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ABSTRACT

The time-dependent properties of the Fokker—Planck equation corresponding to a zero-
dimensional climate model, showing bistable behavior and subject to a weak external periodic
forcing are analyzed. Conditions under which the response is amplified are found analytically.
In this way the possibility of transitions between climatic states is established. The results
are illustrated by the 100,000-yr periodicity of the eccentricity of the earth’s orbit, in connection

with glaciation cycles.

1. Introduction

In a previous paper (Nicolis and Nicolis, 1981,
hereafter referred to as I), a nonlinear theory of
climatic fluctuations has been developed. The
starting point was to incorporate in the climate
dynamics the effect of random imbalances between
the various transport and radiative mechanisms.
The usual, deterministic rate equations (such as
the equation of energy conservation) were thus
replaced by stochastic differential equations. Under
the assumption of a Gaussian white noise, the latter
were equivalent to a Fokker—Planck equation for
the underlying probability density.

In I, the steady-state solutions of the Fokker—
Planck equation have been analyzed in detail for
a simple zero-dimensional model involving two
stable climatic states separated by an unstable one.
It was shown that the basic properties of the
probability distribution are monitored by a quantity
which was called the climatic potential, playing in
the theory a role analogous to that of free energy
in thermodynamics. The minima of this potential
give the positions of the stable climatic states.
Under certain conditions on the parameter values
the depth of the minima could become equal, and
as a result the stable states be equally dominant.
This situation was referred to as the climatic
coexistence.
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The time-dependent behavior of the fluctuations
turned out to be much more involved. Still, some
results were obtained in paper I using the ideas of
Kramers’ theory of passage over a potential barrier,
and confirmed by numerical simulations. The most
striking of these results concerns the characteristic
passage time between the two stable climatic states,
which turned out to be

2
T~exp|— AU
q

Here ¢? is the variance of the fluctuations and AU
the height of the barrier—essentially the difference
of the values of the climatic potential between the
unstable and one of the stable states. The point is
that if, as usuvally, fluctuations are small with
respect to the magnitude of the barrier, 7 is a long
time scale of the order of 10° years or more. Such
scales are absent from the deterministic energy
balance equations, which typically predict relaxa-
tion times of the order of the year.

The purpose of the present paper is to examine
the consequences of the existence of a long time
scale, eq. (1.1), in climate dynamics. It is well
known that the glaciation cycles, which are
certainly the most dramatic episodes of the quater-
nary era, have a dominant periodicity of 100,000
yrs. This time scale coincides with the period of

(1.1
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variation of the eccentricity of the earth’s orbit
(Berger. 1978). Despite many efforts. however. the
response of simple energy-balance models to a
weak external signal having this periodicity turned
out to be very weak and hence incapable of
triggering a major climatic change. It is the purpose
of our work to show that the situation may be
completely different when the coupling between the
external forcing and the internal fluctuations of the
climatic system is considered explicitly.

In Section 2 we introduce a simple zero-
dimensional climate model having two stable states
separated by an unstable one, and summarize the
properties of the deterministic response to a
periodic variation of incoming solar energy. In
Section 3 the stochastic description is set up.
Sections 4 and 5 are devoted respectively. to the
analytic and numerical results of the response to
the periodic variation. We show that the response
is considerably amplified when a matching between
the characteristic time scale of fluctuations (eq.
(1.1)) and the periodicity of the incoming solar
energy occurs. A preliminary account of this result
has been given in a recent communication by the
author (Nicolis, 1980a).

2. A simple zero-dimensional model
subject to a periodic forcing

In much of this paper we shall be concerned
with a set of climatic variables x which in the
absence of fluctuations, obey to a closed equation
of evolution of the form:

dx

== S A D= [, D)+ efy(x. 4,0 (2.1
Here f is an appropriate nonlinear rate function.
and A stands for a set of characteristic parameters
such as albedo, emissivity and so forth. This
function is decomposed into a part f; correspond-
ing to an autonomous evolution, and to a time-
dependent part f, describing the effect of some
external forcing proportional to €. As in paper I,
of special interest for our work are cases where
the steady-state solutions of the system in the
absence of the above time-dependent forcing,

Solx,,A)=0 (2.2)

are multiple and see their stability properties
change as the parameters A take different values.

