD
[5] and recently, a lot of effort is expended towards generalizing the formulation beyond the
strong coupling limit [6].
In this thesis, we want to use this dual formulation to study bulk thermodynamic properties in
the T, µ-plane of strong coupling QCD which is usually prohibited by the sign problem. After
introducing the formulation of QCD in the continuum and on the lattice, we will review the
construction of the dual formulation and derive how observables like the energy density or the
pressure can be calculated. A large part of this thesis will be concerned with the exploration
of various observable across the T, µ-plane with numerical simulations. The necessary meth-
ods to do so will be developed for the simple case of massless U(3) and SU(3) theories at
µB = 0. From there, we will first introduce a quark mass and investigate its effect before we
finally move to simulations across the full T, µ-plane. Lastly, we will use the results from this
investigation to test the Taylor expansion method of the pressure that is used in conventional
QCD simulations to obtain informations about the finite density region.
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2. Quantum Chromodynamics

In this introductory section, we want to summarize important concepts of QCD. Based on
the formulation of a classical lagrangian, we identify the underlying symmetries. We briefly
introduce the path-integral quantization and discuss its influence on the classical symmetries.
Lastly, we describe how the notions of temperature and chemical potential are introduced into
quantum field theory and illustrate the influence of these control parameters on the behaviour
of QCD matter by discussing the phase diagram.

2.1. Formulation and Symmetries

To start, we briefly recapitulate the formulation of QCD on a classical Lagrangian level. QCD
is the fundamental gauge theory describing the strong force and as such, its Lagrangian spec-
ifies the behaviour of quarks and gluons and their respective interactions. The quarks (anti-
quarks) are described by Dirac spinors ψi(x) (ψ̄i(x)), i ∈ {1, 2, 3} belonging to the fun-
damental representation of SU(3), the gauge group of QCD. Gluons, on the other hand, are
described by the gauge fieldsAaµ(x), a ∈ {1, 2, . . . , 8} and belong to the adjoint representation
of SU(3). The QCD Lagrangian reads

LQCD = Lquarks + Lgluons =
6∑

f=1

ψ̄f (i /D −mf )ψf −
1

4
F a
µνF

µν,a, (2.1)

where /D = γµ
(
∂µ − igsT

aAaµ(x)
)
,

and F a
µν = ∂µA

a
ν(x)− ∂νAaµ(x)− igsf

abc
[
Abµ(x), Acν(x)

]
.

Here, fabc are the structure constants and T a the generators of the fundamental representation
of SU(3). In terms of its structure, it resembles the Lagrangian of Quantum Electrodynamics.
However, there are subtle differences between the two that introduce vastly different physics.
Firstly, we have six different flavors of quarks, i.e. six different masses mf . From lightest
to heaviest quark, they are labeled: up, down, strange, charm, bottom and top. Secondly, we
now have eight gluons according to the eight generators of SU(3) instead of one photon as in
QED. And lastly, SU(3) is a non-abelian group. As a consequence, there is a third term in the
definition of the field strength tensor proportional to the commutator

[
Abµ(x), Acν(x)

]
. This

term is responsible for the introduction of gluon self-interactions, as F a
µνF

µν,a now contains
terms with cubic and quartic powers of Aaµ.
By construction, this Lagrangian is locally gauge invariant. That is, it is invariant under trans-
formations U ∈ SU(3), U = e−iTaΘa(x), where the fields transform as

ψ(x)→ ψ′(x) = e−iTaΘa(x)ψ(x), (2.2)

T aAaµ(x)→ T aA
′a
µ (x) = U(x)

(
T aAaµ(x)− i

gs
U(x)−1∂µU(x)

)
U(x)−1. (2.3)

Additionally, LQCD posseses a number of continuous global symmetries which are linked to
conserved charges by Noether’s theorem. A simple example that is readily seen is a global
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U(1) symmetry. Transforming the quarks according to

ψ → ψ′ = eiφψ,

where φ is a constant, does not change Lquarks because the exponentials are cancelled by
their conjugated counterparts coming from ψ̄. The conserved charge corresponding to this
symmetry is the baryon number. This global complex phase can be embedded in a larger
symmetry group, provided that some of the quark masses are degenerate. We assume this is
the case for n quarks with mass m. Then by adopting a vector notation for the flavor space

Ldeg. =
n∑
f=1

ψ̄f
(
i /D −mf

)
ψf = Ψ̄

(
i /D1−M

)
Ψ

with Ψ =

ud
...

 and M = diag(m, . . . ,m),

we can see that unitary transformations Ω ∈ U(n) on that subset of the flavor space form
a symmetry of Lquarks. Moreover, since U(n) = U(1) × SU(n) we can decompose these
transformations into Ω = e−iφΛ with Λ ∈ SU(n). As mu ≈ md, n is often set to 2 in practical
applications. Furthermore, we can use the projection operators PR/L = 1

2
(1± γ5) to separate

the quark fields into left-handed and right-handed components. Now we use PR + PL = 1 to
write ψ = (PR + PL)ψ = ψR + ψL. Since PRPL = PLPR = 0 and {γµ, γ5} = 0, applying
this separation to Lquarks leads to

Ldeg. =
n∑
f=1

ψ̄f
(
i /D −mf

)
ψf

=
n∑
f=1

ψ̄R,f i /DψR,f + ψ̄L,f i /DψL,f −mf

(
ψ̄R,fψL,f + ψ̄L,fψR,f

)
.

Thus, if mf = 0 for f ∈ {1, . . . , n} the symmetry of Lquarks can be extended further by
transforming left-handed and right-handed components independently. This so-called chiral
symmetry can then be written as UR(n)×UL(n) = U(1)×UA(1)×SUR(n)×SUL(n), where
UA(1) denotes the axial symmetry that transforms the fields via

ψ → ψ′ = eiαγ5ψ

ψ̄ → ψ̄′ = ψ̄eiαγ5 .

The equal signs in the exponentials of the transformation law ensure invariance of the /D terms
because {γµ, γ5} = 0 but a non-zero mass explicitly breaks this symmetry:

ψ̄γµψ → ψ̄′γµψ′ = ψ̄eiαγ5γµeiαγ5ψ = ψ̄eiαγ5e−iαγ5ψ = ψ̄γµψ

ψ̄ψ → ψ̄′ψ′ = ψ̄e2iαγ5ψ 6= ψ̄ψ.
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For QCD in the chiral limit, i.e. mf = 0 ∀f , there exists a further symmetry called the
conformal symmetry which is related to the scale invariance of the theory1. Its associated
symmetry transformations change a general field φ via

φ(x)→ e−Dσφ(xe−σ),

where D is the mass dimension of the field φ. The corresponding Noether current Dµ(x) is
related to the symmetrised energy-momentum tensor Θµν [7]

Dµ = Θµνxν . (2.4)

The conservation law for Noether currents then implies

∂µD
µ = ∂µΘµνxν = δµνΘ

µν + xν∂µΘµν = Θµ
µ

!
= 0

In the massive case, we have

Θµ
µ = mψ̄ψ. (2.5)

2.2. Quantization
To move towards a quantum field theory of strong interactions, we need to quantize the above
classical theory. One possible variant, and the most convenient for a lattice discretization, is
the path-integral formulation. For a generic scalar field theory with classical Lagrangian L
and fields φ, the n-point function Gn(x1, . . . , xn) is given by

Gn(x1, . . . , xn) = 〈0|T{φ̂(x1), . . . , φ̂(xn)}|0〉 =

∫
Dφ φ(x1) · · ·φ(xn)eiS[φ]∫

Dφ eiS[φ]
,

where
∫
Dφ denotes, figuratively, the integration over all admissable functional forms of the

fields φ and S[φ] =
∫

d4xL is the classical action. Gn(x1, . . . , xn) is also proportional to the
n-th functional derivative of the generating functional

Z[J ] =

∫
Dφ eiS+

∫
d4x J(x)φ(x).

There are some subtleties in formulating this path-integral; particularly so for non-abelian
gauge theories. For a purely gluonic theory, the naive approach

Z[J ] =

∫
DAeiS[Aaµ] +

∫
d4xJa,µAaµ

has to be suplemented with a gauge-fixing condition GµAaµ = Ba in order to be well-defined.
This condition can be implemented by modifying the integration measure

DA→ DA det

(
δ(GµA′aµ (x))

δθb(y)

)∏
a,x

δ(GµAaµ(x)−Ba(x)).

1In chiral QCD, all coupling constants in L have mass dimension 0.
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The δ-function can also be absorbed in the Lagrangian by functional integration over Ba(x)
with the weight

exp

{
− 1

2α

∫
d4x (Ba)2

}
.

Correctly, Z[J ] then reads

Z[J ] =

∫
DA det

(
δ(GµA′aµ (x))

δθb(y)

)
exp

{
i

∫
d4x

(
L − 1

2α
(GµAaµ(x))2 + Ja,µAaµ

)}
.

Note that for usage in perturbation theory, the determinant may be written in terms of a
Faddeev-Popov ghosts by introducing auxilliary fields.
The path-integral for the fermionic part of LQCD also faces difficulties. To find a sensible
definition, the anti-commuting nature of fermions has to be reconciled with the classical fields.
This is done by introducing fermion fields ψ̄ and ψ as anti-commuting, complex Grassmann
numbers. The generating functional of fermions may then be written as

Z[J, J̄ ] =

∫
DψDψ̄ exp

{
i

∫
d4x

(
L+ ψ̄J + J̄ψ

)}
,

with
{
ψ(x), ψ̄(y)

}
= 0, {ψ(x), J(y)} = 0, etc.

In total, we have

Z[J, JF , J̄F ] =

∫
DA

∫
DψDψ̄ det

(
δ(GµA′aµ (x))

δθb(y)

)
(2.6)

× exp

{
i

∫
d4x

(
LQCD −

1

2α
(GµAaµ(x))2 + Ja,µAaµ + ψ̄JF + J̄Fψ

)}
. (2.7)

Expectation values of general observables O are then obtained by

〈O〉 =

∫
DA

∫
DψDψ̄ det

(
δ(GµA′aµ (x))

δθb(y)

)
O[A,ψ, ψ̄] exp

{
i
∫

d4x
(
LQCD − 1

2α
(GµAaµ(x))2

)}
∫
DA

∫
DψDψ̄ det

(
δ(GµA′aµ (x))

δθb(y)

)
exp

{
i
∫

d4x
(
LQCD − 1

2α
(GµAaµ(x))2

)} .

(2.8)

2.3. Anomalies
At this point, one may ask whether or not the classical symmetries carry over to the quantized
theory. Symmetries for which this is not the case are said to be broken by a quantum anomaly.
QCD in the chiral limit posseses two such anomalously broken symmetries, the axial symme-
try UA(1) and the conformal symmetry. In the former case, the integration measure changes
under UA(1) transformations according to

DψDψ̄ → DψDψ̄ det(C)−2,

with det(C)−2 = exp

i2α
∫

d4x
Tr
[
FµνF̃µν

]
32π2

 = exp {−i2αQA} .

