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Abstract

We consider systems in contact with a “linear” thermal bath, modeled by an additive thermal noise and an additive
dissipation term which depends linearly on the system velocity. It is shown that the dissipation term and the bath
temperature uniquely fix all statistical properties of the noise, without referring to any microscopic details of the bath.
While the fluctuation dissipation theorem fixes only the second moment (correlation) of the noise, our present theorem
extends to all moments. As a consequence, any linear thermal bath can be imitated by a harmonic oscillator bath model
and the noise statistics is always Gaussian. © 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

The canonical set up in equilibrium statistical
mechanics is a system in contact with some ther-
mal bath but otherwise isolated. Typical non-
equilibrium problems arise if the system is in
addition subjected to an external driving force, or
if it is in contact with several thermal baths at
different temperatures, or if one is interested in the
relaxation towards equilibrium out of some far
from equilibrium initial condition. ! In all these
cases, the very general and powerful principles
of equilibrium statistical mechanics are no longer
applicable, and in the absence of comparable non-
equilibrium principles, a detailed modeling of the
specific system dynamics under consideration and
of the bath effects is unavoidable.
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U A further option, which we do not consider in this paper,
consists in a non-thermal bath.

As demonstrated e.g. in Ref. [1], the effects of a
thermal bath can always be divided into a sys-
tematic (deterministic) part (heat/energy dissipa-
tion into the bath) and a random (stochastic) part
(fluctuating forces/noise out of the bath). The most
widely used modeling of these two bath effects is
based on the following linearity assumption (for
a more precise formulation see Section 2): The
“bare” dynamics of the isolated system is supple-
mented by an additive stochastic term (“fluctuating
force”) and an additive dissipative term (“frictional
force’), which is furthermore assumed to be a
linear functional of the system velocity only. Each
bath contributes such a pair of terms and in the
case of several baths they are simply added up.
Examples are the standard models for the Brownian
motion of a small particle (but “large” on a mo-
lecular scale) in a fluid [2], chemical reactions [3],
Josephson junctions [4-6], and many others [7-9].

In some of these examples, the description of
the bath effects is phenomenological, in others an
approximative derivation from a reasonably real-
istic microscopic model is possible. In either case,
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from a fundamental viewpoint one may have con-
cerns about whether such an approach may not
bring along some subtle inconsistencies with basic
principles of thermodynamics (e.g. contradictions
to the second law [10-14]) and quantum mechanics
(e.g. negative probabilities [15-20]).

Much like in mathematics [21], the only clean
way to ensure that a phenomenological or ap-
proximative description is “well defined” in the
above sense is by proving its “existence”, that is,
by deriving it from some microscopic model
without any further approximations. Such an ex-
istence-proof for any “linear” thermal bath model
with a Gaussian noise statistics is provided by the
exactly solvable harmonic oscillator bath model,
as developed originally in Refs. [22-24] and sub-
sequently re-invented, refined, and generalized e.g.
in Refs. [25-36,7-9].

The obvious next questions are: how realistic is
the harmonic oscillator bath model, e.g. for a
Brownian particle in a fluid or a chemical reaction
in solution and what about “linear”” thermal bath
models with a non-Gaussian noise statistics? The
answers readily follow from the main point of our
present paper, namely the following uniqueness-
theorem, as proven in Section 3: for any “linear”
thermal bath, the form of the dissipation term uni-
quely fixes all statistical properties of the fluctuating
force term. It should be emphasized that the well-
known fluctuation dissipation theorem (of the
second kind) [1,2,22,37-39] only fixes the correla-
tion of the fluctuating force but does not say
anything about its higher moments. In contrast,
our theorem establishes the uniqueness of all mo-
ments and thus of all statistical properties of the
fluctuations.

As a consequence, any ‘“‘linear” thermal bath
can be represented by a harmonic oscillator model,
and in particular, the fluctuations are bound to
satisfy a Gaussian statistics. This does not mean
that the actual bath is a harmonic oscillator bath,
but only that one cannot tell the difference as far as
the effects on the system of interest are concerned
[33]. Since an (approximately) “linear” character
of the thermal bath is often very suggestive on
the basis of theoretical arguments as well as ex-
perimental measurements, the harmonic oscillator
model provides a rather satisfactory description

of a thermal bath in a large variety of real situa-
tions [7-9,26,32-35,40], even though for many
complex systems, one does not have a very clear
understanding of the actual microscopic origin
of the damping and fluctuation effects. In order
to uniquely fix the thermal bath model, a de-
cent approximation for the dissipation term is
then sufficient, which may often be available from
measurements or some theoretical considerations.
On the other hand, the detailed statistical proper-
ties of the fluctuations, which might not have been
so easily accessible a priori, are in fact no longer
needed due to our present result.