More specifically, suppose that x denotes the
average surface temperature. The rate function f
in eq. (2.1) is then the difference between the solar
influx Q(1 — a(x)) la being the albedo] and the
infra-red cooling rate, gyo%% lg; being the
emissivity and ¢ the Stefan constant]. Equation
(2.1) becomes:

 _io( - at ¢!l
a-c Q1 —a{x)) — eg0x

(2.3)
where C is the thermal inertia coefficient.

In the majority of climate models Q is taken to
be constant. On the other hand, it is known that
the solar output displays very pronounced
variability at different time scales. One example is
the sunspot cycle which despite an inherent noise,
shows an approximate 11-year periodicity. Another
example more significant for our purposes is the
slight change in the mean annual influx arising
from the variation of the eccentricity of the earth’s
orbit. Hereafter we are interested in the effect of
such time-dependent forcing, in the presence of
fluctuations. To simplify the analysis as much as
possible we describe the above-mentioned nearly
periodic variation in the form

0 = Q(1 + &sin wr) 2.4)

The unperturbed solar constant divided by 4 is
taken to be O, = 340 W m~2

For temperature values T near the present-day
climate, a(x) is usually taken to be a roughly linear
function of its argument (Cess, 1976: Nicolis,
1980b). On the other hand, for very low x, @ must
tend to the albedo of ice, a,,, whereas for high x.
a should also saturate to some value, a,,, descrip-
tive of an ice-free earth. The simplest representation
taking these features into account is the zero-
dimensional (0-d) piecewise linear model proposed
by Crafoord and Killén (1978). Analytically,
we write:

l—a(x)=1—a,.=7y,. x<T,
l—a(x)=1—a+ fx=y,+ px, T,<x<T,
1—a(x)=1—a,, =7, x>T, (2.3)

Using the explicit dependence of the albedo on
T as given by egs. (2.5) in eq. (2.3) we see that
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in the absence of periodic forcing and for appro-
priate values of the parameters ¥,, ¥,, 7, and §
the system may admit three steady-state solutions.
One of them, denoted hereafter by T, corresponds
to the present-day climate and is asymptotically
stable, provided the parameters y, and £ are chosen
in such a way that the planetary albedo is 0.30
and the emissivity is & = 0.61. The second
solution, denoted by T_, corresponds to a deep-
freeze climate and is also asymptotically stable.
A third solution T, lies between T', and T_ and is
unstable.

Before we analyze the stochastic properties of
the system defined by eqgs. (2.3) to (2.5) we briefly
review the main features of the deterministic

response. We first write the energy balance
equation in the form:
dx

1 . .
EZF!QO(I —a(x)) — ggox?|

1
+ vl 0,¢(1 — a(x)) sinwt = —U{(x)

1
+ —&(1 —a(x) sinwt (2.6)
C
where U] denotes the derivative of the climatic
potential introduced in paper I with respect to its
argument:
Up(x) == —f So(xAydx 2.7
As a rule, ¢ is small. Hence, to a good approxima-

tion one may linearize the above equation around
the stable states 7', and T_. Setting

%, =T, + T, (2.8)

we obtain:

doT s U(T,) 6T l 0, &(1 T,))si
- =—-Uy(T, +— el —a-T,))sinwr
dt oV T e *

2.9

In the limit of long times the response around the
present-day climate predicted by eq. (2.9) is easily
seen to be of the form:

l1—a,

1
ST ()=
C w*+ (Uy(T,))

eUy(T,) |
Qp———— sin{wt + &)
cos

(2.10a)
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where the signal-response phase shift is given by

w
uy(r,)