5



A proof of this relation can be found in [8]. Here, we can see that gauge configurations
with a topological charge QA 6= 0 introduce det(C) 6= 1 and break the UA(1) symmetry.
Consequently, the conservation law for the axial current is modified by

∂µJ
µ
A(x) = − g2

16π2
F µν(x)F̃µν(x).

In the latter case, the anomalous breaking of conformal symmetry is obtained from simple
renormalization group theory arguments. Considering chiral QCD at a different scale implies
a shift in the renormalized coupling gs → gs + σβ(gs), such that the Lagrangian2 is modified
by

δL = σβ(gs)
∂

∂gs
L = σβ(gs)

∂

∂gs

−1

4g2
s

F a
µνF

µν,a =
σβ(gs)

2g3
s

F a
µνF

µν,a.

Therefore, the conservation law for the dilatation current Dµ(x) and consequently the trace of
the energy-momentum tensor is modified according to

Θµ
µ = ∂µD

µ ∼ β(gs)F
a
µνF

µν,a. (2.9)

This is known as the trace anomaly [7].

2Note that we have rescaled the gauge fields gsTaAµa → TaA
µ
a so that the coupling within the covariant

derivative is cancelled.
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2.4. Temperature and density
So far, we have discussed the formulation of QCD and its symmetries on both a classical and
quantized level. We briefly explained, how to quantize the theory with the path-integral for-
malism and observed the influence of quantum phenomena on the classical symmetries. Our
next goal is to expand this formalism and include the concept of temperature and density and
observe the link between thermodynamics and the remaining symmetries of QCD. To include
a temperature into a quantum field theory, we make use of the following formal similarity
between the partition function of a thermodynamical system and the generating functional for
Green’s functions. Given a system with Hamiltonian Ĥ , the canonical partition function at
temperature T = 1

β
is given by

Z(β) = Tr e−βĤ ,

and expectation values are obtained via

〈O〉β =
1

Z(β)
Tr Oe−βĤ .

This can be expressed in the path-integral formalism by performing a Wick rotation to imagi-
nary time t→ iτ , thereby changing to a Euclidean metric, and by restricting the τ -integral in
SE to the interval [0, β], such that

Z(β) =

∫
Dφ e−

∫ β
0 dτ

∫
d3xLE =

∫
Dφ e−SE ,

where the fields φ now satisfy periodic3 boundary conditions in temporal direction φ(τ =
0) = φ(τ = β). Expectation values at inverse temperature β are then given by

〈O〉β =
1

Z(β)

∫
Dφ O e−SE .

A finite density is introduced by changing to the grand-canonical ensemble with the introduc-
tion of a chemical potential µ and the particle-number operator. For the case of fermions, this
is done by changing LE to

LE(0)→ LE(µ) = LE(0)− µψ̄γ0ψ.

2.5. Phase diagram
Now that we have introduced temperature and chemical potential to our system, we may
ask, how the properties of QCD matter change as a function of these two control parameters.
Among the most interesting is the observation that quark matter undergoes a phase transition
from a hadronic system at low temperatures to a plasma of quasi-free quarks and gluons. This
is the so-called deconfinement transition. Furthermore, there is the chiral transition, across

3Fermions satisfy anti-periodic boundary conditions here.
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which the pions, the goldstone-bosons of the chiral symmetry, become effectively massless.
There also exists a nuclear transition at small temperatures and high densities which separates
the hadronic phase from the nuclear matter phase. Unfortunately, the finite density region of
full QCD is not accessible and we cannot show a phase diagram for this case. Instead, we
will review the phase diagram that is relevant to this work: The phase diagram of QCD in the
strong coupling limit. It was succesfully calculated in the massless case in [9] and is shown in
Fig. 1 below.

 0
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 0.6

 0.8

 1

 1.2

 1.4

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

aT
=ξ

(γ
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N
t

aµ= ξ(γ)atµ

Nt=2
Nt=4
Nt=6

Nt=inf

Figure 1: The phase diagram of strong coupling lattice QCD. The dotted line represents the second
order transition, the black data points correspond to the tri-critical point and the full line
corresponds to the first order transition.

The strong coupling limit cannot adress deconfinement phenomena as the quarks are always
confined into color-singlet degrees of freedom. The chiral and nuclear transitions are nonethe-
less still accessible. In the massless case, the phase diagram consists of a second order line
that extends from µ = 0 to µc ∼ 0.5. Above the second order line, the chiral condensate, the
order parameter of the chiral symmetry, vanishes. Below the line, chiral symmetry is sponta-
neously broken and the chiral condensate possesses a non-zero value. At µc, a tri-critical point
seperates the second order line from the first order line. Interestingly, the chiral first order line
coincides with the first order nuclear transition. The latter does not have a second order line
for µ < µc but terminates in a second order critical endpoint. For finite quark masses, the
second order chiral transition turns into a smooth crossover. The quark mass dependence of
the critical endpoint was studied in [10].
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3. QCD on the lattice

A major obstacle in understanding QCD is its strong coupling for small and intermediate en-
ergy scales. It spoils convergence of any perturbative expansion of (2.8) and non-perturbative
methods are needed instead. The most prominent non-perturbative method is the lattice dis-
cretization which we want to describe in the following. The central idea is to discretize space-
time such that path-integrals become finite-dimensional and can be evaluated numerically. The
continuum theory can later be obtained by extrapolating from calculations at different lattice
spacings, while keeping the physical extent of the system fixed.

3.1. Discretizing the fermion action

We start by discretizing SE for free quarks: we replace derivatives by central differences

∂µψ(x)→ ψ(x+ µ̂)− ψ(x− µ̂)

2a
(3.1)

and introduce a fundamental lattice spacing a. The quark fields are now defined on the lattice
sites x ∈ Λ with

Λ = {x = (x0, . . . , x3)|x0 = 0, 1, . . . , Nτ − 1, xi = 0, 1, . . . , Nσ − 1} . (3.2)

The fields are periodic in spatial and anti-periodic in temporal direction. Our physical four-
volume V4 is now given as V4 = a4N3

σNτ and Nσ and Nτ denote the number of spatial and
temporal lattice sites. The integral over the four-volume is replaced by a sum over all lattice
sites x ∫

d4x→ a4
∑
x∈Λ

, (3.3)

so that we obtain

Sfree = a4
∑
x∈Λ

(
3∑

µ=0

ψ̄(x)
γµ

2a
(ψ(x+ µ̂)− ψ(x− µ̂))

)
+mψ̄(x)ψ(x). (3.4)

To include gauge fields, we can make use of the definition of the covariant derivative using a
comparator U(y, x). In the continuum, one defines

nµDµf(x) = lim
ε→0

f(x+ εn)− U(x+ εn, x)f(x)

ε
,

with the transformation property U(y, x) → V (y)U(y, x)V (x)† under gauge transformations
V ∈ SU(3). For infinitesimal ε, it is related to the gauge field Aµ(x) via

U(x+ εn, x) = 1 + igsεn
µAaµT

a +O(ε2).
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Analogously, we discretize the covariant derivative by introducing the link variables Uµ(x) ∈
SU(3) such that

Dµψ(x)→ Uµ(x)ψ(x+ µ̂)− U−µ(x)ψ(x− µ̂)

2a
. (3.5)

Finally, the so-called naive fermion action reads

Snaive = a4
∑
x∈Λ

ψ̄(x)
γµ

2a
(Uµ(x)ψ(x+ µ̂)− U−µ(x)ψ(x− µ̂)) +mψ̄(x)ψ(x). (3.6)

The particle content described by the above action can be obtained from the poles of the cor-
responding quark propagator in momentum space. Physically, the pole is located at p2 = m2.
For the naive action, however, there are 15 additional unphysical poles located at the corners
of the first Brillouin zone. The appearance of such unphysical poles is called doubling prob-
lem. Fortunately, the discretization procedure is by no means unique and one may construct
different discretization schemes that remove these unphysical poles or reduce their number.
From now on, we will focus on the so-called staggered fermions. They reduce the number
of doublers from 16 to four while also leaving chiral symmetry intact. With respect to strong
coupling expansions, their structure gives rise to exactly solvable link-integrals, which will be
discussed later. They are obtained from the naive action by diagonalizing the Dirac matrices,
such that the different Dirac components of the new fields ψ decouple. Mathematically, we
are searching for transformations

ψ(x)→ ψ′(x) = Axψ(x), ψ̄(x)→ ψ̄′(x) = ψ̄(x)A†x,

such that

A†xγµAx+µ̂ = ∆µ(x) ∈ U(1)⊗4, (3.7)

where ∆µ(x) is diagonal and unitary. A common choice for the transformation matricesAµ(x)
that satisfies (3.7) is given by

ψ̄(x)→ ψ̄(x)γx33 γ
x2
2 γ

x1
1 γ

x0
0 (3.8)

ψ(x)→ γx00 γ
x1
1 γ

x2
2 γ

x3
3 ψ(x).

Since {γi, γj} = 2δi,j1, the mass term is invariant under (3.8), but the derivative term obtains
a factor of

ηµ(x) = (−1)
∑
ν<µ xν , (3.9)

the so-called staggered phases. As the different Dirac components are decoupled, we can
restrict us to only one of the components of the Dirac spinor and discard the other three. This
reduces the number of doublers from 16 to 4. The resulting quark action then reads

Sstag. = a4
∑
x∈Λ

ψ̄(x)
ηµ(x)

2a
(Uµ(x)ψ(x+ µ̂)− U−µ(x)ψ(x− µ̂)) +mψ̄(x)ψ(x). (3.10)
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3.2. Discretizing the gauge action

We have introduced the gauge fields via parallel transporters Uµ(x) to promote the standard
derivative to a covariant version as required by gauge invariance. Now, we need to introduce an
action for the link variables themselves. For that purpose, we choose the well-known Wilson
gauge action

SWilson =
βG
2Nc

∑
P

Tr
(
UP + U †P

)
, (3.11)

where the sum is over all elementary plaquettes P = (x, µ, ν) spanned by going from site x to
the neighboring sites x+ µ̂ and x+ ν̂ and

UP = Uµ,ν(x) = Uµ(x)Uν(x+ µ̂)U−µ(x+ µ̂+ ν̂)U−ν(x+ ν̂). (3.12)

3.3. Temperature on the lattice

With the introduction of temperature in section 3, the temporal direction attracted some special
attention, as its extent is directly linked to the temperature of the quantum field theory. By
comparing the lattice expressions to the continuum versions, we see that temperature on the
lattice can be identified via

β = aNτ or aT =
1

Nτ

. (3.13)

Thus, to vary the temperature, one has to vary either the lattice spacing a or the temporal extent
Nτ . Of course, the latter can only be changed discretely so it is common to set the temperature
with the help of the lattice spacing. After setting the scale4, the lattice spacing a = a(βG)
can be varied by changing the inverse gauge coupling βG. For the purpose of this thesis, this
common method is unfortunately not applicable. Our calculations are performed in the strong
coupling limit βG → 0 and therefore the inverse gauge coupling can not be varied. Changing
the temperature discretely by Nτ is also insufficient because the highest temperature accesible
with this method is aT = 1

2
and the chiral phase transition in strong coupling QCD appears

at roughly aT ∼ 1. Consequently, much of the interesting physical phenomena would not
be accessible with this method. To aleviate this, we further deepen the contrast of temporal
and spatial directions by introducing an anisotropic lattice with lattice spacing aτ in temporal
direction and a in spatial direction. If we define the physical anisotropy ξ = a

aτ
, we can write

β = aτNτ ⇒ aT =
a

aτNτ

=
ξ

Nτ

. (3.14)

On anisotropic lattices, we can therefore vary aT continously given that we find a way to set
the physical anisotropy ξ. For that purpose, we introduce the additional parameter γ, the bare

4This can be done, for example, by using the sommer parameter or by comparing hadron masses on the lattice
to experimental data.