2. Model

In order not to further obscure the already
quite involved main ideas, we restrict ourselves to
one-dimensional classical systems. The extension
to higher dimensions is straightforward, while a
quantum mechanical transcription brings along
considerable additional complications. Our start-
ing point is the simplest and most common model
of a dissipative dynamics for a one-dimensional
classical state variable x(¢), namely

mi) = Flx(t).0) — / ne— DX+ 20, (1)

where dots indicate time derivatives and integra-
tion limits ‘oo are omitted. The first term on the
right-hand side accounts for the deterministic,
conservative system dynamics in the absence of
any heat bath. It may, however, include some ex-
ternal driving forces, and especially in a higher
dimensional generalization, may depend also on
the system velocity x(¢), e.g. for a charged particle
in a magnetic field. The two other forces on the
right-hand side of Eq. (1) model the effects of a
thermal bath: The second term represents a sys-
tematic (deterministic) frictional force and the last
term a stochastic fluctuating force (noise). Note
that these two terms are not independent of each
other since they both have the same origin, namely
the interaction of the system x(¢#) with a huge
number of microscopic degrees of freedom of the
thermal bath and that their random distribution
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according to some statistical mechanical ensemble
gives rise to the stochastic nature of the fluctuating
force £(¢). For reasons of causality, the damping
kernel #(¢) has to respect the condition

() =0 for¢<0. (2)

Another restriction on 7(¢) imposed by the second
law of thermodynamics has been discussed in Ref.
[33]. Apart from such basic constraints (see also
Section 2.1 below), the damping kernel #(¢) in Eq.
(1) may be arbitrary.

The state variable x(¢) in Eq. (1) may represent
the position of a real Brownian particle [2], but
also a chemical reaction coordinate [3], the phase
difference of the macroscopic quantum mechanical
wave function in a Josephson junction [4-6], or
some other relevant (slow) collective coordinate of
the system under study [7-9], with a correspond-
ingly adapted meaning of the “mass” m and the
various “forces” on the right-hand side of Eq. (1).
By choosing #(¢) proportional to a delta function
o(t), Einstein’s original model of Brownian motion
with a memoryless damping is recovered [2], while
in other contexts also a non-trivial memory of the
damping may be physically relevant [7-9].

2.1. Linear thermal baths

Our goal in Section 3 will be to prove a general
property for systems of the form (1). Since we will
not refer to any microscopic details of the thermal
bath, we have instead to provide a certain “mini-
mal” set of “macroscopic” assumptions about how
any decent thermal bath is supposed to behave.
For instance, it can be shown [31,33] that a “bath”
which consists of a single harmonic oscillator may
already give rise to a dynamics of the general form
(1) but can obviously not be considered as an ad-
missible model for a real thermal bath as we have
it in mind e.g. when stating the impossibility of a
perpetuum mobile of the second kind.

We now collect all the assumption regarding
the dynamics (1) and the associated thermal bath
under which the uniqueness theorem from Sec-
tion 3 is valid.

(1) We implicitly assume in Eq. (1) a kind of
linearity of the bath effects in that the “bare” dy-
namics of the isolated system is supplemented by

an additive dissipative term and an additive sto-
chastic term. The dissipation is furthermore as-
sumed to be a linear functional of the system
velocity 2 and — as discussed below Eq. (2) — to
respect causality and the second law of thermo-
dynamics. Finally, if the system is simultaneously
brought into contact with several thermal baths
then each of them contributes one dissipation and
one stochastic term, and all these terms can simply
be added up on the right hand side of Eq. (1).