From this expression we see that if € is small the
amplitude of the response is negligible. For instance,
for the model considered in this Section with the
usually accepted values for C and f and for
¢ = 0.001, which is the estimated change of solar
influx arising from the eccentricity variation of the
earth’s orbit (Imbrie and Imbrie, 1980) one finds an
upper bound for 6T, of the order of 0.1°K.
Moreover if w < Uy, (that is, if the periodicity of
the forcing is very long), the phase shift practically
vanishes and the amplitude of the response is
independent of the thermal inertia coefficient C. As
we see later, these conclusions change radically
when fluctuations are taken into account.

(2.10b)

tgl =

3. Stochastic description

As discussed in the Introduction, the deter-
ministic description must often be extended to take
into account the fluctuations, associated with
random imbalances between the various transport
and radiative mechanisms involved in the rate
function f(x,4,f). We denote their effect by a
random force F{¢) and assume the latter to be
x-independent and define a white noise (Wax,
1954):

(F())=0
(FIOF('))=q*6(¢t—1")

Here () denotes the expectation operator over
the ensemble of possible realizations.

Equation (2.1) is now to be replaced by the
stochastic differential equation

@a3.D

dx

— =S40+ F@) (3.2)
dt

As is well known (see e.g. Arnold, 1973) egs.
(3.1) and (3.2) are equivalent to the following
Fokker—Planck equation with nonlinear friction
coefficient and constant diffusion coefficient:

AP(x,1) a g 2*P(x,t)

=2 APty + —
ot o/ (RAOPED + o

3.3)
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where P(x,?) is the probability density for having
the value x of the state variable at time ¢.

As shown in paper I, in the absence of time-
dependent forcing,

S=folx )

eq. (3.3) has a stationary solution in the form of
a two humped distribution (see Fig. 1)

2

P(x)=2Zy'exp [-? Uo(x)] (3.4)
Z, being the normalization factor. In the presence
of forcing the above procedure is no longer
applicable. Nevertheless, if the external periodicity
is very long with respect to the characteristic
relaxation time (UY},)™', one expects that a
quasi-steady state regime will be established in
which the system would adapt at each moment
to the instantaneous state of the external environ-
ment. Specifically, let us define a time-dependent
potential

Ulx, )= —f f(x,4,0dx (3.5)

and the associated probability distribution

2
P(x,t)=Z"(t)exp [7;{ U(x, t)] 3.6)

This function cancels identically the right-hand side
of eq. (3.3), but in the left-hand side it gives terms

proportional to 8U/dt or, according to eqgs.
(2.1) and (2.4), terms of the order of the frequency

Uo(u) LB (x) tarbstrary units)

T T. x

Fig. 1. A typical two-humped probability distribution in
the case of coexisting climatic states.

w of the external forcing. If w is small, it is
sensible to assume that on the time scale of interest,
the maxima of P will have relaxed to the values
x, given by the deterministic description of Section
2, which are the minima of U. Moreover, because
of the smallness of the deterministic response 6T,
(see eq. 2.10a), we may assume that these extrema
remain fixed, and are essentially identical to the
values T, which correspond to the steady-state
solution in the absence of the forcing (see Fig. 1).
In short, we expect that the exact probability P will
have properties similar to P/(x,f) as far as the
location of the most probable states is concerned.

On the other hand, as shown in paper I, in
addition to the evolution of the extrema, there is a
slow interpeak relaxation process associated with
the adjustment of the probability mass around the
extrema. As its rate may be comparable to the
above estimated rate of change of P/(x,?), it is
essential to incorporate it into the description.
We do this by applying, as in paper I, Kramers’
theory of diffusion over a potential barrier (Wax,
1954). Actually because of the time-dependence of
the friction coefficient in eq. (3.3) we need a
generalization of Kramers’ theory, and this is most
conveniently carried out using a recent reformula-
tion of this theory due to Gardiner (1980).