11



anisotropy coupling, to our lattice action [9]. For staggered fermions the anisotropic action
reads

Sstag. = aτa
3
∑
x∈Λ

ψ̄(x)

(
γη0(x)

2aτ

(
U0(x)ψ(x+ 0̂)− U−0(x)ψ(x− 0̂)

)
(3.15)

+
ηi(x)

2a

(
Ui(x)ψ(x+ î)− U−i(x)ψ(x− î)

))
+mψ̄(x)ψ(x), (3.16)

and γ > 1 favors temporal quark hoppings over spatial ones.

3.4. Chemical potential on the lattice
The last ingredient to translate the continuum theory to the lattice is to introduce the chemical
potential. In the continuum Lagranian, it multiplies the conserved charge of the U(1) flavor
symmetry. Its operator reads

Q̂B =

∫
d3xψ̄(x)γ0ψ(x).

As pointed out by Karsch and Hasenfratz in [11], directly translating this operator onto the
lattice leads to divergencies in the energy density even for free quarks. Instead, they proposed
to modify temporal hoppings by

S = aτa
3
∑
x∈Λ

(
ψ̄(x)

(
γη0(x)

2aτ
eaτµU0(x)ψ(x+ 0̂)− e−aτµU−0(x)ψ(x− 0̂)

)
(3.17)

+
ηi(x)

2a

(
Ui(x)ψ(x+ î)− U−i(x)ψ(x− î)

))
+mψ̄(x)ψ(x).

The presence of a chemical potential thus favors temporal forward hoppings over backwards
hoppings, in contrast to the anisotropy which favors temporal hoppings regardless of the ori-
entation.

3.5. Lattice partition function
Summarizing the above points, we now formulate the partition function at finite T and µ as a
lattice path integral. As above, the degrees of freedom of our lattice theory are the quark fields
ψ̄(x) and ψ(x) and the link variables Uµ(x). The measures for lattice path integration in these
variables reads

Dψ =
∏
x∈Λ

dψ(x) DU =
∏
x∈Λ

3∏
µ=0

dUµ(x),

where dψ(x) is the measure for integrating grassmann-numbers and dUµ(x) is the Haar mea-
sure. dψ(x) fulfills

dψidψj = −dψjdψi,∫
dψ ψ = 1,

∫
dψ = 0.

12



The Haar measure dUµ(x) is invariant under group multiplication∫
G

f(U)dU =

∫
G

f(V U)dU for V ∈ SU(3).

The partition function can be written as a lattice path integral by combining the above remarks
to obtain

Z(T, µ) =

∫
DU

∫
DψDψ̄e−Sf−Sg

=

∫
SU(3)

∫
ψ

∏
x∈Λ

3∏
µ=0

dUµ(x)dψ(x)dψ̄(x) e−Sf [ψ̄,ψ,U ]−Sg[U ]. (3.18)
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4. The strong coupling regime

While the last chapter introduced the formulation of QCD on the lattice, this chapter focuses
on setting the stage for actual numerical simulations by deriving a suitable representation
for efficient Monte-Carlo sampling. As a motivation, we recapitulate the source of the sign
problem at finite density as it is faced in conventional QCD simulations. Then, we will derive
the dual representation of strong-coupling QCD as a method to ameliorate the sign problem.

4.1. The finite density sign problem

To discuss the conventional approach to evaluate (3.18), we rewrite the partition function by
making use of the bilinearity in the fermionic part of the action:

Z(T, µ) =

∫
DU

∫
DψDψ̄ exp

(
−
∑
x

ψ̄D[U ]ψ

)
e−Sg[U ] =

∫
DU det(D[U ]) e−Sg[U ],

where D is the Dirac matrix originating from rewriting (3.17) with the help of Kronecker δ’s.
In this formulation, fermions are integrated out and the only remaining degrees of freedom are
the link variables Uµ(x). Given that det (D[U ]) is well-behaved, det (D[U ])e−Sg[U ] defines a
joint probability distribution that can then be used to generate gauge configurations in impor-
tance sampling Monte-Carlo. For this to be the case, the fermion determinant has to be real
and non-negative. The former is ensured given that the fermion matrix satisfies γ5-hermiticity

D† = γ5Dγ5, (4.1)

because then

det (D) = det (γ5) det (D) det (γ5) = det (γ5Dγ5) = det (D†) = det (D)∗.

In the presence of a chemical potential, (4.1) is modified

D†(−µ) = γ5D(µ)γ5,

and the fermion determinant becomes complex such that importance sampling is no longer
applicable.

4.2. Dual representation at βG = 0

For the remainder of this thesis, we want to use the dual representation of strong coupling
lattice QCD where matter and gauge fields are integrated out to obtain a representation in terms
of integer occupation numbers. The sign problem of the resulting representation is drastically
reduced, such that simulations across the T, µ-plane are feasible. To start, we observe that by
taking the strong coupling limit βG → 0 of (3.18), the gauge part of the action vanishes and
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the link integration dUµ(x) factorizes:

lim
βG→0

Z(T, µ) = ZSC(T, µ) =

∫
SU(Nc)

∫
ψ

∏
x∈Λ

3∏
µ=0

dUµ(x)dψ(x)dψ̄(x) e−Sf [ψ̄,ψ,U ]

=

∫
ψ

∏
x∈Λ

dψ(x)dψ̄(x)e2amqψ̄ψ

∫
SU(Nc)

3∏
µ=0

dUµeγ
δ0,µηµ(x)ψ̄(x)(Uµ(x)eδµ,0aτµψ(x+µ̂)−U†µ(x)e−δµ,0aτµψ(x−µ̂))

=

∫
ψ

∏
x∈Λ

dψ(x)dψ̄(x)e2amqψ̄ψ

3∏
µ=0

z(x, x± µ̂), (4.2)

where z(x, y) is the one-link integral of the form

z(x, y) =

∫
SU(Nc)

dg eTr(m†g+mg†)

with (m)ij = γδ0,µηµ(x)eδ0,µaτµψ(x)iψ̄(y)j, (m†)ij = −γδ0,µηµ(x)e−δ0,µaτµψ(y)iψ̄(x)j.

These matrices transform under gauge transformations like

(m)ij → (m)klU(x)ikU
†(y)lj, (m†)ij → (m†)klU(y)ikU

†(x)lj.

Therefore, traces of powers of mm† and determinants of m and m† are gauge invariant:

Tr
[(
m′(m′)†

)n]
= Tr

[(
U(x)mU †(y)U(y)m†U(x)†

)n]
= Tr

[(
mm†

)n]
,

detm′ = det
(
U(x)mU †(y)

)
= detU(x) detm detU †(y) = detm.

Since objects in the trivial representation of SU(Nc) are the only contributors to the integral
in z(x, y), we may write

z(x, y) =
∑

k1,...,kNc

αk1,...,kNc (detm)k1(detm†)k2Tr
[
mm†

]k3 · · ·Tr
[(
mm†

)Nc−1
]kNc+1

.

(4.3)

Now, we define mesonic fields M(x) and baryonic fields B(x) by

M(x) = ψi(x)ψ̄i(x), B(x) =
1

Nc!
εi1,...,iNcψi1(x) · · ·ψiNc (x), (4.4)

and make use of the identifications

Tr
[(
mm†

)n]
= (−1)n+1M(x)M(y), (4.5)

detm = N !(−1)NcB̄(y)B(x) and detm† = N !B̄(x)B(y), (4.6)

to rewrite (4.3) in terms of the new fields5

z(x, y) =
Nc∑
k=0

(Nc − k)!

Nc!k!
(γ2δµ,0M(x)M(y))k + ηµ(x)γNcδµ,0eNcδµ,0aτµB̄(x)B(y)

+ (−1)Ncηµ(x)γNcδµ,0e−Ncδµ,0aτµB̄(y)B(x), µ ≡ (x, y)µ. (4.7)

5For a more in-depth derivation of the combinatorial prefactors, see e.g. [12]. For a more elegant derivation
using Weingarten functions, see [6].
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Note that the series terminates after Nc terms due to the nilpotency of grassmann variables.
Finally, we can utilize (4.7) to calculate the remaining integral in (4.2). We expand the expo-
nential

ZSC =

∫
ψ

∏
x∈Λ

dψ(x)dψ̄(x)e2amqψ̄(x)ψ(x)

3∏
µ=0

z(x, x+ µ̂)

=

∫
ψ

∏
x∈Λ

dψ(x)dψ̄(x)
Nc∑
nx=0

(
2amqψ̄(x)ψ(x)

)nx
nx!

3∏
µ=0

z(x, x+ µ̂)

and notice the following local constraint coming from the nilpotency:

nx +
3∑
µ

kx,µ
!

= Nc, (4.8)

where kx,µ is the exponent of the operator M(x)M(x + µ̂) in (4.7). Similarly, a non-zero
contribution from the baryonic part of the one-link integral requires nx and kx,µ to vanish
since the baryonic hoppings already consume all avialable color indices. By introducing a
baryonic occupation number lx,µ that locally fulfills

3∑
µ=0

lx,µ + lx,−µ = 0, (4.9)

we can express ZSC as a sum over occupation number configurations that satisfy (4.8) and
(4.9):

ZSC =
∑
{nx,kb,l}

∏
b=(x,µ)

(Nc − kb)!
Nc!kb!

γ2kbδµ,0
∏
x

Nc!

nx!
(2amq))

nx
∏
l

σ(l)

Nc!
γNcN0,leNτatµBrl , (4.10)

with σ(l) = (−1)rl+N−(l)+1
∏

(x,µ)∈l

ηµ(x).

