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Abstract

We introduce and solve a ‘null model” of stochastic metastatic colonization. The model is
described by a single parameter @: the ratio of the rate of cell division to the rate of cell death for
a disseminated tumour cell in a given secondary tissue environment. We are primarily interested
in the case in which colonizing cells are poorly adapted for proliferation in the local tissue
environment, so that cell death is more likely than cell division, i.e. # < 1. We quantify the rare
event statistics for the successful establishment of a metastatic colony of size N. For N > 1, we
find that the probability of establishment is exponentially rare, as expected, and yet the mean
time for such rare events is of the form ~ log (N)/(1 — @) while the standard deviation of
colonization times is ~1/(1 — @). Thus, counter to naive expectation, for # < 1, the average time
for establishment of successful metastatic colonies decreases with decreasing cell fitness, and
colonies seeded from lower fitness cells show less stochastic variation in their growth. These
results indicate that metastatic growth from poorly adapted cells is rare, exponentially explosive
and essentially deterministic. These statements are brought into sharper focus by the finding that
the temporal statistics of the early stages of metastatic colonization from low-fitness cells (0 < 1)
are statistically indistinguishable from those initiated from high-fitness cells (0 > 1), i.e. the
statistics show a duality mapping (1 — @) — (6 — 1). We conclude our analysis with a study of
heterogeneity in the fitness of colonising cells, and describe a phase diagram delineating
parameter regions in which metastatic colonization is dominated either by low or high fitness
cells, showing that both are plausible given our current knowledge of physiological conditions in
human cancer.
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1. Introduction

Cancer metastasis is the process of dissemination of cancer
cells originating from a solid tumour, and their subsequent
colonization of distant tissues [1, 2]. Metastatic disease is
responsible for the great majority of cancer deaths. It is
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generally considered to be a succession of unlikely events
rendering in toto a highly inefficient process [3-5]. In the
conventional view of metastasis, only certain cancer cells
from the primary tumour can successfully metastasise as they
are thought to require a number of attributes, such as the
ability to invade local tissue, enter, survive in, and leave the
bloodstream, and colonize new tissue environments. As such,
they have been likened to decathletes, in that they possess
multiple pre-adapted abilities, all of which are required to
form a new colony in a distant tissue [6]. This view explains
metastatic inefficiency, as it highlights the low probability of
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acquiring all the specific genetic mutations necessary to
achieve the intermediate goals en route to successful metas-
tasis [7, 8]. However, as pointed out by Bernards and
Weinberg [9], this picture contains a conceptual difficulty
concemning the microevolution of such cells. The acquisition
of these abilities would appear to endow the cells with no
selective advantage in the primary tumour, and, as such, one
might expect the sub-population of fully-fledged metastatic
cells to be vanishingly small. The resolution put forward by
Bemards and Weinberg posits pleiotropy, namely, that
genetic mutations enabling metastasis might also provide
selective advantage in the primary tumour, but this view is
then hard to reconcile with metastatic inefficiency. An addi-
tional and important piece of information is the observation of
large numbers of circulating tumour cells (CTCs) and dis-
seminated tumour cells (DTCs) in cancer patients with no
discemnible metastatic disease [10-12], which provides a
challenging backdrop in which to understand metastatic
inefficiency. Clearly, there is scope for a more precise and
quantitatively based understanding of metastasis, the first
steps of which we hope to provide in this paper.

Given the large number of CTCs in the blood stream and
DTCs in the bone marrow and other secondary sites of cancer
patients, one can posit a large number of individual attempts
at metastatic colonization occurring over time, most of which
are unsuccessful; so that the inefficiency of metastasis can be
approached as a problem in the statistics of rare events. For
the purposes of this paper, we delineate such rare events into
two types. First, rare genotypes, as considered in the main-
stream paradigm; it being assumed that there exists only a
minute subset of colonising cancer cells capable of successful
metastasis. Second, rare dynamics, which is the concept we
wish to explore in depth in this paper; in which we posit that
highly unlikely colonization dynamics can arise from the
statistical fluctuations of birth and death of otherwise poorly
adapted seeding cells. A helpful metaphor to understand the
difference between these two types of rare events is the use of
special forces versus infantry to achieve a military mission.
‘Rare genotypes’ corresponds to a highly trained yet small
group of soldiers who each have the specialized skills to
accomplish the mission. ‘Rare dynamics’ corresponds to a
large number of poorly trained infantry, none of whom have
the specialized skills required, but each of whom has a very
small but non-zero chance of accomplishing the mission. We
will study these rare events in the context of the final stage of
metastasis, that of tissue colonization, which is arguably the
most poorly understood step of metastasis, and yet observed
to be the highest barrier for DTCs to overcome in forming a
new tumour [2, 4, 5]; in mouse models it is observed that the
vast majority of metastatic cells readily die once they reach a
distant tissue site and attempt to colonize it [13]. We propose
a simple birth-death model of stochastic colonization which
will allow us to quantify the temporal statistics of rare
dynamics. The results arising from this model are counter-
intuitive at first glance, and provide a fascinating duality
between colonization arising from rare genotypes and rare
dynamics. We then proceed to quantify the relative likelihood
of colonization from these two different sources, based on