Let M(x,?), denote the total probability mass
from zero up to some value of x of the state
variable:

M(x, t)=fo(x',t) dx' 3.7
0

Of particular interest are the values of this quantity
associated with the domains of attraction of the
two maxima of P:

N_(=M(T,,1)

N(O=1-N_()=1-M(T,0 (3.8)

We also introduce the corresponding expressions
for the quasi-stationary distribution P (x,#):

7
n(=1-n.(n :f P,(x', ) dx’ 3.9
0

We now formulate the main
Assumption: In the whole range of values of x,
the x-dependence of P(x,¢) is taken to be propor-
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tional to P,(x,f). To ensure proper normalization ~matters in eq. (3.13). Now, from definition (3.7)

this implies that:
P(x,)=N_() ——P(x,0 x< T,
n_(9)
1
P(x,£) = Ny ) P(x,)=0 x=T,
0
P(x,)=N,( P(x, ) x> T, (3.10)

0

The problem of solving the Fokker—Planck
equation amounts now to finding an equation for
either of the two weight functions N_(f) or N (),
which reflect the relative importance of the two
stable states. To this end we differentiate eq. (3.7)
with respect to time and substitute the time
derivative of P from the Fokker—Planck equation:

M fxa U (e, 1) Px, )
=—= ~ ! ] ]
dt o Ox x x

2 OP(x, t
q* OP(x )]dx

2 ot

¢ 8P(x, 3}
ox

=U'(x, ) P(x,0) + (3.11)

where we assumed that the probability flux is zero
at the boundary x = 0 (see paper I for a discussion
of this point). Taking into account the explicit form
of P(x, ), eq. (3.6), we write eq. (3.11) in the
equivalent form

. q o P(x,b)
M=—P(x,t) — 3.12)
2 ox Py(x,t)
from which we get
fr., M(x,0) ¢ [P(To, 0 P(T_0
P 2 [P(Ted  PATLD
3.13)

According to eq. (3.6) and Fig. 1, the function
P,(x,?) is sharply peaked on the two minima 7_
and 7, of the potential U and is practically
vanishing at T,. Conversely, P;l(x,t) presents a
very sharp maximum at x = T, Thus, for all
practical purposes only the value of M(To,t)
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and our main Assumption,

1 T,
M(To ) =N.0 f P(x',f) dx’ = N_(1)

(3.14)

Consequently, eq. (3.13) becomes, after utilizing
once again our main Assumption:

N_(t)f TGP;‘(x’,t) dx’

T.
g [N N
2 D)

ny(?)
A similar procedure leads to an equation relating
N,,Nyand N,. Summarizing:

(3.15)

N_() =) Ny() — A_N_( (3.16a)
N1 = 2 No() — A, N () (3.16b)
where we have set

7 1
).0=——( P“(x )dx)

2 n,

q 1
l_:T (f Pl (x! )dx)

q 1 ’
A= 3 no(f P (x )dx)

3.17)

A, = q (f P"(x’)dx)

From now on the time dependence of n and P,
will not be indicated explicitly.

Summing the two relations (3.16) and taking into
account that N, + N_ = 1, we obtain

N AN AN, (3.18)
’ Ao+ 2 '

Substituting back into eq. (3.16a) we obtain a
closed equation for the weight N_(f) of the
probability function around x =T

N_=r,—(r_+r)N_ (3.19)
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with
AgA_
"_ el
Ao+ A
A A
r,=—t (3.20)
Ao+ A

Both r_ and r, can easily be evaluated asymptotic-
ally, by expanding P;' in eq. (3.17) around its
unique maximum at 7, and by computing the
integral using the steepest descent method (seel also
paper I). One finds in this way:

1 2
ro=—|-U"(T) U (TH)|" exp |—— AU_
2n q?