(i1) Our second assumption is a kind of sepa-
rability of the thermal bath effects in the sense that
changes of the system dynamics ®> do not change
any properties of the thermal bath, i.e. of the last
two terms in Eq. (1). First of all, this regards any
changes of the mass m and the force field F(x, ) in
Eq. (1). Furthermore, this means that if the system
is simultaneously in contact with several thermal
baths then each of them acts exactly as if the
others were not present. In this case, “separability”
includes the additional assumption that each bath
is isolated from all the others and that this re-
flects itself in the statistical independence of the
respective noise terms. Finally, the state variable
x(t) =:x;(¢) can interact with additional macro-
scopic degrees of freedom x,(¢),...,xy(¢) without
changing the properties of the last two term in Eq.
(1) either. For example, in Fig. 1 the system is si-
multaneously interacting with two different baths
and with a set of additional degrees of freedom.
Though in practice this may be not easy to realize,
in principle nothing speaks against the possibility
that any of these interactions can be “switched off”’
without affecting the others in any way.

(iii) Our third assumption is the thermality of
the bath effects, i.e. the word ‘“thermal bath” is
understood in the sense of equilibrium statistical
mechanics. In detail this includes the following
assumptions: (a): It is possible to associate a
thermodynamical temperature T to each thermal

2 Note that the integral in Eq. (1) can represent an arbitrary
linear functional of the velocity if we understand 7(¢) in the
sense of distributions.

3 Also the implicit assumption in Eq. (1) that the bath effects
depend on the state of the system exclusively via the linear
velocity dependence of the damping may be considered as part
of the “separability”” assumption.
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Fig. 1. The system of interest x(¢):=x(¢), interacting si-
multaneously with two thermal baths B; and B,, and in ad-
dition with the auxiliary degrees of freedom x,(7),...,xy(2).
The interactions are symbolically indicated as (&, (¢),n,(¢)),
(&(1),m5(2)), and e. Note that the bath B, is not related in any
special way to the coordinate x,(¢). Rather, both baths B, and
B, interact solely with x;(¢).

bath such that a system which permanently ex-
tracts energy out of one or several baths at the
same temperature cannot exist. (b): The stochastic
process &(¢) is stationary, that is, all statistical
properties of £(¢ + Ar) are identical to those of ()
for any time shift Az. On condition that no time
dependent external driving forces are acting and
that the system cannot diverge to infinity, it is
furthermore assumed that a stationary long time
limit is reached, i.e., all expectation values ap-
proach a constant value. (c): The bath satisfies a
mixing condition: For large time differences
t, —t) — oo the fluctuating forces £(#,) and (7))
become statistically independent of each other,
especially all correlations decay to zero. According
to the fluctuation dissipation theorem [1,38,39],
the latter property is equivalent to the condition
n(t) — 0 for t — co.

We remark that as a consequence of (a) and (b)
it follows that

{€(0) =0, 3)

where (-) indicated an ensemble average over in-
dependent realizations of the stochastic process
&(1) in Eq. (1). Indeed, if Eq. (3) were not true for
one ¢ then stationarity would imply the same for
all ¢ and one could readily construct a perpetuum
mobile of the second kind along the lines of (a).
We further note that the mixing property (c) in
combination with Poincaré’s recurrence theorem
excludes any heat bath with a finite number of
microscopic degrees of freedom. The same can be

inferred from the stationarity condition (b). In
turn, only an infinite number of degrees of free-
dom guarantees an infinite heat capacity, as we
expect it from any decent heat reservoir in the
thermodynamic sense.

We close with a remark regarding the initial
conditions in Eq. (1): For the sake of convenience,
we implicitly assume that the system is perma-
nently in contact with the bath(s) ever since the
“initial time” ¢t = —oo. Due to the stationarity and
mixing assumptions above, transients which de-
pend on the corresponding initial conditions have
therefore died out at any finite . However, we can
still “prepare” the system at our will by means of
the force field F(x,?), e.g. by forcing x(¢) into an
extremely close vicinity of an arbitrary point x
during the time ¢ < 7y, and then switching over to
the actual force field of interest for ¢ > ¢,.

3. Uniqueness of the noise

In this section we consider a system (1) in
contact with a thermal bath as specified in Section
2.1. We wish to prove that for any dissipation
kernel #(¢) and any temperature T of the bath, all
statistical properties of the noise £(¢) are uniquely
fixed, independently of any microscopic details of
the thermal bath.

To this end, we assume that there exists at least
one further thermal bath with which the system (1)
can interact and which exhibits the same damping
kernel and the same temperature as the original
thermal bath (otherwise there is no need for
proving uniqueness). Labeling the two bath by “1”
and “2” we thus have that

ni(t) = (1), (4)

Tl :Tz. (5)

As discussed in item (ii) of Section 2.1, we can also
couple both baths simultaneously to the system,
and in doing so, the corresponding two fluctuating
forces &,(¢) and &,(¢) are statistically independent.