human cancer data to hand, and show plausibility that meta-
static colonization can equally well arise purely by chance,
not requiring mutations of key genes.

2. Methods

We are interested in the probability and dynamics of meta-
static colonization, namely, the process by which a DTC,
having successfully become located in a secondary tissue
environment, begins proliferation to attempt to create a new
tumour (a micro-metastasis). We will approach this problem
as a stochastic rather than a deterministic process, namely, we
ascribe to the founding cell a rate (probability per unit time)
of cell death g, and, similarly a rate of cell division r. The key
parameter in the model is the ratio of these two rates, which
we denote by 0 = r/u, and which we term ‘fitness’. It is very
important to understand that the fitness is a property of a
given cell in a given environment (i.e. not a property that can
be ascribed to a cell per se). Later in our analysis, we will
consider heterogeneity of fitness in the DTC population in
order to discuss how our model relates to Paget’s classical
seed and soil hypothesis [6], which is used to explain to
correlation of primary and secondary sites across different
cancer types. Given that we are interested in the early stages
of secondary tumour growth, we can assume that the birth and
death rates are independent of the number of cells in the
colony (i.e. the growth and death rates are density-indepen-
dent). Thus, the stochastic process defining our model is a
linear birth/death process [14]. We assume that the realiza-
tions of this process, i.e. the seeding events occurring in
secondary sites by DTCs, are statistically independent. We
also assume that progeny cells have the same fitness as the
founding cell. This assumption will clearly break down, with
interesting consequences, for a long-lived colony of cells, but
will be a good approximation for the nascent micro-tumours
of interest here. We note here that there is prior work on
applying stochastic processes to tumour growth, but these
have all been concerned with growth arising from high fitness
cells in a microevolutionary framework [15-17].

The fitness parameter 6 encapsulates all the factors
affecting the proliferative potential of single cells in a particular
microenvironment (vulnerability to apoptosis, interaction with
stroma and immune system, etc). For cases when 6 > 1, a
founding DTC is more likely to divide than die, as are its
progeny, and so it is likely that a tumour will arise, following
an approximately exponential growth trajectory. Conversely, if
0 <1 cells tend to die more often than dividing, and the
overwhelmingly most likely outcome of each seeding is that
the nascent secondary tumour will rapidly succumb to extinc-
tion. However, rare events can occur in which a nascent colony
can achieve a critical size, which, as we describe shortly, we
define to be quasi-stable. A primary concem in this paper is to
calculate the absolute probability and associated temporal sta-
tistics of these rare dynamical events.

If cells remain poorly adapted to their environment, with
0 < 1, every attempt to form a sustainable tumour will ulti-
mately fail given long enough time, since zero cells is the only
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absorbing state for this stochastic process, as described. Bio-
logically, there are at least two ways in which a fragile tumour
arising from a low-fitness founding cell can evade extinction.
First, by reaching a critical size N that affords a less hostile
internal microenvironment to the cells. In a tumour of this
moderate size, cells intemal to the tumour, which are not in
direct contact with the hostile microenvironment, will have a
higher effective fitness, 8" > 1, rendering the tumour quasi-
stable and allowing essentially deterministic growth thereafter.
Second, given that cancer cells are genetically unstable, each
division event carries a chance to produce daughter cells of a
slightly different genotype, which after several generations
provides the possibility, through microevolution, of adapted
cells arising in the tissue niche. In either case, there is a critical
threshold that new colonies have to surpass in order to become
stable. The first (microenvironment) case requires a critical
colony size N to be reached, while the second (microevolution)
case requires a critical number of division events to allow
significant diversity to arise and thus the possibility for adap-
tation. We shall address here the first case, assuming cells to
retain the fitness of the founding cells, which already provides
rich and interesting results. The statistical properties of the
second case are more complicated and are not within the
purview of this paper. In brief, the basic assumptions of our
birth/death model are:

e All colonization attempts start with single DTCs and are
independent of each another.