1 2
r,=—I\=U"(Ty) U (T )" exp [———2 AU+]
2n q

(3.21)
where

AU, = U(Ty, 1) — U(T,, 1) (3.22)

is the instantaneous value of the potential barrier
separating the stable states from the unstable one.

4. Stochastic response to a weak periodic
forcing

We now evaluate the solution N_(¢) of eq. (3.19)
—which will automatically give to us the N (f)
as well—in the case in which the system is
submitted to the weak periodic forcing described in
Section 2. This means that the potential U(x,r)
is to be split in a way similar to eq. (2.1)

U(x, t) = Uy(x) + eU\(x, 0 4.1

If ¢ is a small quantity, the coefficients r_ and r,
appearing in eq. (3.18) could be linearized around
their values corresponding to the absence of
forcing:

ry =ro, + €p, sinwt (4.2)

This allows us to seek for solutions of the form:

N_(f) = N_sin(wt + §) + Ny_ (4.3)

where N,_ is the stationary solution in the absence
of the forcing

r

N, = " 4.4)
Fo_ + Io,

Substituting eqs. (4.2)-(4.4) into eq. (3.19) and

keeping only linear terms we find straightforwardly

the amplitude of the response:

" 1 p,— Ny (p,+p)

N_ = €
w 22 os + Foo
14—
For + Fo_

4.5)
and its phase shift:
w
¢=—arctg——— 4.6)
Fos + To

Thus, the characteristics of the stochastic response
are monitored by the quantity w/(ry, + r,_), which
is the ratio of the two characteristic times of
interest in this problem: The period of the external
forcing, and the characteristic time of interpeak
relaxation in the absence of forcing (cf. eq. (3.19)).
This is in agreement with the qualitative arguments
advanced at the beginning of Section 3.

Let us now evaluate more explicitly expressions
(4.5) and (4.6). In the limit where the variance
q* is small compared to the magnitude of the
barrier AU, the coefficients p, are given by

P = Ugp Up)'? AU,

! (
ng?

2
exp | —— AUy,
q

(4.7a)

where

Ugo = Ug'(T)

U, = Uy(T,)

with (see eq. 4.1):

AUy, = Uy(T,) — Uy(Ty)

AU, =U(T,)— U(T,)

On the other hand from egs. (3.21)

(4.7b)

1 2
roe = — (UnUy Y exp — —ZAUMI (4.8)
2n q
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and from eq. (4.4) (4.9)

Ny =

2
(Ug)"? exp [——AUM]
qZ

2 2
Uy ) exp [— - AUO_]+(U{,’*) 2 exp [— - AUO*]
q q

4.9

Using these relations it is easy to see that if the
values of the time-independent part of the climatic
potential U, at the two stable states 7, and T_
are not equal, the amplitude N_ of the response
behaves as

2
N_~exp [——2 Uy, — Uo_l] (4.10)
q
and is therefore negligibly small if the variance ¢*
is small, as it is expected to be. Therefore the only
case where we may have a significant response is
when

Upy ~ Uy 4.11)

In paper I we referred to this situation as the
climatic coexistence case. Expression (4.5) now
becomes

N:

2
qz w 172
14 ———
Fou+ Ty’

{(U&’_ UV (AU, — AUl_)}

4.12
W)+ (g )T @1

One can easily check that (U",)"? are typically
of order unity and from eqs. (4.7b), the quantity
inside the curly brackets turns out to be about
2 x 10® yr~' K2 For a forcing amplitude of 0.001
corresponding to the eccentricity variation of the
earth’s orbit (Imbrie and Imbrie, 1980) we find
therefore that the stochastic response N_ is
crucially dependent on the magnitude of the g-
dependent factors

2 ® 2 172
—— 11+ —
q° Foo + o

Notice the highly singular dependence of this part
on g. As a matter of fact, we have two competing

Tellus 34 (1982), 1

factors: 2/q? which increases if g is becoming
small, and the inverse square root which, in view
of eq. (4.8), decreases for a fixed w if g becomes
small.