Here, rl denotes the winding number of baryonic loops in temporal direction, N0,l the total
number of baryonic segments oriented in temporal direction and N− the number negative
baryonic segments.
To develop an intuition for the partition function above, we want to give a graphical representa-
tion of the three different types of occupation numbers. This graphical representation will also
be relevant for analytical crosschecks later. The first term in ZSC corresponds to mesonic hop-
pings M(x)M(x + µ̂), so-called dimers, with the occupation number kx,µ ∈ {0, 1, . . . , Nc}.
On the lattice, we depict them as unoriented lines connecting the sites x and x+ µ̂:
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kx,µ = 1 kx,µ = 2 kx,µ = 3

Figure 2: Graphical representation of mesonic hoppings (M(x)M(x+ µ̂))kx,µ .

The second term in ZSC originates from the mass term e2amqψ̄(x)ψ(x) and is related to the
occupation number nx ∈ {0, 1, . . . , Nc}. These objects are called monomers. We associate
them with a number of dots at the site x:

nx = 0 nx = 1 nx = 2 nx = 3

Figure 3: Graphical representation of mesonic variables M(x)nx .

The final term in ZSC represents baryonic world lines with the occupation number lx,µ ∈
{−1, 0, 1}. We associate them with oriented lines:

lx,µ = 1 lx,µ = −1

Figure 4: Graphical representation of baryonic hoppings B̄(x)B(x+ µ̂) and B̄(x+ µ̂)B(x).

In this graphical representation, the constraint (4.8) translates to the rule that at each lattice
site - that is not part of a baryonic line - the number of monomers and dimers connected
to that site is Nc. The second constraint (4.9) implies that the baryon segments form self-
avoiding loops. According to (4.10), the sign of a configuration σ(l) can be read off directly
and only specific baryon configurations can create a negative sign. As seen in Fig. 40 in the
appendix, these configurations only start to become important at high chemical potentials and
low temperatures and are largely surpressed in the other regions of the µ, T -plane such that
the sign problem is mostly mild.
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5. Numerical methods
In this section, we gather the necessary computational methods to simulate the above sys-
tem. We start by recalling the general Markov-Chain Monte-Carlo method. Afterwards, we
describe the updating algorithm used to generate the occupation number configurations and
finish with a description of the Jackknife sampling method for error estimation and the sign
reweighting method.

5.1. Markov-Chain Monte-Carlo
For a reasonably sized four dimensional lattice, the number of configurations that contribute
to ZSC is so large that statistical methods are the only means to extract information from it.
For that purpose, we will be using the Markov-Chain Monte-Carlo method. The ensemble
average of an observable O

〈O〉e =

∑
n,k,lO[n, k, l]W [n, k, l]∑

n,k,lW [n, k, l]

with W [n, k, l] being the weightfactor of the configuration C = [n, k, l] from (4.10), is ap-
proximated by the sample average

〈O〉s =
1

N

∑
Ci

O[ni, ki, li]

where the N configurations Ci follow the distribution induced by W [n, k, l]. This is called
importance sampling. The configurations Ci are generated in a random sequence, the so-
called Markov-Chain, where the probability to generate the configuration Ci depends only on
the previous configuration Ci−1. The transition probabilities have to be normalized∑

i

P (Cj|Ci) = 1, (5.1)

and need to fulfill the ergodicity criterium

∃n ∈ N : (P n)ij > 0 ∀i, j

in order to ensure that the sequence of configurations can span the whole configuration space
and is not limited to a certain subset of it. In order to achieve importance sampling, configu-
rations generated from a given initial ensemble of configurations with distribution W0 have to
approach the equilibrium distribution W [n, k, l] of (4.10)

lim
n→∞

P nW0 = W [n, k, l].

This implies that the equilibrium distribution W [n, k, l] is a fixed point of the transition matrix
P

PWeq = Weq, (5.2)
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which we require to be unique. This can be achieved if we require the detailed balance condi-
tion

P (Ci|Cj)Weq(Ci) = P (Cj|Ci)Weq(Cj) (5.3)

to hold. Because then∑
Ci

P (Ci|Cj)Weq(Ci) =
∑
Ci

P (Cj|Ci)Weq(Cj)
(5.1)
= Weq(Cj).

5.2. Worm algorithm

In order to sample configurations in the dual representation, we make use of a class of cluster
algorithms called worm algorithms that are well suited to update constrained systems like
(4.10). Updating a configuration Ci to Ci+1 happens in three distinct steps, a mesonic worm
step, a baryonic worm step and a monomer update.

Monomer Update

We start with the simplest of the three: the monomer update. It is a local metropolis update that
proposes to replace either a dimer with a pair of monomers at the two sites that are connected
by the dimer or vice versa. At the start of this step, a random link is chosen with uniform
probability. Another uniform random number decides whether the monomer number at the
sites of this link should be increased or decreased. In the former case, the algorithm checks if
the bond is occupied by a dimer. If not, the step ends and the configuration is not modified. If,
however, the dimer occupation number is non-zero, a dimer on that link will be replaced by
two monomers at the sites connecting that link if the acceptance check with probability

pa =
kx,µ(Nc + 1− kx,µ)

(nx + 1)(nx+µ̂ + 1)
γ−2δ0,µ

succeeds. In the latter case, it is checked if the monomer number on both sites is non-zero.
If that is the case, the two monomers at the sites of the link are replace by a dimer with the
probability

pa =
nxnx+µ̂γ

2δ0,ν

(kx,µ + 1)(Nc − kx,µ)
.

A single update step can thus change the monomer number by ±2 and 0. A small sketch to
ilustrate the update is given in figure 5.

Figure 5: The local monomer update on the lattice.
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Mesonic worm step

The mesonic worm step is based on the directed path algorithm which was first proposed in
[5]. The step is seperated into two parts: active site updates and passive site updates. Active
site updates delete a dimer while passive site updates create a dimer at a given link. The two
steps are alternated until the mesonic worm stops.
The mesonic worm step starts by proposing a site that is not traversed by a baryon loop with
uniform probability and continues to do so until a site is accepted. The probability for the
acceptance test is

P =
nx
Nc

.

Once a site is chosen, a quark source and sink are introduced to this site in the form of
monomers. This first site defines the decomposition into active and passive sites. All sites
that share the same parity with this first site are also called active. The introduction of the
quark sources violates the Grassmann constraint (4.8) unless an adjacent dimer is deleted.
Therefore, a direction µ̂ is proposed and accepted with the probability

Pµ =
kx,µ̂
Nc

.

The dimer on the chosen link is then deleted and the worm’s head, that is one of the two
initially introduced monomers, moves to the site x+µ̂. This site is now passive. Subsequently,
a link for the addition of a dimer is chosen according to

Pν̂ =
Wν∑
σWσ

, with Wσ = γ2δ0,σ .

By carrying the worm’s head over to the new site x + µ̂ + ν̂, we are again at an active site
and have two possibilities: Either, there are monomers at this site and we can end the mesonic
worm step by deleting a monomer with the probability

Pend =
nx+µ̂+ν̂

Nc − kx+µ̂,ν̂

,

or, we choose a new direction α̂ 6= ν̂ with the probability

Pα =
kx+µ̂+ν̂,α̂

Nc − kx+µ̂,ν̂

and continue the update by deleting a dimer in this direction, moving the worm’s tail to the
new site and proceeding with the next passive site update. Note that in the chiral limit, the
only two monomers on the lattice are the artificially introduced worm head and worm tail.
Therefore, the update can only end when the worm head returns to its starting point. This
leads to an increase in CPU-time per update step compared to the finite quark mass case. A
sketch of a simple mesonic worm update is given in figure 6
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(1) (2) (3)

(4) (5)

Figure 6: Exemplary mesonic worm step.

Baryonic worm step

Lastly, we want to discuss the baryonic worm step. Again, this step consists of active and
passive site updates and we start by choosing with uniform probability a site that is either
baryonic or touched by an Nc-dimer. In the latter case, we replace the Nc-dimer with a baryon
segment lx,µ = 1, while in the former we proceed into the direction of negative baryon flux
and delete this segment. At the passive site x+ µ̂, we chose a new direction ν̂ with probability

Pν =
Wν̂∑
σWσ

with Wσ =

{
γNcδ0,σeNcaτµ(δσ,+0−δσ,−0) if lx+µ̂,σ 6= 0 ∨ kx+µ̂,σ = Nc

0 else.

and update the links according to (lx+µ̂,−µ → lx+µ̂,−µ − 1, kx+µ̂,−µ = 0, lx+µ̂,ν → lx+µ̂,ν + 1)
if lx+µ̂,ν 6= 0 and kx+µ̂,ν = Nc in the other case. Site x + µ̂ + ν̂ is active again and we face
three options to proceed. If the site happens to be the starting point of the worm evolution, the
update ends. Otherwise, if the site is touched by an Nc-dimer, we proceed in this direction by
replacing it with a baryon as above. If the site is traversed by a baryon, we continue into the
direction of negative baryon flux and delete this segment. Afterwards, we continue with the
passive site update as before.

5.3. Error estimates

The configurations generated with the above algorithm are auto-correlated such that the empir-
ical mean and variance are not reliable estimates of the ensemble mean and variance. Instead,
we will use the Jackknife method to obain reliable error estimates. Given a set of N measure-
ments of the observable O, we devide the dataset into m subsets of size M < N . Then, new
data sets Ni are constructed by removing the i’th block from the original set. We calculate the
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empirical mean of O on these reduced data sets:

Õi =
1

M

M∑
k=1

Ok

and then form the mean of those means

Õ =
1

m

m∑
l=1

Õl.

We can use this new mean to calculate the bias B

B = (m− 1)(Õ − Ô),

where Ô denotes the empirical mean. Correcting for this bias results in the Jackknife estimator
Ĵ

Ĵ = Ô −B =
1

m

m∑
l=1

Ĵl, (5.4)

with the new Jackknife pseudo-values Ji

Ji = mÔ − (m− 1)Õ. (5.5)

These are used to form the new variance estimator σJ via

σj =
1

m(m− 1)

m∑
i=1

(Ĵi − Ĵ)2 (5.6)

=
m− 1

m

m∑
i=1

(Õi − Õ)2. (5.7)

5.4. Sign reweighting
The dual formulation of strong coupling QCD still faces a mild sign problem that has to be
addressed. For that purpose, we make use of the sign reweighting strategy. That is, we interpret
the sign of a configuration as an additional observable and measure an observable O by

〈O〉 =
〈σO〉
〈σ〉

. (5.8)

Writing 〈σ〉 = exp(−V4∆f), where ∆f is the difference between the real and the sign-
quenched free energy density, we see that the average sign decreases exponentially with the
volume. If 〈σ〉 becomes small, e.g. on large lattices, the cancellations between numerator and
denominator lead to severe numerical errors. In fact, one can show that the sign-problem is
NP-hard [13].
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6. Equation of State in the T, µ-plane

6.1. Observables

The goal of this section is to determine the representation of physical observables like the
energy density or the pressure in terms of the dual variables discussed in previous sections.
These representations are obtained by taking derivatives of the thermodynamic potential Φ,
naturally related to the partition function ZSC by

Φ(T, µ, V ) = −T logZ.