e All cells within a nascent tumour have the same fitness.
Dynamical adaptation and microevolution are not
considered.

e Cell divisions and deaths occur stochastically according
to Poisson statistics.

e Only small nascent metastases, not limited by nutrients,
are considered. As such, the rates of cell division and
death are assumed independent of the cluster size.

e For metastases arising from a low-fitness cell, there is a
critical size N at which nascent tumours render a new
internal microenvironment, shielding inside cells from
the deleterious effects of the external tissue, and
stabilising the stochastic growth.

These assumptions are sufficient for us to formulate this
model as a stochastic process which can be analysed using a
linear master equation, as described below in some detail. At
first glance one would imagine that a simple model such as
this would have been studied in detail decades ago. To our
knowledge this is not the case, although we note that Basan
et al [18] studied a non-linear version of this model in a
biomechanical study of metastatic growth, wherein forces
within the host tissue act to oppose tumour growth until a
critical mass is achieved. Similar models of stochastic
colonization have been studied in island ecology, with the
biological assumption that new individuals are pre-adapted
to the new habitat (0 > 1), and thus most likely proliferate
[19]. The interest of such studies resides in calculating the
statistics of small population size extinctions wiping out
strong, but fledgling colonies. This reasoning has also been

applied to stochastic re-colonizations of pre-adapted meta-
static cancer stem cells during treatment cycles [17].

We use well-known analytical methods of stochastic
process theory [14] to construct and solve our model. Solutions
for temporal statistics of interest can be calculated exactly,
albeit after lengthy calculations, using generating functions and
Laplace transform techniques. Furthermore, our results are
fully supported by numerical calculations and simulations.
These simulations provide us with explicit rare event realiza-
tions that are helpful in guiding our understanding of some of
the rather counterintuitive results that we report.

First, we consider the colonization process arising from
a population of DTCs with the same fitness 6. These results
will be used later when considering heterogeneity. We
define the function P(n, t) to be the probability that the
nascent tumour has n cells at time ¢, given that there existed
a single cell at time ¢ = 0. This probability increases when a
division event occurs in the (n — 1)-state or a cell death
event occurs in the (n + 1)-state. Likewise, P(n, t) will
decrease when division or death events occur in the n-state.
The rate of change of this probability function is given by
the master equation:

w=(" + H)P(n+1,1t) —nP(n,t)
1

+0[(n— 1HP(n—1,1t)—nP(n, t)], (1)
defined for n > 0 with the understanding that

dP©, 1 _ P(1. 1), 2)
dt

and the single-seeding initial condition P(n, 0) =4,,.
We have scaled time by the cell death rate u for
convenience.

In the terminology of stochastic process theory, n = 0 is
an absorbing state. Since our primary interest is in low-fitness
cells (0 < 1), and we assume the existence of a critical size N,
we will study the statistics of first passage by imposing a
second absorbing state at n = N [20]. This is accomplished by
limiting equation (1) to 0 < n < (N — 2), and disallowing
death events from the state n = N:

w?w- DPIN = 1,1)
+0[(N-=2)P(N=2,1) = (N= DP(N-1,n], (3)
dP(N, 1)

=0(N—-1)P(N-1,1). 4)

dt

It is helpful to introduce Qy(t)dt as the probability of
reaching the critical size N in the time interval (¢, t + dt),

from which we have
On(1) = % =0(N—-1)P(N—-1,1). (5)
For fitness values 6 > 1 the existence of N is of little biolo-
gical relevance, but one can still ask the corresponding sta-
tistical question: what are the first-passage temporal statistics
for colonies arising from pre-adapted cells reaching size N?
As such, we will use the same model to discuss nascent
tumour growth for colonies arising from both low and high
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fitness founding DTCs, since the details of the calculations
are insensitive to the size of .