For usual values of ¢* and AU,(r,, + r,.) is
a very small quantity. Therefore, if w is of the
order of 1 (such as the frequency associated with
the 11- or 22-yr solar cycle), the inverse square
root factor would be exceedingly small and the
stochastic response to this type of forcing would be
negligible.

The situation is completely different if w and
(ro, + ry_), in other words, the two inverse
characteristic times of the problem, are of the same
order of magnitude. With the value of g for which
this equality is achieved one finds that the ampli-
tude N_ is of the order of 0.1, which is quite
appreciable compared to the steady-state value
Ny_ ~ 0.5 one would obtain in the absence of
forcing when the two states T, and T_ are equally
dominant. Everything happens as if the barrier that
has to be overcome for a transition between
T, and T_ say (reminiscent of a glaciation),
becomes significantly smaller for certain time
intervals. The situation is represented in curve (a)
of Figs. 2 and 3. It can be easily shown that the
quasi-steady state of the probability distribution
P(x,t) is hardly affected by the forcing. The
behavior of P(x,?) is therefore entirely dominated
by the two weight factors N_ and N, (see eqs.
(3.10)).

S
~

P, IR (T)

=)
€Q, snwt

°©

TIME (years x10°)

Fig. 2. Curve (a): Time dependence of the periodic
forcing with frequency w = 22/10° yr~' and an
amplitude ¢ = 0.001 simulating the variation of the
eccentricity of the earth’s orbit. Curve (b): Time
evolution of the probability of the stable state P(T,.f)
divided by its value in the absence of forcing P(T,) ~
P(T.), in the presence of the forcing represented in
curve (a). Here and in Fig. 2 the time scale is normalized
in such a way that C = 1.
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(b}

PIT, )R (V)
EQpsnwl

09|

TME  (years)

Fig. 3. Curve (a): Time dependence of the periodic
forcing with frequency w = 2a/11 yr~! and an amplitude
¢ = 0.001, simulating a possible variation of the solar
influx with the sunspot cycle. Curve (b): Time evolution
of the probability of the stable state P(T,,#) divided by
its value in the absence of forcing P(T,) ~ P(T_), in
the presence of the forcing represented in curve (a).

Similar conclusions have been reached by Benzi
et al. (1981) on the basis of computer simulations.
They refer to this phenomenon as stochastic
resonance. As we see however from eq. (4.12) the
system does not exhibit a resonance in the usual
sense of the term, but rather the ability to amplify
the response to a low frequency forcing under
certain conditions.

5. Numerical results—concluding remarks

For the model described by egs. (2.3) to (2.5),
the time-dependent Fokker—Planck equation, eq.
(3.3), was integrated numerically using a method
developed by Chang and Cooper (1970). First, the
steady-state probability distribution in the absence
of forcing was obtained. And next, the forcing was
added and the long time behavior of the probability
was determined. The following parameter values
have been adopted: a,. = 0.82, a,, = 0.25,
B = 0.0075. These values correspond to the
coexistence case U,, ~ U,_. In the absence of
forcing the height of the potential barrier separating
the unstable state from either of the two stable
states is found to be AUy, ~ 213 yr ' K2

Curve (b) of Fig. 2 gives the main result, in the
case of a long periodicity simulating the 100,000-yr
variation of eccentricity. We start with a steady-
state solution in the absence of forcing such that
P(T,) ~ P(T_), and choose the variance ¢? such
that w = ry, + r,_ (see eq. 4.5). This yields

q*/(2AUy,) ~ 0.12. The presence of forcing
introduces then a rather dramatic variation of
P(T,,0 of the order of 20%. This reflects the fact
that the passage over the barrier becomes easier
during certain time intervals. Note also that there
is a considerable time lag between forcing (curve
(a)) and response (curve (b)), in quantitative
agreement with eq. (4.6):

p=—45°

That is, the maximum of the response at T, lags
behind the forcing by about 12,500 yrs.