Next we introduce the difference of the nth
moments of these fluctuations:
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D,(t1y. .. t,) = {(&(8) -
&) (6)

Since the statistical properties of the fluctuations
are completely fixed by all its moments, it will be
sufficient to proof that

D,(t,...,t,) =0 foralls,... 1, and
n=1,2,... (7)

To do so, we will proceed by induction: Forn =1,
the property (7) holds true because of Eq. (3). In
the rest of this section we consider an arbitrary but
fixed N > 2 and take (7) for granted for any n < N.
The aim is then to verify Eq. (7) for n = N.

For later convenience, we first rename the state
variable x(¢) in Eq. (1) as

x1(t) == x(t) (8)

and similarly m; := m, Fi(x,t) := F(x, ). Next, we
supplement the system by K — 1 additional degrees
of freedom x,(¢),...,xx(#), which all interact with
x1(#) and with each other, but which have no direct
contact with the two baths, cf. Fig. 1 and item (ii)
in Section 2.1.

At this point we should emphasize once more
the crucial role of the “separability”’ property (ii)
from Section 2.1, saying that we can freely change
the system dynamics without changing the bath
properties. For this reason, it will be sufficient to
proof (7) for one particular system, and we can in
fact even choose a different system for every inte-
ger n and every time n-tuple in Eq. (7). In turn,
once this uniqueness of the noise will have been
proven in whatever way, it immediately carries
over to any other system that possibly can be
coupled to this bath. We have already ex-
ploited this freedom by coupling simultaneously
another bath and the auxiliary state variables
xy(t),...,xx(¢) to the original system. In the fol-
lowing we will further exploit this freedom by
choosing the dynamics of all the x;s and especially
their interaction according to our needs. Similarly,
for the moment the integer K is still arbitrary.
Later we will set K =N if N > 2, whereas for
N =2 we will not need any of these additional
degrees of freedom, i.e. formally we can set K = 1.

The case K = 2 will always be tacitly excluded, and
similarly for K < 1.
The dynamics of the K degrees of freedom

x1(t),...,xx(f) is chosen as follows:

. 0

kak(t) = 51(‘]6(0 — a— V(X] (l), . ,X]((l‘)) (9)
X

for k=1,...,K. Here & is the Kronecker-delta
and L, is a linear operator, defined as

ikxk (t) L= mkjék(t) + ockxk(l‘)

+ Or1 / n(t — s)x(s)ds, (10)

where m; > 0 and oy > 0 are model parameters
that we can still freely choose according to our
needs. Finally, V(x,...,xx) is an interaction po-
tential of the form

K K
€
V(xl,...,xK) I:—E g ijk—€2||xk, (11)
k=1

k#j

where € is a small parameter, and where we have
for the sake of simplicity assumed dimensionless
units. The sum involves a shorthand notation for
indicating that both k and j run from 1 to K with
the exclusion of £ = ;.

According to Eq. (10), the left-hand side of (9)
represents a deterministic, harmonic oscillator
dynamics with frequency +/a; /m; which is damped
for £ = 1 and undamped for 2 <k < K. The right-
hand side of (9) accounts for the noise, acting on
the variable x;(¢), and for the (anharmonic) cou-
pling among the K harmonic oscillators. Since
each of the two baths is contributing a dissipation
and a noise term, we have according to the lin-
earity assumption (i) from Section 2.1 that

n(t) = m (1) +ny(0), (12)

() = &i(0) + &) (13)

Note that our intention to prove some very
general statement about arbitrary thermal baths
without any reference to the microscopic details is
very similar in spirit to the typical situations en-
countered in equilibrium thermodynamics. Ac-
cordingly, much like for the invention of problem
adapted thermodynamic ‘‘cycle processes™, the
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above specific choice of the harmonic oscillator
dynamics and especially of the anharmonic inter-
action is largely a matter of intuition and trial and
error. The ultimate justification for this choice is
that it will do what we want it to do. It is likely
that there exists other choices which would work
as well, possibly even simpler ones. The physical
picture by which we were guided was the follow-
ing: If the two noises ¢;(¢) and &,(¢) were not
statistically identical then it should be possible to
“filter” certain frequency type features out of these
noises and to exploit them for constructing a
perpetuum mobile of the second kind. As it turns
out, for exploiting in this way dissimilarities in the
second moments (N = 2) of &,(¢) and &,(¢), a single
harmonic oscillator suffices (K = 1 and/or € = 0),
while for higher moments (N > 2) more and more
interacting, non-linear oscillators are needed
(K =N and € > 0).