Solving the (N + 1) differential equations (1)-(4) yields
Py(t) and Qp(1), from which all statistics of successful colo-
nization can be derived. In particular we are interested in the
following three quantities:

(1) The probability of successful establishment of a colony
of size N:

P, = /df Oy (1), (6)
0

(i) The average time to reach size N in the subset of
successful realizations:

[drt 0y
(ty) = %—,

Jdt Q)
0

(7

(ii1) The variance in the time to reach size N in the subset of
successful realizations:

var(ty) = <t,%,> - (r,..v>3 , (8)
with
7dt 1> Qy (1)
(=2 ©)
Jdt 0x(n)
0

The Laplace transform method is used to solve
equations (1)—(4) in order to obtain Qx(t), and then calculate
these statistics. Because our primary interest is in non-pre-
adapted cells (0 < 1) we shall present some results in a form
that it is most appropriate for this case, but the derivation and
general results are valid for arbitrary @ values.

3. Results and discussion

3.1. Probability of establishment

We provide details of the calculation of various statistical
quantities, starting with the probability of establishment of a
micrometastasis of size N. By defining P, (s) to be the Laplace
transform of P, (), the master equations and boundary con-
ditions take the form of the following N + 1 algebraic
equations:

sB =B, (10)
sB=2B-(1+0)B+1, (11)

sB =3P -2(1 +0)B + 0B, (12)
sB=mn+DP,, —n(l+0)P +n—-10P_,, (13)

sPyy==(N=1)(1+ 0P+ (N=2)0P_, (14)

sPy= (N = 1), _,. (15)

Equations (11)—(14) form a closed set of N — 1 equations and
can be solved explicitly.

We now define the set of functions {H,(s)} via the
recursion relation

0
sm+0+1—H,_(s)

H,(s) = (16)

with H, = 0. Then solving the algebraic equations (11)—(13)
iteratively, one finds
OnP, = H,--H, + (n + )P, H,. (17)

Setting n = N — 2 in (17) and eliminating 1?.,.:2 using (14) and
then (5) we obtain a simple expression for Q (s):
Oy(s) = H,-H,_,. (18)

It is subsequently convenient here to work with the set of
functions {J, (s) } defined by

J,(s) = 0"/(HyH,). (19)

Then H,= 0J,_,/J, and using (16) we get the recursion
relation:

J(s) = (i +1+ H)Jn-l(s) = 0, 5 (s).
n

(20)
with /=1 and J = s + 1 + 0. The function of interest is
therefore

HN—I
Jy-1(5) )

On(s) = (21)

Now, using the definition of the Laplace transform, the
integrals of Qy(f) with weights 1, £, and £ are respectively

given by QN (0), —Q,'V(O), and QN (0). Therefore the prob-
ability of successful establishment (equation (6)) is

o R N1
P,= [ dt Qy(t) = Oy(0) = . 22
, (f) 0y =00 = — (22)
From equation (20) we have
J(0) = (1 + 6)J,-1(0) = 0J,.5(0), (23)

with J;(0) =1 and J(0) =1 + 0. This recursion relation
may be iterated to find the simple result

JO)=1+0+6>+..0" (24)
thus

(1-9")

I =1+0+06*+..0"" = :
N l( ) (1 _0)

(25)

Substituting in (22) we have our first main result, viz. the
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probability of establishment is given by:
(1 —-0)0~!

(-0

P = (26)

3.2. Mean and variance of colonization times

The temporal statistics can be obtained in a similar manner.
From (21) we have that

[dtt Oy
<tN> = Uco =

Jdt Ou()

0N _ Jy_,(0)

- e (27)
On(0) Jy-1(0)

Differentiating (20) with respect to s and setting s = 0 one
finds

Jy(0) = (1 + 0)J, _1(0) — 60, _»(0) + J,(0)/n.  (28)

Solving by iteration for J,(0) and using equation (27) gives
an exact solution for the average time of colonization:
) 1 iﬁl-ﬂﬂ(l-H“”)
Iy) =
§ (1-6) m(l - 0“')

m=1

(29)

Following the same procedure, in solving by iteration for
J,(0)", one finds after a lengthy calculation an exact solution
for the variance in the time of colonization:

’ N-1 (1 _ gN-m)