At the same time, Φ is obtained from the energy E by Legendré transformation

Φ(T, V, µ) = E − TS − µN

which together with dE = TdS − pdV + µdN gives

dΦ = −pdV − SdT −Ndµ

such that the following thermodynamic relations hold:(
∂Φ

∂V

)
µ,T

= −p,
(
∂Φ

∂T

)
V,µ

= −S,
(
∂Φ

∂µ

)
T,V

= −N.

The combination of these relations with the partition function (4.10) identifies the observables
that we need to calculate in Monte-Carlo simulations. We begin by expressing the baryon
number density nB = NB

V
in terms of the dual variables:

nB =
NB

V
=
T

V

(
∂ logZ

∂µB

)
T,V

=
1

aτNτa3N3
σ

(
∂ logZ

∂µB

)
aτ ,a

=
1

aτNτa3N3
σ

1

Z

∑
{n,k,l}

· · · ∂

∂µB

σ(l)

Nc!
γNcN0,leNτatµBrl

=
1

aτNτa3N3
σ

1

Z

∑
{n,k,l}

· · · aτNτrl
σ(l)

Nc!
γNcN0,leNτatµBrl

=
〈rl〉
a3N3

σ

, (6.1)

and find that the baryon density corresponds to the average winding number of the baryonic
world lines in temporal direction. This can be used in conjunction with the definition of the
partition sum Z = Tr e−β(H−µN) to obtain the energy density ε = E

V
through the relation

1

V

∂ logZ

∂β
= −ε+ µBnB. (6.2)
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On the left-hand side, we apply the definition of the temperature (3.14) to cast the β-derivative
in terms of derivatives with respect to the temporal lattice spacing aτ :

∂ logZ

∂β
=

∂ logZ

∂(aτNτ )
=

1

Nτ

1

Z

∂Z

∂aτ
=

1

Nτ

1

Z

(
∂ξ

∂aτ

∂γ

∂ξ

∂Z

∂γ
+

∂Z

∂aτ

∣∣∣∣
γ

)
.

The second term is again proportional to the winding number 〈rl〉 such that we obtain

1

V

∂ logZ

∂β
=

1

V Nτ

1

Z

∂ξ

∂aτ

∂γ

∂ξ

∂Z

∂γ
+ µB

〈rl〉
V
.

By comparing to (6.2), we see that the winding number term is canceled and we obtain a
formula for the energy density

ε = − 1

V Nτ

1

Z

∂ξ

∂aτ

∂γ

∂ξ

Z

γ
=

ξ

aτNτa3N3
σ

∂γ

∂ξ

1

Z

∂Z

∂γ

=
ξ

aτNτa3N3
σ

∂γ

∂ξ

1

Z

∑
{n,k,l}

· · · ∂
∂γ
γ2NDt+NcNBt · · ·

=
ξ

aτNτa3N3
σ

∂γ

∂ξ

1

Z

∑
{n,k,l}

· · · (2NDt +NcNBt) γ
2NDt+NcNBt−1 · · ·

=
1

aτNτa3N3
σ

ξ

γ

∂γ

∂ξ
〈2NDt +NcNBt〉. (6.3)

We used ∂ξ
∂aτ

= − ξ
aτ

in the first line and introduced in the second line the new quantities
NDt and NBt which are the total number of temporal dimers and temporal baryon segments,
respectively. The energy density comes with a peculiarity not shared by most other observ-
ables in strong coupling lattice QCD: it depends not only on the physical anisotropy ξ but also
on its derivative with respect to the bare coupling γ, i.e. it depends on the “running” of the
anisotropy coupling. The exact determination of ξ(γ) is therefore an important prerequisite
for the study of the Equation of State and related quantities.
In a similar manner, we can calculate the pressure by relating the volume derivative to deriva-
tives w.r.t. the spatial lattice spacing a:

p = −∂Φ

∂V
= T

∂ logZ

∂V
=

1

aτNτ

∂ logZ

∂(a3N3
σ)

=
1

aτNτ3a2N3
σ

∂ logZ

∂a

=
1

aτNτ3a2N3
σ

1

Z

(
∂ξ

∂a

∂γ

∂ξ

∂Z

∂γ
+
∂Z

∂a

∣∣∣∣
γ

)
.

Evaluating the first term of this expression yields, again, the expectation value of the temporal
dimer and baryon segments.
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The second term is related to the total number of monomers Nm:

p =
1

aτNτ3a2N3
σ

(
ξ

a

∂γ

∂ξ

1

γ
〈2NDt +NcNBt〉+

1

Z

∂Z

∂a

∣∣∣∣
γ

)

=
1

aτNτ3a2N3
σ

ξ

a

∂γ

∂ξ

1

γ
〈2NDt +NcNBt〉+

1

Z

∑
{n,k,l}

· · · ∂
∂a

(2amq)
Nm · · ·


=

1

aτNτ3a2N3
σ

ξ

a

∂γ

∂ξ

1

γ
〈2NDt +NcNBt〉+

1

Z

∑
{n,k,l}

· · ·Nm2mq (2amq)
Nm−1 · · ·


=

1

3aτNτa3N3
σ

(
ξ

γ

∂γ

∂ξ
〈2NDt +NcNBt〉+ 〈Nm〉

)
. (6.4)

In combination with the result for the energy density we see that the interaction energy ε− 3p
in the strong coupling limit is given by

ε− 3p =
−〈Nm〉

aτNτa3N3
. (6.5)

In the massless case, where the monomer density is always zero we even have

ε− 3p = 0, (6.6)

which is the equation of state for non-interacting, massless, relativistic particles. These results
reflect the lattice version of (2.5)6. An anomalous contribution as in (2.9) is absent in the
strong coupling limit.
For now, we want to conclude the discussion of the observables in the dual representation by
calculating the operator for the chiral condensate ψ̄ψ. It is defined as

〈ψ̄ψ〉 =
T

V

∂ logZ

∂mq

, (6.7)

and couples to the monomer density

〈ψ̄ψ〉 =
1

aτNτa3N3
σ

1

Z

∑
{n,k,l}

· · · ∂

∂mq

(2amq)
Nm · · ·

=
1

aτNτa3N3
σ

1

Z

∑
{n,k,l}

· · · 2aNm (2amq)
Nm−1 · · ·

=
〈Nm〉

mqaτNτa3N3
σ

=
〈nm〉
mqaτa3

. (6.8)

The relations are summarized in tab. 1.
6Recall: Θµ

µ = ε− 3p.
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Physical observable Rep. in dual variables

a4ε ξ2

γ
∂γ
∂ξ
〈2nDt +NcnBt〉

a4p ξ
3

(
ξ
γ
∂γ
∂ξ
〈2nDt +NcnBt〉+ 〈nM〉

)
a4〈ψ̄ψ〉 ξ

mq
〈nm〉

a3nB
〈rl〉
N3
σ

= 〈ωl〉

Table 1: Summary of the phyiscal observables expressed in terms of the occupation number represen-
tation of strong coupling lattice QCD.

6.2. Anisotropy calibration
In the previous section, we found that the anisotropy not only enters in the setting of the
temperature but also plays a central role in determining even the most basic thermodynamical
quantities. Therefore a precise, non-perturbative method to calculate ξ(γ) is needed. For
that purpose we adopt a method initially developed in [9] and [14] that relies on comparing
fluctuations of conserved currents in spatial and temporal direction to determine the physical
anisotropy.
We begin by recalling the Grassmann constraint (4.8) and the baryonic constraint (4.9). These
two can be united into the constraint

nx +
∑
±µ

(
kx,µ +

Nc

2
|lx,µ|

)
!

= Nc. (6.9)

We can rearrange the expression∑
±µ

(
kx,µ +

Nc

2
|lx,µ| −

Nc

2d

)
= −nx,

and define the current jµ(x) as the summand of the left hand side multiplied with the parity
σx = ±1 of the site x:

jµ(x) = σx

(
kx,µ +

Nc

2
|lx,µ| −

Nc

2d

)
.

This current then fulfills the discrete local Gauss’ law

d∑
µ=0

(jµ(x)− jµ(x− µ̂)) = −σxnx. (6.10)

We define conserved charges Qµ by summing jµ(x) over all lattice sites in directions perpen-
dicular to µ

Qµ =
∑

{(x,ν) | ν⊥µ}

jν(x). (6.11)
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The fluctuations (∆Qµ)2 = 〈Q2
µ〉 − 〈Qµ〉2 of these charges should coincide if the lattice is

hypercubic, i.e. if a = aτ . As the spatial lattice is isotropic, the d spatial charge fluctuations
are conveniently combined into the observable7

Q2
s =

1

d

d∑
i=1

Q2
i (6.12)

while Q2
t = Q2

0. For fixed temporal and spatial lattice extends Nt and Ns and varying values
of the anisotropy coupling γ, the two averages 〈Q2

s〉 and 〈Q2
t 〉 are computed and the point at

which

〈Q2
s〉(γ)

!
= 〈Q2

t 〉(γ) (6.13)

determines γnp such that ξ(γnp) = Nt
Ns

. This process is repeated for various values of Nt
Ns

. The
result is fitted with a suitable Ansatz to obtain an analytic expression for ξ(γ) from which the
derivative ∂ξ(γ)

∂γ
can be estimated.

A few notes on technical details are in order. The calculations were performed8 on lattices
with Nσ = 10 and Nτ = ξNσ. Evidently, calibrating ξ(γ) for large ξ becomes increasingly
difficult on lattices with large Nσ. However, it was shown in [9] that the convergence to the
thermodynamic limit is very quick, such that calculations on Ns = 10 lattice suffice for our
purposes. Furthermore, the following approximation is used: Instead of simulating the full
SU(3)-theory with baryons, it suffices to use the gauge group U(3) in which baryons are
absent. This is justified since the calibration is performed at small temperatures and at µB = 0
where baryons are strongly surpressed and contribute only insignificantly to the above charges.
The data is fitted with the ansatz

ξ

γ2
(x, amq) =

a (x)

1 + b (x) (amq) + c (x)
√
amq

, where x =
1

ξ2
and (6.14)

a (x) = A0

((
1 + A1x+ A2x

2 + A3x
3
)
− (1 + A1 + A2)

)
+ 1

b (x) = B0

(
1 +B1x+B2x

2

1 +B3x+B4x2
− 1 +B1 +B2

1 +B3 +B4

)
c (x) = C0

(
1 + C1x+ C2x

2

1 + C3x+ C4x2
− 1 + C1 + C2

1 + C3 + C4

)
.