According to the analytic treatment, a measure
of the importance of the response is also the total
probability for remaining at temperatures higher
than the unstable 7,, denoted by N_ (1) (see
eq. (3.7) and (3.8)). It is thus of interest to consider
the numerically computed

2 (P(T,1)

T>T,

reduced by its value in the absence of the forcing,
as a function of time. One finds that the amplitude
of the response is also of about 20%, in agreement
with Fig. 2 and with the analytic prediction, eq.
(4.12).

Curve (b) of Fig. 3 gives the stochastic response
to an 1l-yr periodicity simulating a possible
variation of the solar influx with the sunspot cycle.
We see that the variation is now practically
negligible, as expected from the analysis of the
preceding Section. In addition, if one considers as
before, the total probability X7,z P(T,s) the
amplitude of the response is so small that its value
is certainly within the numerical error. This is
again in complete agreement with the analytical
expression (4.12).

The pronounced difference between the two
responses can be understood as follows: In the
presence of a long periodicity the system is given
enough time to perceive the lowering of the
potential barrier that occurs periodically, and
perform more easily a transition between the two
climatic states. In contrast, for a short periodicity
the system is unable to adjust to the instantaneous
external conditions in view of the large value of the
characteristic passage time, eq. (1.1).

In summary, in this paper we performed a
stochastic analysis of a simple 0-d energy balance
model showing bistable behavior, in the presence of
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a periodic forcing. The amplitude of the forcing was
so small that the deterministic response was
negligible. Yet in the presence of fluctuations, the
amplitude of the response could change dramatic-
ally, depending on two basic quantities: (i) the
properties of the climatic potential and (i) a
characteristic time scale related to the variance of
fluctuations. Under certain conditions the passage
over the potential barrier is facilitated and the
shape of the probability distribution changes
periodically, favoring one of the stable states during
certain time intervals. An attempt was made to
relate these results to the 100,000-yr periodicity
in glaciation cycles. We have been able to work
out a comprehensive analytical theory of these
phenomena, which is in complete agreement with
the numerical simulations.

The work we reported can be extended in many

directions. It would be interesting to consider the
effect of fluctuations that couple to the system in a
multiplicative way through such parameters as Q
and g,. Similarly, we can relax the hypothesis of
purely periodic variation of the solar influx and
analyze the effect of a random forcing around
some mean periodicity. Finally, we could use more
sophisticated climate models taking spatial effects
into account. This latter extension is particularly
interesting in view of the local character of the
fluctuations.
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CTOXACTUHYECKUE ACMEKTHI KIMMATUYECKUX TMEPEXOLOB—
OTKJIMK HA NMEPUOAUYECKOE BO3AENCTBHE

AHaNU3NPYIOTCS 3aBUCSLIHE OT BPEMEHH CBOWCTBA
ypaBueHus ¢oxkepa-IlnaHka, CcOOTBETCTBYIOLLETO
HYNbMEPHOH MOIEIM KIUMAaTa, MOKA3LIBAKOLLETO
nOBEAEHME C ABYMS YCTOUYHUBBIMH COCTOSIHUAMU NPH
cnaboM MNepuOAMYECKOM BHEWHEM BO3ACHCTBHH.
AHATUTHYECKH HAROCHLI YCTIOBHSA, MPH  KOTOPLIX

Tellus 34 (1982), 1

OTKAHK CUCTEMbLI YCHIUBACTCA. Takum nyi1emM
YCTAHABIIMBACTCA BO3MOXHOCTb MEPEX0A0B MEXKAY
pa3iIuYHbIMH KJTUMAaTHYECKHUMHU COCTOAHUAMM.

Pe3ynbTabl WIUIKOCTPHUPYIOTCA MEPUOOHYHOCTLIO B
100,000 neT 3KCNEHTPHUYHOCTH 3EMHOK OpOUTHI B
CBA3K C UMKJIAMH OJIE[ICHEHUS .