(1_0)22

o m(l - 9“')

m=—1 o — m-m’
- - o)
m

var(ty) = (ty)* —

m'=1

3.3. Asymptotic results for large N

We are interested in micrometastases of moderate size, so it is
useful to extract the asymptotic form of the temporal statistics
for N> 1. Equation (26) gives the probability of establish-
ment of a tumour of size N for any fitness €. For § < 1, but
not too close to unity (i.e. 1 — @ > 1/N), this equation takes
the simple exponential form:

Py~ ad", (3D

with prefactor a = (1 — 0)/60. Quite intuitively, the prob-
ability of establishment decreases exponentially for increasing
N. For example, a micro-tumour of 20 cells with fitness of
0 = 0.5 has a probability of forming Py ~ (0.5)* ~ 107°.
Hence, one in a million progenitor cells will achieve this size
for this fitness level.

The expressions for the average and variance in coloni-
zation times are too complicated to easily infer the depen-
dence on the fitness @ and critical size N. By recasting the
summations as integrals and performing an asymptotic ana-
lysis for N > 1 it is possible to extract the leading behaviour,
which turns out to be quite simple. In these calculations, it is

convenient to use the integral representation

1 oo
—_—= f du e ™
m

0

in order to explicitly perform the summations, which have the
form of a geometric series.

For the average colonization time we find, for @ < 1 and
not too close to unity,

_ logN
(tn) = (1-0)

(32)

(y + log (1 — 0))

33
1-0 (33)

+ O(1/N),

where y = 0.57721 ... is Euler’s constant [21]. Because of the
logarithmic dependence of the average colonization time on
N, we can rewrite this expression as a simple exponential
growth law:

N = A(0) exp (gm (t-,)) (34)
where A(0) = e 7/(1 — 0) and the effective growth rate is
8y = (1 —@). Thus, we find that the average growth
dynamics is exponential with a rate anti-correlated to the
fitness. In other words, the less fit the cells are, the more
aggressive the colonization dynamics of (rare) successful
tumours will appear to be. On first reading, this result is
counter-intuitive. One might imagine that the rare dynamics
leading to colonies of low-fitness cells would be slow
growing, relying on repeated chance avoidance of extinction.
Despite the huge combinatorial weight of such meandering
trajectories, the statistically relevant successful trajectories are
those which grow rapidly, relying on repeated birth events
and a relative absence of death events. This extreme bias
becomes ever more important as ¢ decreases, hence the more
rapid successful trajectories for cells of lower fitness.

Similar counter-intuitive results of this type are known in
disparate fields, such as the ‘bold play’ strategy in gambling
(successive ‘all or nothing’ gambling on high odds games is
an optimal strategy for rare but large wins) [22], and transition
rate theory in chemistry to quantify spontaneous dissociation
of chemical bonds (stronger bonds break rarely but explo-
sively). The Freidlin-Wentzell theory of large deviations
provides a general mathematical framework to further
understand such rare event dynamics, including the time-
reversal duality discussed below [23]. We are obliged to ask
whether this average time is a meaningful statistical measure.
Perhaps the fluctuations in successful realizations are so great
that the average time is a statistical oddity, with little bearing
on the true nature of the dynamics. The variance of the dis-
tribution is informative in this regard.

Performing an asymptotic analysis of equation (30), and
after a lengthy calculation, we find that the variance in
colonization times is given by

{2

var(ty) = ( - + O(I/N), (35)

where the Riemann Zeta function ¢ (2) = #%/6 [21]. Here we
see that for large N the variance is independent of the critical
tumour size and decreases with €. This means that successful
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Figure 1. Direct comparison of the analytic solution of the master equation, equations (26), (29) and (30) (blue circles) with direct numerical
integration (red dots). (a), (b), and (c) show respectively the probability of establishment, average colonization time, and standard deviation in

the colonization time, all as a function of @ for N = 30.

colonization trajectories are effectively more deterministic
(i.e. less noisy) for lower fitness cells than for higher fitness
cells. This is consistent with the preceding discussion, in that
the statistically dominant growth trajectories of low-fitness
cells are strongly biased to repetitive birth events, and will
thus have a low degree of statistical variation.

In the limit of extremely low fitness, & — 0, it is rela-
tively straightforward to calculate the entire distribution of
colonization times for N > 1, through a general solution of
the generating equation (20). One finds that the colonization
times are distributed according to the Gumbel distribution
(well-known in extreme value statistics), centred at
t* =log N (which, according to equation (33), is also the
average colonization time in this limit). Explicitly, one finds
for the distribution function of colonization times:

P(ty) = exp [—(t,v - r*) - e_(""_'*)).