Index A B C

0 0.7795 2.1103 -0.7098
1 0.2310 74.7155 2.2442
2 0.0554 -28.2623 0.2313
3 4.7621 · 10−7 229.6297 2.1162
4 - 908.1057 0.1946

Table 2: Fit-parameters for (6.14).

7〈Qµ〉 = 0 in the chiral limit.
8The simulations and data analysis for the anisotropy calibration were performed by Dr. Wolfgang Unger.
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The result of the anisotropy calibration for various quark masses is presented in Fig. 7 and the
fit parameters are given in Tab. 2. The derivative ∂γ

∂ξ
which contributes to the pressure and the

energy density is shown in Fig. 8.
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Figure 7: Calibrated anisotropy coupling γ as a function of ξ for different quark masses.
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6.3. Results
With the identification of the relevant operators in section 6.1 and the calibration of the
anisotropy in the previous section, we are now in the position to begin the calculation of
thermodynamic observables of strong coupling lattice QCD. As an introductory step, we want
to start by calculating the energy density of U(3) and SU(3) theories at µ = 0 and mq = 0.
From there, we investigate the effect of introducing a chemical potential and a non-zero quark
mass. Finally, we compute the energy density, pressure and baryon density across the full
µ,T-plane.

6.3.1. Energy density of massless quarks at µ = 0

The dual representation of one flavor of massless staggered fermions with gauge group U(3)
in the strong coupling limit is particularly simple because baryons and monomers are not
present and the only degrees of freedom on the lattice are the dimers. Such a pure dimer
system is expected to behave like a gas of free mesons in many aspects. An example for
this was already given in (6.6), the dimer system fulfills the equation of state of a gas of
free relativistic particles. Introducing baryons to the system by changing the gauge group to
SU(3) can potentially change such a behaviour as excluded volume effects between baryons
induce a nuclear potential in strong coupling QCD [12]. In terms of the energy density, we
therefore expect a behavior similar to the Stefan-Boltzmann law ε = π2

30
T 4 for the U(3)-case

and deviations from that for SU(3).
To measure the energy, we sample the temporal dimer and baryon-segment density on lattices
with Nσ = 16 and Nτ = {4, 6, 8, 10, 12}. The temperature is varied by picking 6 values of γ
that correspond to ξ = {1, 2, 3, 4, 5, 6}. This allows us to have the temperatures ranging from
aTmin = 1

12
to aTmax = 6

4
. We also subtract the T = 0 contribution

a4ε0 = lim
Nσ→∞

ξ2

γ

∂γ

∂ξ
〈2nDt + 3nBt〉

∣∣∣∣
Nτ=ξNσ

(6.15)

which we estimate by computing a4ε0(ξ) for differentNσ followed by an extrapolation towards
Nσ →∞, see e.g. Fig. 9a.
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Figure 9: Left: Exemplary extrapolation of ε0(ξ). Right: Vacuum contribution ε0 versus ξ.
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The results for the energy density in U(3) and SU(3) theory are shown in Fig. 10 and Fig. 11.
The U(3)-Data matches the Stefan-Boltzmann law very precisely especially at low and high

temperatures but exhibits slight deviations from it at intermediate temperatures of
(
T
Tc

)4

∼
0.01. The inclusion of baryons with the change to SU(3) results in deviations especially at
higher temperatures. The energy density starts to form a plateau above Tc and the slope differs
significantly from the Stefan-Boltzmann factor π2

30
.
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Figure 10: The energy density for the U(3) theory at µ = 0.
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Figure 11: The energy density for the SU(3) theory at µ = 0.
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6.3.2. The effect of finite quark mass

Taking the above results as a basis, we have multiple directions to explore in parameter space.
We first start by including a finite quark mass to the calculations at µ = 0. This introduces
monomers as new degrees of freedom to our system. These do not contribute directly to the
energy density (6.3) but reduce the possible sites that dimers can be attached to. Therefore
we expect that the increase of quark mass will yield a gradual decrease in energy density.
Additionally, the pressure now obtains a contribution from the monomer density such that
ε− 3p 6= 0.
Motivated by the experience gained when performing the above mq = 0, µ = 0 simulations,
we also implement modifications to the simulation strategy. While the combination of lattices
with different Nτ allows us to reach very low temperatures, the numerical effort neccesary to
perform these simulations grows dramatically. The physically interesting region is, however,
around the critical temperature Tc = 1.089 [14] which is easily reached by the Nτ = 4
simulations. Furthermore, we noticed that extrapolating ε0 towards the infinite volume limit
has only a very small effect and we are already quite close to the infinite volume limit with
simulations on 103× ξ · 10 lattices. Therefore, the following simulations are all performed on
103 × 4 lattices and vacuum contributions are approximated by calculations on 103 × ξ · 10
lattices. The chosen temperatures range from aT = 0.4 to aT = 2 by choosing γ according
to (6.14) such that ξ = {1.6, 2.0, 2.6, . . . , 8}. The results for energy density, pressure and
interaction energy are depicted in Fig. 12, Fig. 13 and Fig. 14, respectively.
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Figure 12: Energy density as a function of the temperature at µ = 0 for different quark masses.
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Figure 13: Pressure versus temperature for different quark masses.
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Indeed, we find that a finite quark mass suppresses the energy density. Furthermore, the
plateau that formed at high temperatures in the massless case shifts with increasing quark mass
further to higher temperatures. While a decrease of the slope of ε is visible at mq = 0.1 at
high temperatures, the energy density at amq = 0.5 grows approximately linear from aT = 1
onwards. For the pressure, we find a similar shape with a slightly more pronounced bend
towards higher temperatures that remains visible even for amq = 0.5. The interaction energy
ε− 3p, on the other hand, increases with the quark mass since it is directly proportional to the
monomer density 〈nM〉. We can quantify these findings further. The quark mass dependence
of the energy density for three selected temperatures is shown in Fig. 15. We fit the data with
a simple exponential ansatz

a4∆ε(amq)|aT = A exp(−B · amq) + C

and find that increasing the quark mass leads to an exponential suppression of the energy
density for a large range of temperatures which gradually flattens to a linear suppresion for
the largest temperatures. This is also represented in the temperature dependence of the fit-
parameters in Fig. 16. The exponential suppression factor B remains constant up to aT ∼ 1.3
and drops significantly from there on. The amplitude A grows linearly up to aT ∼ 1.7 and
abruptly increases for the last two temperatures. The shift C remains close to C = 0 for all
but the highest three temperatures.

6.3.3. Including the baryon chemical potential

Finally, we want to include the baryon chemical potential into our simulations. This will result
in a favoring of baryon hoppings in temporal direction over anti-baryon hoppings. Hence, the
average density of temporal baryon segments 〈ωl〉will increase such that a positive net-baryon
density nB forms. In principle, we have to repeat the anisotropy calibration for each value of
the chemical potential that we want to use for simulations. At zero temperature, where the
anisotropy calibration is performed, the silver blaze property is expected to hold. That is, the
physics at zero temperature is independent of µB for chemical potentials smaller than µc. As
already mentioned, baryons are strongly suppressed at (T, µ) = (0, 0) and do not contribute
significantly to the charges needed to determine ξ(γ). Due to the silver-blaze property, we
expect this to be true for µ < µc as well. Therefore, we uphold our approximation to calculate
ξ(γ) only for U(3) and use the same ξ(γ) from (6.14) for the µ 6= 0 simulations. We keep
the same lattice sizes and temperatures as before but restrict our simulations to two different
quark masses amq = 0.1 and amq = 0.05 as the number of simulations that need to be
performed to yield an accurate scan of the µ, T -plane is rather large. In µB-direction, we
choose a stepsize between ∆µB = 0.3 at small chemical potentials to ∆µB = 0.03 around the
first order transition at higher chemical potentials. For a better visualization, we interpolate
the result with thin plate splines.
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Figure 17: The energy density across the T, µ-plane for amq = 0.1 as a heat map.

 0  0.5  1  1.5  2  2.5
 0.6

 0.8
 1

 1.2
 1.4

 1.6
 1.8

 2

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

a4Δε

aµB

aT

a4Δε

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4
 1.6
 1.8

Figure 18: The energy density across the T, µ-plane for amq = 0.1
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Figure 19: Baryon density a3nB across the T, µ-plane for amq = 0.1 as a heat map.
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Figure 20: Baryon density a3nB across the T, µ-plane for amq = 0.1.
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Figure 21: Monomer density 〈nM 〉 across the T, µ-plane for amq = 0.1.
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The energy density, shown in Fig. 17 as a heat map, depicts interesting behaviour. At
small chemical potentials up to µ = 1.0, the energy density changes only mildly; the con-
tour lines are almost parallel to the aµ-axis and exhibit only a very small curvarture towards
smaller temperatures. Above µ = 1.0, the curvature slowly starts to increase up to the point
(aT, aµ) ∼ (0.6, 2). At this point, the different contour lines converge and are roughly parallel
to the aT -axis. This line extends down to aT = 0.5 and across it, the energy density suddenly
jumps from almost zero to its maximal value a4∆εmax ∼ 2. Recalling the phase diagramm of
strong coupling QCD, one sees that this is an imprint of the first order phase transition in the
high density, low temperature region. The jump in the energy density across the phase bound-
ary is exactly the latent heat needed to go from one phase to the other and (aT, aµ) ∼ (0.6, 2),
where the contour lines converge, corresponds to the second order end point seperating the
crossover transition from the first order line. In the crossover region, the contour lines mim-
mic the crossover line. In Fig. 18, the same data is shown as a three dimensional plot where
the thin plate spline interpolation is overlayed with the simulation results represented by black
dots.
Fig. 19 shows the baryon density across the T, µ-plane. For small temperatures, the baryon
density remains zero up to the critical chemical potential aµc ∼ 2 as expected from the silver
blaze property. The baryon density then jumps across aµc to a3nB ∼ 1. Across this transi-
tion the system changes from a meson gas towards to a baryonic crystal, where the lattice is
almost completely filled with baryon loops winding around temporal direction. In contrast to
the energy density, there is no imprint of the chiral crossover line on the baryon density. The
contour lines corresponding to densities a3nB < 0.5 emerge from the small first order region
and tend towards smaller chemical potentials up to temperatures around aT = 1.3 where they
bend upwards and finally incline towards high chemical potentials. The detour into the left
part of the T, µ-plane decreases with the baryon density and vanishes for contour lines with
a3nB ≥ 0.5. For high temperatures the baryon density increases linearly with the chemical
potential as seen in the three dimensional plot of the results in Fig. 20.
The monomer density is shown in Fig. 21. It has its maximum in the low temperature region
with µ < µc where the baryon density vanishes. Towards higher temperatures the density
smoothly decreases but across the first order phase transition in µ direction it abruptly drops
to zero - exactly where the baryon density is maximal.
Fig. 22 displays the interaction energy ∆ε − 3∆p which is obtained from the vacuum sub-
tracted monomer density and ξ. In contrast to the energy density, the interaction energy does
not saturate in the high density - low temperature region. Apart from that, it resembles the
behaviour of the energy density in the remaining part of the T, µ-plane.
The pressure is obtained by combining the results for the energy density and the interaction
energy according to (6.4). A heat map of the results is given in Fig. 23. The behaviour is
again very similar to the energy density. This is not surprising as the observables nDt and
nBt are the main contributions to the pressure. This, however, has some serious consequences
for the pressure. Just as the energy density, the pressure jumps rapidly across the first order
phase transition as seen in Fig. 24. This is problematic as it is expected that the pressure is
continuous across the transition. The problem of the discontinuous pressure will be discussed
in more detail in the next section. For now, we want to conclude this section by discussing
the quark mass dependence of the results. The energy density, baryon density and pressure for
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the amq = 0.05 case are shown in the figures Fig. 25, Fig. 26 and Fig. 27. The first order
transition has shifted from aµc ∼ 2 to aµc ∼ 1.8. The observation at µ = 0 that the energy
density decreases with quark mass holds true apart from a small region in the T, µ-plane to
the right of the transition where the energy density for the amq = 0.1 case seems to be larger
than the results for amq = 0.05. The findings about the shift of aµc match [10], where the
influence of a quark mass on the phase diagramm of strong coupling QCD was studied. There,
it was found that with increasing quark mass the critical endpoint and the first order line move
towards higher chemical potentials and lower temperatures.
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Figure 23: The pressure across the T, µ-plane for amq = 0.1 as a heat map.
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Figure 24: The pressure across the T, µ-plane for amq = 0.1.
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Figure 25: The energy density across the T, µ-plane for amq = 0.05 as a heat map.
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Figure 26: Baryon density a3nB across the T, µ-plane for amq = 0.05.
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Figure 27: The pressure across the T, µ-plane for amq = 0.05 as a heat map.
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Discontinuous pressure