We further remark that the total potential of
the K-dimensional dynamics (9), given by the in-
dividual harmonic oscillator potentials plus the
interaction potential (11), does not diverges to-
wards +oo in all directions of the K-dimensional
configuration space, but rather to —oo in certain
directions for any * ¢ # 0. However, for very small
€ the total potential is practically harmonically
increasing in all directions for not too large x;-
values. With decreasing ¢, the system has to
overcome higher and higher potential barriers be-
fore reaching the asymptotically decreasing re-
gions of the total potential. Since the noise induced
crossings of such barriers becomes extremely un-
likely as e decreases, they can be neglected. Alter-
natively, one may introduce “saturation terms”
into the total potential which guarantee a diver-
gence towards -+oo in all directions, but which
would only have any notable effect in regions
which are practically never visited anyway. We
thus can assume that the preconditions for items
(iiia) and (iiib) in Section 2.1 are guaranteed. The
latter item (iiib) implies stationarity of expectation
values, in particular

*# The situation is not improving by changing the signs on the
right-hand side of Eq. (11).

d
S0 - &) = 0. (14)

Finally, we note that the total force F;(¢) exerted
on the system x,(¢) by the ith bath (i=1,2) is
given by
MO:—/m@ﬂﬁwMH{ﬁ) (15)
see Egs. (1), (8), (12) and (13). The corresponding
power Fi(¢)x(¢t) has to vanish on the average,
otherwise a permanent energy transfer from one
into the other bath would result. Since we are
dealing with two thermal baths at the same tem-
perature (5), this would contradict item (iiia) from

Section 2.1. Invoking stationarity once again, we
can conclude that

0= (R %) = (B0 ()
= ([&1(1) = &), (16)

where we have exploited (4) in the last identity. By
taking advantage of Eq. (14), it finally follows that

S {ais) ~ o) (), =0. (17)

Next we introduce Green’s functions, uniquely
defined by the requirements that

LG (1) = d(1) (18)

Gk(t < 0) =0. (19)

The unique solution of Eq. (9) respecting the

“stationarity” condition (iiib) from Section 2.1
then reads
/dtth—l léklé —|—€ij
J#k
K
+é Hx_f(f')] ; (20)
ik

see also the discussion of the initial conditions at
the end of Section 2.1. By introducing Eq. (20) into
itself, one finds for K =1, 3, 4, 5, ... (but not for
K = 2) the result
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xi(t) = /dr’ [Gi(t— 1)+ eHy(t = 1)
+ EHy(1 = 1)]E(Y)

K
+e]] [araie-o) [ -r)
1
% /dtmGl (t// _ t///)é;(t///) + @(64), (21)

where we have defined

H(t) :== duGi(t — 1) | duGi(t — 1)Gi (%),
>/ /
(22)

K

K
S /dllGl(t—tl)
J#1 kg {14}

X /dlzG_/(tl — lz)/dl3Gk(t2 —t3)G1(l3).
(23)

H3(t) L=

Our next step is to introduce Eq. (21) into Eq.
(17) and then equating terms of equal order in e.
Observing Eq. (13) we obtain in order ¢ the result

5 (00 - a0 [ e -nian+ew]) =o

s=t

(24)

Recalling that ¢(7) and &,(¢) are statistically in-
dependent and exploiting Egs. (3) and (6) we can
infer that

/dr’Gl (t—1) %Dz(t, ) =0. (25)

According to item (iiia) in Section 2.1 the thermal
noises & (¢) and &,(¢) are stationary, implying that
D,(t,1") = Dy(t — ¢',0). From the definition (6), the
property D,(—t¢,0) = D;(¢,0) is obvious, while the
mixing property (iiic) from Section 2.1 implies that
D,(t,0) — 0 for t — oo. To verify Eq. (7) forn = 2
it is therefore sufficient to demonstrate that the
relation

/ d1G (1) %Dg(t, 0)=0 (26)

implies (0/0t) D,(¢,0) = 0 for all 1 > 0.