This result suggests that the colonization time is drawn as an
extreme value in samples of random variables with expo-
nential distribution [24].

(36)

3.4. Numerical verification and stochastic realizations

Despite the existence of exact solutions and asymptotic ana-
lysis, given the counter-intuitive nature of the results it is
reassuring to check them against a numerical integration of
the original master equation (1) with the boundary conditions
equations (2)—(4). Integration was performed with a 2nd order
Runge-Kutta scheme, and equations (6)—(9) were used to
evaluate the statistics of interest. In figure 1 we compare the
numerical solution to the exact results for the probability of
establishment (26), the average time of colonization (29), and
the standard deviation of the time of colonization (30). In
each case we have perfect agreement as expected. We also
compare a numerical evaluation of the exact results with the
asymptotic analysis (for large N) in figure 2 for the average
time of establishment (33) and the standard deviation of the

time of colonization (35), and agreement is found, improving
as N increases.

Numerical generation of stochastic realizations of the
birth-death process are useful to get better intuition for the
actual realizations of successful colonization events. This was
achieved by implementing the Gillespie method [25] to
generate many realizations of the birth/death stochastic pro-
cess corresponding to the master equation (1). Results for the
mean and standard deviation of establishment times are sup-
ported by these numerical results as shown in figure 3. Fur-
thermore, we show some representative realizations of
colonization for cells of two different fitnesses (figure 4)
demonstrating explicitly that successful events arising from
lower-fitness progenitors are indeed typically more explosive
and deterministic in their dynamics than those for higher-
fitness cells.

3.5. Dualities

Given that our calculations for temporal statistics are valid for
any value of ¢, it is interesting to compare our results for ‘rare
dynamics’ (i.e. rare successful trajectories arising from cells
with @ < 1), with results for ‘rare genotypes’ (i.e. successful
trajectories arising from rare cells with @ > 1). So, we con-
sider @ > 1 in the exact expressions for the growth statistics
given in equations (26), (29) and (30). Taking the limit N > 1
we find that
— 1 -N

P=1 7 +0(07). (37)
Thus for colonization from high-fitness cells, the fraction of
successful colonies is of order unity as one would expect.
Analysis of equations (29) and (30) shows the exact mapping:

(t3)|o21(0) = (1/0) (1) |o<1(1/6), (38)

var(ty) (39)

0>1(0) = (l/Hz)var(t,.,.)

01(1/0).

For N > 1, using the above relations with the asymptotic
results for the temporal statistics found in the low-fitness
regime, we have for the high-fitness colonization-time
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Figure 2. Direct comparison of the analytic solution of the master equation, equations (29) and (30) (red circles) with the asymptotic formulae
for large N, equations (33) and (35) (blue lines). (a), (b) show respectively the average colonization time and the standard deviation in the
colonization time, both as a function of N, evaluated for & = 0.5. Convergence of agreement is clear as N increases.

(b)

(@)

Figure 3. Histograms of successful colonization trajectories. One hundred successful realizations are generated from stochastic simulations of
the colonization process for N = 30, and three values of cell fitness: (a) @ = 0.5, (b) # = 0.7 and (c) & = 0.9. Counting the total number of
visits to each point (n, t) gives a normalized two-dimensional histogram, indicating the probability distribution of stochastic trajectories. The
vertical axis represents the likelihood that a trajectory will hit the state n at time r. The surface crest denotes the most likely trajectory while
the spread indicates the size of statistical fluctuations in the ensemble of trajectories. As fitness increases, typical trajectories take longer to

reach the target, and histograms become broader indicating less deterministic dynamics.

statistics:
log N (y +log (1 — 1/0))
ty) = + O(1/N), (40
) =5"7 -1 (I/N), (40)
var(ty) = —=3_ 4 o/N). (41)

Interestingly, comparing the leading terms in these
expressions with those for the low-fitness colonies,
equations (33) and (35), we can see that the expressions are
identical if g = (1 — @) for & < 1 colonies is replaced by
8 = (0 — 1) for 6 > 1. The two solutions are ‘dual’ to one
another for large N: the growth of a rare successful low-fitness
colony, of fitness # < 1, is statistically indistinguishable from
the growth of a high-fitness colony of fitness (2 — 0) > 1.
This duality is illustrated in figure 5 where the exact
expressions for mean and standard deviation of colonization
times are plotted as a function of @ for 6 € (0, 2).