The pressure calculated according to (6.4) was found to be discontinuous across the first order
phase transition. From (6.4), this is not surprising since the contributing observables 〈2nDt +
3nBt〉 and 〈nM〉 are related to first derivatives of the grand canonical potential Φ which can be
singular9 at a first order phase transition. The thermodynamic potential itself, however, has to
be continuous across the phase transition. Under the assumption that Φ is homogeneous in the
volume, that is

Φ(T, αV, µ) = αΦ(T, V, µ) (6.16)

the pressure is a thermodynamic potential

p =
T

V
logZ, (6.17)

which is readily seen by differentiating (6.16) with respect to α:

∂

∂α
Φ(T, αV, µ) =

∂

∂α
αΦ(T, V, µ)

∂αV

∂α

∂Φ(T, αV, µ)

∂αV
= Φ(T, V, µ)

V
∂αΦ(T, V, µ)

∂αV
= V

∂Φ(T, V, µ)

∂V
= −V p = Φ(T, V, µ).

Therefore, the pressure has to be continuous across the first order phase transition. The ho-
mogeneity condition (6.16) is usually assumed to hold in the case of QCD. This problem
with the determination of the pressure is not new. In early works on finite temperature lattice
QCD, the calculation of the pressure on anisotropic lattices resulted in negative pressure or
pressure gaps across first order transitions, which were attributed to the use of perturbatively
determined anisotropy coefficients. The usage of non-perturbatively renormalized coefficients
resolves this problem [15]. In our case, we used a non-perturbative renormalization prescrip-
tion to calculate ξ(γ) but neglected the effects of baryons because of the large computational
effort. One might argue that the determination of ξ(γ, µ 6= 0) is necessary around the first
order transition since the sudden jump in baryon density might have a strong effect on the
fluctuations of the conserved charges.

6.4. Going beyond βG = 0

A long term goal of the dual variable approach is to move away from the strong coupling limit
and include the effect of gluons correctly. The current pursued strategy is to expand the gauge
action in terms of the inverse gauge coupling βG around βG = 0. The 0th-order corresponds
to the strong coupling limit discussed in this thesis. For higher order corrections, the link
integral discussed before obtains new contributions from powers of Tr

[
UP + U †P

]
. These

9i.e. discontinuous or divergent.
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integrals can be computed in closed form but the subsequent contraction of the free indices
and the grassmann integration remains challenging. A dual formulation including next-to-
leading order gauge corrections was constructed in [6]. In addition to the monomer, dimer
and baryon loop degrees of freedom in the strong coupling case, further integer variables are
introduced: the plaquette and anti-plaquette occupation numbers nP and n̄P , which arise from
powers of Tr[UP ]nP and Tr[UP ]†. The partition function in this new dual variables reads

Z =
∑

{nx,kb,lNc ,nP ,n̄P }

∏
b=(x,µ)

(Nc − kb)!
Nc! (kb − |fb|)!

γ(2kb−fb)δ0µ
∏
x

Nc!

nx!
(2amq)

nx (6.18)

×
∏
lNc ,lf

w(lNc , lf , µ)
∏
P

(
βG
2Nc

)nP+n̄P

nP !n̄P !
,

where the auxiliary variables fb, fx and lf are

fb =
∑
P∈P+

b

(nP − n̄P ) +
∑
P∈P−b

(n̄P − nP ) ∈ {0,±1} ,

fx =
1

2

∑
b

|fb| ∈ {0, 1} and

lf = {b = (x, µ)|fb = ±1 are connected} .

In the presence of gauge corrections, the Grassmann constraint is modified10 to the so-called
color constraint

nx +
∑

µ̂=±0,...,±d̂

(
kµ̂(x) +

Nc

2
|lNc,µ̂(x)|

)
= Nc + fx.

The inclusion of gauge corrections also impacts the determination of thermodynamic observ-
ables like energy density and pressure and their calculation becomes highly non-trivial. One
of the tricks used to calculate derivatives with respect to temperature or volume was to recast
them in terms of derivatives of the anisotropy coupling. This necessitated the determination of
the running of the anisotropy coupling. With the introduction of another bare parameter, the
inverse gauge coupling β, the effect of this coupling onto the anisotropy has to be taken into
account as well. The energy density in the presence of next-to-leading order gauge corrections
reads

a4ε =
ξ2

γ

∂γ

∂ξ
(〈2nkt − nft〉+ 3〈nBt〉)− ξ2 2Nc

βG

∂βG
∂ξ
〈nP + n̄P 〉. (6.19)

Here, nft is the density of the auxiliary variable fb which is determined by the plaquette oc-
cupation numbers. The pressure receives a similar contribution from the plaquette occupation
numbers. This new contribution gives us an interesting prospect even for the strong coupling

10There are also modifications to the baryonic weights, but they are of no concern for the following discussion.
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limit. If the strong coupling limit is approached from βG > 0, thereby taking the plaquette
occupation numbers into account, the result might be significantly different compared to start-
ing directly at βG = 0. The average plaquette

〈
Tr
(
UP + U †P

)〉
is equivalent to 〈nP + n̄P 〉 in

the strong coupling limit and is, in fact, non-zero as seen in 28. Depending on the behavior of
1
βG

∂β
∂ξ

in the limit βG → 011, one might obtain important contributions from the gauge sector
even in the strong coupling limit.
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Figure 28: Average spatial plaquette on 103 × 4 lattices across the T, µ-plane.

11That hopefully exists!
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7. Baryon density fluctuations

As we have seen in the various results of the previous section, the dual formulation of strong
coupling QCD allows us to soften the sign problem enough to perform simulations across
the full T, µ-plane. Furthermore, the complete phase diagram of strong coupling QCD can
be calculated in the dual formulation [16],[17]. In conventional QCD simulations, the finite
density region can only be accessed by extrapolation-based methods from the µ = 0 region.
It is therefore interesting to use strong coupling QCD as a toy-model to test commonly used
methods of full QCD at finite density. The most prominent method of these is the Taylor
expansion of the pressure in µB

T
12, which leads to a series in higher order cumulants of the

baryon density distribution. Besides access to finite density physics, this method is also used
in the search for the critical endpoint of QCD. The radius of convergence of the Taylor series is
limited by the pole of logZ closest to the origin which might be used to constrain the location
of the critical endpoint. For strong coupling QCD, the location of the critical endpoint is
known [10] so that one could validate the bounds on its location obtained from the radius of
convergence. Motivated by the precision of the previous results, we want to explore how far
the Taylor expansion can reach with our methods for strong coupling QCD.

7.1. Setup

Assuming the homogeneity condition (6.16) holds, we expand the pressure p in µB
T

around
µ = 0

p =
T

V
logZ = p(T, 0) +

T

V

∞∑
n=1

1

(2n)!

(µB
T

)2n ∂2n logZ

∂(µB/T )2n

∣∣∣∣
µB=0

.

The U(1) symmetry related to baryon number conservation implies that the thermodynamic
potential has to be an even function of µB such that all odd derivatives with respect to µB
vanish at µB = 0. The n-th derivative with respect to the chemical potential will yield the n-th
cumulant of the winding number κn(rl) so that we obtain

∆p = p(T, µB)− p(T, 0) =
T

V

∞∑
n=1

1

(2n)!
(aτNτµB)2n ∂2n logZ

∂(aτNτµB)2n

∣∣∣∣
µB=0

=
1

a3aτNτN3
σ

∞∑
n=1

1

(2n)!
(aτNτµB)2n κ2n(rl).

We multiply with a3aτ and ξ(γ) = a
aτ

and use κn(rl) = (N3
σ)nκn(ωl) to obtain

a4∆p =
∞∑
n=1

(aτµB)2n

(2n)!
ξ
(
NτN

3
σ

)2n−1
κ2n(ωl). (7.1)

12In modern approaches, a simultaneous expansion in the three chemical potentials µB (baryon), µS
(strangeness) and µQ (charge) is performed, see [18]
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The cumulants κn(ωl) cannot be measured directly, but one may use their relation to the mo-
ments µn(ωl) = 〈ωnl 〉. The first four even cumulants expressed in terms of the moments read:

κ2 = µ2 − µ2
1 (7.2)

κ4 = −6µ4
1 + 12µ2

1µ2 − 3µ2
2 − 4µ1µ3 + µ4

κ6 = −120µ6
1 + 360µ2µ

4
1 − 120µ3µ

3
1 − 270µ2

2µ
2
1 + 30µ4µ

2
1 + 120µ2µ3µ1 − 6µ5µ1

+ 30µ3
2 − 10µ2

3 − 15µ2µ4 + µ6

κ8 = −5040µ8
1 + 20160µ2µ

6
1 − 6720µ3µ

5
1 − 25200µ2

2µ
4
1 + 1680µ4µ

4
1 + 13440µ2µ3µ

3
1

− 336µ5µ
3
1 + 10080µ3

2µ
2
1 + 1680µ2

3µ
2
1 − 2520µ2µ4µ

2
1 + 56µ6µ

2
1 − 5040µ2

2µ3µ1 + 560µ3µ4µ1

+ 336µ2µ5µ1 − 8µ7µ1 − 630µ4
2 + 560µ2µ

2
3 − 35µ2

4 + 420µ2
2µ4 − 56µ3µ5 − 28µ2µ6 + µ8.