At this point one has to exploit the fact that the
parameters m; and o, in (10) are still at our dis-
position, and hence Eq. (26) has to be valid for any
my, o > 0. According to Egs. (18) and (19), the
left-hand side of Eq. (26) may be looked upon as
the position x;(¢) at time ¢ = 0 of a damped de-
terministic oscillator that has been subject to the
driving force (0/0¢) D,(—t,0) during the time ¢ < 0.
Physically, it is quite plausible that this position
x1(0) can only be zero for all choices my, o; > 0 if
this driving force (0/0t) D,(—t¢,0) identically van-
ishes for all ¢ <0.

Mathematically, the same follows if we can
show that G, () is a complete function system with
respect to its parameters my, o; > 0 on the positive
real axis ¢ > 0. To this end, we perform a Fourier
transformation in Egs. (10) and (18) with the result

P(0)Gi(w) =1, (27)

P(w) := —my* + iof(w) + o, (28)

where the Fourier transform f(w) of a function
f(¢) is defined as

Flw) = / dre= £ (z). (29)

The general solution of Eq. (27) can be written as

~ 1

Gi(w)=——+ Cio(w — w;) (30)
ST

with free integration constants C;. From the con-
dition (19) one can infer that all these constants
must be zero. The remaining Fourier back-trans-
formation is possible in analytical form only for
large values of m; and «,. In this case, the zeros of
Pi(w) can be approximately determined and the
method of residues yields the asymptotically exact
approximation

Gi(t) = N, 0(t) sin(wt)e ", (31)

where ©(r) is the Heaviside step function and
where

Imli S
) :wl(ml’ogl) — ﬂ_kw_i_@(m;z),
ny 2m1

(32)
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Ay = da(my, o) = —Re[ﬁ(znf/ml)] +0(m;?),

(33)

JVl = ,/Vl(ml,ocl) = [mlwl(ml,ocl)]_l. (34)
We thus recover a for large m; and o; the physi-
cally expected weakly damped harmonic oscilla-
tions (31) with a frequency (32) close to the
undamped frequency /oy /my, supplemented by
a weak damping (33) that is governed by the
Fourier transformed damping kernel at the un-
perturbed frequency +/o;/m;. Note that the mix-
ing condition (ilic) from Section 2.1 guarantees
that Re[fj(w)] < co and that we also recover the
condition Re[fj(w)] =0 as a consequence of the
second law of thermodynamics [33]. Finally, we go
over from m; and «; to w; and 4; as independent
model parameters. While m; and «; were restricted
to very large values, the corresponding values of
w; in Eq. (32) can still practically vary over the
entire positive real axis, while 1, in Eq. (33) is now
restricted to very small values. It thus follows with
Eq. (26) that

/ dw1g1 601 /dfG]

for arbitrary weight functions g;(w;). Choosing

5, D2(6,0)=0 (35)

gi(w) := (2/mnA")) sin(w;t))e"" (36)

it follows with Eq. (31) for any #, > 0 that
/ da)lgl ((l)l)Gl([) = 5(f — tl). (37)
0

In view of Eq. (35) we finally can conclude that
indeed (0/0t;) D,(t,,0) = 0 for any # > 0.

Next we turn to the proof of Eq. (7) for an
arbitrary n = N > 3, assuming that the relation is
valid for all » < N. Introducing Eq. (21) into Eq.
(17) and observing Eq. (13), we see that the con-
tribution from the first line on the right-hand side
of Eq. (21) vanishes due to the validity of Eq. (7)
for n = 2. Focusing on terms of order €, i.e. the
second line in Eq. (21), we obtain

d
—( [&(s) = & /le (t—1)
dS<[ ( 2 ﬁél

X /dtHGj(tl _ t//)/ dt///Gl (t” _ tl//)

x [&(") + éz(t’”)]> =0. (38)

s=t

Similarly as in Eq. (31) one finds the following
solution of Egs. (18)—(20):

Gk<t> = J‘fk@(l‘) sin(wkt), k:2,...,K7 (39)

o = op(my, o) = /o /my, (40)
JVk = /Vk(mk, O(k) = [mkwk(mk, O!k)]il, (41)

which is exact for arbitrary my, o > 0 in Eq. (10).
Like in Egs. (36) and (37) we now go over to ay; in
place of oy as independent model parameter and
we define

gk(wk) = (Z/RJVk) sin(wktk) (42)

with the consequence that
/ da)kgk(wk)Gk(t) = 5(1 — fk) (43)
0

forany #, > 0 and £ = 2,...,K. By operating from
the left-hand side with factors of the form
f0°° dwygi(wy) - -+ we can thus transduce each in-
tegrand G; in Eq. (38) into a o-function and then
carry out the integrals. With the particular choice
K =N and t; =0 one arrives in this way at the
result