Relating this mathematical result back to the biological
context of metastatic colonization leads to the remarkable
conclusion: the dynamic progression of micro-metastases at
early stages for rare dynamics and rare genotypes are indis-
tinguishable. 1f one were to observe, in vivo, the early
exponential growth of a micrometastasis, our results show
that one would not be able to infer whether that event was
seeded by a pre-adapted or non-pre-adapted cell. A distinction
does occur for colony growth beyond the critical size N. Such
colonies seeded by low-fitness cells are highly unlikely to
sustain the rapid subsequent growth, and would enter a quasi-
stable state in which adaptation and microenvironment
reconfiguration will presumably enable further, and possibly
slow, growth. By contrast, in colonies seeded by fit cells the
critical size N is of little relevance, and exponential growth
would presumably continue until access to nutrients becomes
a limiting factor.
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(a)

(b)

20 25 30

Figure 4. Representative realizations of successful colonization growth for a target tumour size of N = 30 cells. The first ten successful
trajectories are shown for two values of fitness: (a) # = 0.5 and (b) & = 0.9. Note the more rapid dynamics and small variation in the lower

fitness trajectories.

A duality of time-inversion is also implied in the expo-
nential growth dynamics of non-pre-adapted cells given in
(34). An initial tumour of size N comprising cells with fitness
6 < 1 would most likely decay exponentially, with an effec-
tive decay rate of 1 — @. The dynamics would be the time-
reversed dynamics of our rare event solution, a result remi-
niscent of reversible solutions in the Freidlin—-Wentzell theory
of rare event dynamics. Yet another duality exists, in fact, if
one considers the dynamics of an initial tumour of size N
comprising high-fitness cells (6 > 1), and asks for the tem-
poral statistics of the rare event that such a tumour vanishes.
The probability of such an event will be exponentially small,
and will typically occur following an exponential decay, for
the (time-reversed) reasons discussed at length above. This
result implies that spontaneous remission of small tumours
comprising fit cells, although rare, will occur rapidly and
deterministically, an effect similar to the rare event study
here, that would be interesting to pursue in future.

3.6. Heterogeneous populations

It is crucial to recognise that the fitness of a cell attempting
colonization depends on both the cell phenotype and the
nature of the secondary tissue. Clearly we expect significant
heterogeneity in the millions of colonization initiation events
happening during the progression of cancer, due both to the
heterogeneity of cells leaving the primary tumour, and the
heterogeneity of secondary tissue environments in which
colonization is attempted. During later stages of metastasis
genetic instability, adaptation and microevolution will induce
cell heterogeneity within single metastatic tumours. Here
though we are only concerned with the very early steps of
metastatic colonization. Heterogeneity can then be described
by introducing a distribution of fitnesses in the population of
progenitor cells (i.e. those single DTCs attempting to pro-
liferate to form a new colony). We denote this distribution
R..(0). Since this distribution involves properties of both

DTCs and secondary tissue sites, it describes the attempted
events of colonization throughout the body over the time
course of metastatic disease.

For larger values of fitness, R (€) will be a rapidly
decreasing function of @ because progressively fitter (or better
adapted) cells should be progressively more rare in order to
account for metastatic inefficiency. In this regard, it is helpful
to introduce € as the fraction of pre-adapted cells in the
population:

fdo Pu(@) =¢ <1, (42)
1

based on the normalization condition

/do P.(0) =1. (43)
0

The overall probability distribution for successful colo-
nization events in the body is then given by the product of
Py(0) and B, (). We will denote this distribution by P,.:

(1 —0)o~!
(-0

where we have used equation (26). It is convenient to rewrite
this expression as

Ruu‘ (0) = R‘V (H)R\ﬂ (9) = R]el (0) ’ (44)

gN—]
Py (0) = ——Ru(0) ,

2(0)

where Z(@)=1+ 0+ ... + OV .