7.2. Analytical crosschecks
The numerical evaluation of the cumulants becomes increasingly difficult with higher orders
since there are a lot of cancellations present in the above formulae. To check whether our
numerical methods work correctly and to develop an expectation for the results on larger
lattices, we first perform analytical crosschecks on small lattices where the partition function
can be calculated by hand. To keep the number of configurations manageable, we calculate Z
on a 22 lattice in the chiral limit amq = 0 so that only dimers and baryons are present.
The configurations can be classified by the winding number rl = −2,−1, 0, 1, 2 and we split
the partition function into

Z2×2 = Zrl=2 + Zrl=1 + Zrl=0 + Zrl=−1 + Zrl=−2.

The contributions Zrl=2 and Zrl=−2 are given by the two purely baryonic configurations shown
in Fig. 29.

Figure 29: Configurations contributing to Zrl=2 (left) and Zrl=−2 (right).

The rl = ±1 sector is already significantly larger and consists of eight pure baryonic loops
and eight mixed contributions. They are shown in Fig. 30.

Figure 30: Configurations contributing to Zr1=1 up to shifts and reflections. The rl = −1 sector is
obtained by reversing the baryon flux.
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The largest number of configurations is found in the rl = 0 sector. It can be separated fur-
ther into a purely baryonic sector, a mixed sector and a purely mesonic sector. The mixed
sector contains the same mixed configurations as Zrl=1 and Zrl=−1 but rotated into the spa-
tial direction. Similarly, the baryonic sector consists of rotations of the baryonic loops found
in Zrl=±2 and Zrl=±1 and twelve new configurations. Four of which consist of two straight
baryon loops facing in opposing directions and the remaining eight consist of a baryon loop
wrapping around an elementary cell. The purely mesonic sector is the largest and contains
more than 100 dimer configurations. In Fig. 31, examples of configurations contributing to
Zrl=0 are shown.

(a) New, purely baryonic configurations that are not
rotations of rl = ±2 or rl = ±1. (b) Exemplary mesonic configurations.

Figure 31: Exemplary configurations contributing to Zrl = 0.

After weighting all configurations according to (4.10), the partition function reads

Z2×2 = γ12
(
4 cosh(e2µB/T ) + 16 cosh(eµB/T ) + 16

)
+

400

9

(
γ8 + γ4

)
+ 4. (7.3)

From here, we calculate the moments of nB by taking derivatives with respect to the baryon
chemical potential µB and combine them via (7.2) into cumulants of up to order eight. Addi-
tionally, we perform quick simulations on 2× 2 lattices to check that our data analysis works
properly. The results are shown in Fig. 32 and Fig. 33.
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Figure 32: Left: κ2 as a function of γ as obtained from Z2×2 (red) and from Monte Carlo simulations
(black). Right: κ4 as a function of γ. The blue line corresponds to the γ →∞ limit.

47



-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.5  1  1.5  2  2.5  3

κ 6

γ

exact
MC

-4

-3

-2

-1

 0

 1

 2

 3

 0.5  1  1.5  2  2.5  3

κ 8

γ

exact
MC

Figure 33: κ6 and κ8 versus γ.

In all four cases, the Monte Carlo result matches the exact result perfectly. Interestingly, we
find that the cumulants roughly fulfill

∂2

∂µ2
B

∼ ∂

∂γ
,

i.e. the fourth order cumulant behaves like the derivative of the second order cumulant. The
peak of κ4 roughly coincides with the inflection point of κ2. Similarly, κ2 possesses no local
extremum whereas κ4 possesses one, κ6 possesses two and κ8 possesses three. For γ → ∞,
all four cumulants approach a limiting value that can be calculated from the one-dimensional
partition sum13

Z2 = γ6
(
2 cosh(eµB/T ) + 4

)
raised to the power Vs = 2. This is due to the fact that the partition function is dominated
by configurations where dimers and baryons are oriented in temporal direction at high γ.
The argument holds independent of the dimension of the original lattice. To predict the high
temperature behavior of our 103 × 4 simulations, it suffices to calculate the partition function
of a one dimensional lattice with Nτ = 4. There are again only six configurations in this case:
two baryon loops, two triple dimer chains and two 2-1 dimer chains. They are sketched below.

Figure 34: Configurations contributing to Z4.

13There are only 6 configurations on a one dimensional lattice with Nτ = 2. Two baryon loops, two triple dimer
configurations and two 2-1 dimer chains.
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The resulting partition function for these configurations is

Z4 = γ12
(
2 cosh(eµB/T ) + 4

)
, (7.4)

which we will compare to simulations in the next section.

7.3. Results

With all the preliminary work done, we want to turn to the actual simulations in 3 + 1 dimen-
sions. Again, we choose 103× 4 lattices with amq = 0.1. Since there are no zero temperature
subtractions to perform here, the restriction ξ · 10 ∈ N no longer applies and we choose
ξ ∈ {1.0, 1.25, . . . , 12}. Compared to the previous simulations, were a number of configu-
rations between 8 · 104 and 1.6 · 105 sufficed to obtain very accurate results, the cumulants
are significantly harder to measure and we used up to 1.2 · 106 configurations. The results for
the second and fourth order cumulants are shown in Fig. 35 and 36. As before, the blue line
indicates the T →∞ value obtained from (7.4).
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Figure 35: Second order cumulant κ2 on a 103× 4 lattice with amq = 0.1. The black line corresponds
to the crossover temperature estimated from the inflection point of the energy density, see
Fig. 41 in the appendix.
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Figure 36: Second order cumulant κ4 on a 103 × 4 lattice with amq = 0.1.
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Figure 37: Red: Reconstruction of the pressure using the baryon density cumulants. Black: Results
for the pressure from direct simulations at µB 6= 0.
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The second order cumulant shows exactly the behavior expected from the previous section.
Its inflection point is roughly around the crossover temperature and for large temperatures,
the T → ∞ value predicted from (7.4) is approached. The fourth order cumulant, however,
turns out to be very noisy. The statistical uncertainties grow drastically with temperature
and the peak structure expected from the previous section is only vaguely recognizable. This
uncertainty is partly due to the fact that larger temperatures cause longer run-times of the
updating algorithm because large baryon loops are more frequent.
To reconstruct the pressure from these results, we combine (7.1) with the p(T, µB = 0) data.
The reconstructed pressure for fixed chemical potentials is shown in Fig. 37. In Fig. 38, the
same results are shown for fixed temperature instead.
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Figure 38: Red: Reconstructed pressure versus chemical potential for fixed aT . Black: Results from
direct simulations.

Up to chemical potentials of around aµB = 0.9, the reconstruction from the taylor expansion
matches the direct simulations well. Beyond aµB = 0.9, the taylor expansion starts to de-
viate notably from the direct simulations. For low temperatures, the reconstruction generally
underestimates the pressure as seen in the top two panels of Fig. 38. At temperatures above
aT = 1.0, the reconstruction overshoots the results from direct simulations.
For completeness, we also present the ratio of the two cumulants in Fig. 39. Together with a
few more cumulants, one might use the ratios of subsequent Taylor coefficients cn to estimate
the radius of convergence via

ρ = lim
n→∞

√∣∣∣∣ cncn+2

∣∣∣∣.
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as a function of the temperature.
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8. Summary
In this thesis, we used the dual representation of strong coupling lattice QCD with Nf = 1 to
obtain insights on the bulk thermodynamic properties at finite density. Starting with the mass-
less U(3) case, we calculated the energy density of this purely mesonic system. We found
that the energy density is very well described by the Stefan-Boltzmann law indicating that the
system behaves like a non-interacting gas of massless mesons. Adding baryons to the sys-
tem by switching the gauge group to SU(3) changed this behaviour only slightly for higher
temperatures and indicated that baryons are largely surpressed at aµB = 0. By including a
finite quark mass, we were able to observe a roughly exponential supression of the energy
density with amq for small to intermediate temperatures. Especially for high temperatures
aT > 1.4, this gradually changed to a linear supression. With the introduction of the baryon
chemical potential aµB, we calculated the energy-, baryon- and monomer density across the
full T, µ-plane and found that the strong coupling QCD phase diagramm left an imprint on
all these quantities. While the energy density and monomer density contain imprints of both
the crossover and the first order transition, only the latter is visible in the baryon density since
the nuclear and chiral first order transitions coincide in strong coupling QCD. The gap in the
energy density that we identified with the latent heat across the first order transition turned
out to be problematic for the determination of the pressure. As both observables are made up
of very similar operators, the pressure exhibits a similar gap across the first order transition.
We speculated that this unphysical behaviour might be due to the approximations that were
made for the calibration of the anisotropy ξ(γ). Beyond µc, the influence of baryons on ξ
should not be neglected. We also repeated the calculations for a slightly smaller quark mass
of amq = 0.05 and found qualitative agreement with the result from [10] that the critical end-
point wanders to higher µ and smaller T for increasing quark mass. Lastly, we discussed how
gauge corrections would influence the calculation of ε and related quantities. Most notably,
the anisotropy calibration becomes much more challenging and new observables contribute to
ε: the average plaquette and anti-plaquette occupation numbers. Depending on the prefactor

limβG→0
1
βG

(
∂ξ
∂β

)−1

, these observables could also give corrections to the results in the strong
coupling limit. In the last chapter, we explored the Taylor expansion of the pressure in µB/T .
We performed analytical crosschecks on small 2× 2 lattices to form an expectation about the
shape of the cumulants of the baryon density. Furthermore, we used exact enumerations in
one dimension to predict the high temperature behaviour of the 3 + 1d simulations. While the
second order coefficient could be measured precisely, the fourth order turned out to be very
noisy and the structure expected from the exact enumerations was replicated only vaguely.
The reconstruction of the pressure with only the first two coefficients matched the direct sim-
ulations up to chemical potentials aµB = 0.9. Beyond this value, the two methods begin to
deviate from each other. Unfortunately, the achievable precision in the coefficients was not
high enough to adress questions related to the critical endpoint. With higher statistics, strong
coupling QCD might nethertheless provide an interesting testbed for the Taylor expansion
method.
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A. Appendix

A.1. Additional plots
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Figure 40: ∆f = −V −1 log σ across the T, µ-plane for amq = 0.1.
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Figure 41: Interpolation of the energy density (left) and numerical derivative (right) to give a rough
estimate of the crossover temperature used in section 7.
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