%<[fl (s) = &(s)] H (&= 1) + & - fj)}>

1

=0.
s=t

(44)

Recalling that the two noises &,(¢) and &,(¢) are
statistically independent and by observing that for
every summand arising in Eq. (44) there exists a
summand with all the indices of the noises &,(¢)
and & (7) exchanged and with inverted sign, one
can infer that the resulting sum consists of one
summand (0/0t) Dy(t,t —tp,...,t — ty), while all
the remaining summands are proportional to
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terms D, with n < N and are therefore zero. In
other words, we can conclude that

0
aDN(t,t—tz,...,t—tN)zo. (45)
Here, t,,...,ty are still restricted to positive val-

ues, but due to the symmetry of the arguments in
the definition (6) one readily sees that this is suf-
ficient to conclude that

0
a—DN(tl, coty) =0 (46)
t
for arbitrary ¢,...,ty. Exploiting the mixing

property (iiic) from Section 2.1 and the validity of
Eq. (7) for n < N one can infer that

[llm DN(th?tN) = 0 (47)
Combining this result with Eq. (46) finally implies
that

DN(lh...,l‘N) =0 (48)

for arbitrary ¢,...,ty. Hence our proof by in-
duction of Eq. (7) is completed.

4. Concluding remarks

As the central result of our present paper we
have shown that for any “linear” thermal bath, as
specified in Section 2.1, the dissipation kernel and
the temperature of the bath uniquely fix all sta-
tistical properties of the thermal noise, indepen-
dent of any further details of the microscopic bath
dynamics. In contrast to the mathematical details
of the proof, the basic physical picture behind it
is quite simple: If there were any arbitrariness in
the statistical properties of the thermal noise then
it should be possible to “filter” out these non-
uniquely defined features in some way and exploit
them for constructing a perpetuum mobile of the
second kind. As usual in thermodynamics, figuring
out an adequate “thermodynamic machine” which
does the job (as “elegantly” as possible) requires
some creativity and technical skills. As a reward
one obtains very general conclusions without ref-
erence to any microscopic details. It was only after
our proof has been completed that it came to our

attention that an approach somewhat similar in
spirit has in fact already been adopted by Nyquist
in his celebrated 1928 paper [38], and also in Sec-
tion III of [33]. Apart from this general spirit, both
these works are, however, completely different
from ours and also simpler in so far as only har-
monic oscillator systems are involved, while our
proof crucially depends on the presence of anhar-
monic terms.

Since the effects of any “linear” thermal can be
reproduced by an appropriately chosen harmonic
oscillator bath model, it follows that the thermal
noise of any “linear” thermal bath satisfies a
Gaussian statistics. On the other hand, various
heuristic arguments of why the harmonic oscillator
bath is such a versatile tool have been given in the
past [26,32,33]. Especially, throughout the latter
work [33], the Gaussianity of the fluctuations is
taken for granted without any further discussion.
Our uniqueness theorem is one important step
forward to make these arguments rigorous.

Playing devil’s advocate one might argue that
the “linear” structure of the bath effects is already
so restrictive that the harmonic oscillator model is
probably the only microscopic dynamics which
strictly reproduces this structure. While we know
of several experts in the field to which such a
statement has appeared quite plausible, any
somewhat more tangible argument in favor of it
seems to be absent. On the other hand, e.g. for a
real Brownian particle in a fluid, a “linear” ther-
mal bath model is clearly an excellent approxi-
mation while a harmonic oscillator model for the
actual microscopic dynamics of the fluid is obvi-
ously very unrealistic. In this case the (at least in
very good approximation) “linear” character of
the bath seems not to be rooted in harmonically
coupled harmonic oscillators but rather in a huge
number of very weak and almost independent
“random” impacts of the surrounding molecules.

Interesting open problems are the generaliza-
tion of our approach for so-called multiplicative
noise, the question of whether the noise statistics
in turn uniquely fixes the dissipation term, and
possible relaxations in the assumptions from Sec-
tion 2.1 such as to include e.g. non-mixing baths or
even baths consisting of a finite number of degrees
of freedom.
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