The probability P, is an increasing function of @, and the
tail of B, decays rapidly for large . Hence R, should have a
maximum for some intermediate value 6 = 6,, corresponding
to the fitness of the most abundant cohort of successful
metastatic cells. By comparison, cells with > 6, are too
rare in the initial population to have statistical significance in
creating micro metastases, and likewise those with 0 < 6, are

(45)
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Figure 5. Duality of growth statistics for low and high fitness cells obtained from the exact expressions for the temporal statistics. Average
time of colonization (a) and standard deviation in time of colonization (b) are shown for fitness € varying between 0.0 and 2.0, with the

tumour stability threshold N = 50. Both the average time and the standard deviation decrease as @ decreases below unity or increases above
unity. The duality & — 2 — 0 is exact for N — oo, but, as can be clearly seen, holds approximately for this moderate value of N.
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Figure 6. Probability of successful colonization within a heterogeneous population. (a) The net probability of observing a micro-metastasis of
size N as a function of fitness @ of the progenitor cell (black curve) is the product of the probability of establishment A, (¢) (blue) and the
distribution of cell fitness B, (0) (red) in the DTC population, with parameters N = 20 and € = 2 X 10~ For illustration purposes, the net
probability (black curve) is normalized to unity at 6. The shaded region emphasises that the majority of successful colonization events arise
in this case from rare dynamics. (b) Colour code indicates the values of 6, for each combination of critical tumour size N and the fraction
of pre-adapted cells ¢; the black diagonal line corresponds to ¢, = 1 and indicates the phase boundary separating the domain of rare dynamics
(@, < 1) from the domain of rare genotypes, or pre-adapted cells (6, > 1) as the typical mechanism for successful colonization. (c) Same as in
(a) but with N =20 and ¢ = 5 x 10~*. The shaded region emphasises that the majority of successful colonization events arise in this case
from rare genotypes. Arrows indicate the location in the parameter space (b) of the two examples (a) and (c).

too unfit. Therefore 0, represents the optimal balance between
the rarity of initial phenotypes and the rarity of their corre-
sponding dynamics to maximally contribute to nascent
metastases. As such, if 6, < 1, the colonization process is
dominated by rare dynamics (figure 6(a)), whereas if g, > 1
colonization is dominated by rare genotypes (figure 6(c)). We
can use the condition f, = 1 to define a phase boundary of the
parameter space. This can be written as the condition:

dPycc

46
0 (46)

=1

Combining equations (45) and (46), we find that the phase
boundary condition provides a relationship between the

threshold metastasis size N and the distribution of hetero-
geneity R:

+1.

=1

d
N=2 ’@ log R,..(0) (47)

To proceed further, it is necessary to make an explicit
choice for the form of B,. Unfortunately this distribution is
not available experimentally, but one can make a pragmatic
choice nonetheless. First, the details of the distribution for
low fitness values are not very important since, from
equation (47), one will be differentiating the distribution at
the threshold fitness value of unity. Second, due to the
experimental fact that metastasis is a very inefficient process



Phys. Biol. 11 (2014) 046003

L H Cisneros and T J Newman

[4], a reasonable assumption is that the tail of the distribution
decreases exponentially. Such an exponential form could
arise, for example, if accumulating discrete random events
were required to endow cells with higher fitness values; an
idea consistent with popular conceptions of metastatic
potential of cells arising from successive mutations of key
genes [26].

We therefore take B, to have a generic exponential form:

P (0) = A exp (—b6"). 48)

The normalization condition (43) fixes A = sb'*/I" (1/s),
where I (z) is the Gamma function [21]. The second integral
condition (42) relates b and s to € as follows

1/s=1,-b
b e

Z_° = 49
ras - “9)

Since high-fitness cells are rare, we have ¢ < 1. This enables
us to give an approximate solution to the transcendental
equation (49):

b =log (1/e). (50)

Note this solution is exact if B, is a pure exponential func-
tion (s = 1).

It is now straightforward to insert the explicit form of
R..(0) (equation 48) into the condition (47) to derive a rela-
tionship between N and e. Taking (s = 1) for simplicity we
get:

N=2b+1=2log(l/e)+ 1. (51)

This relation demarcates the two domains in the (e, N)
parameter space as shown in figure 6(b). Specifically, rare
dynamics dominates when the fraction of high-fitness cells is
small and the critical size N is not too large. The impact on
values of N defining the boundary is only weakly (logarith-
mically) dependent on €.

3.7. Geometrical considerations

Statistical arguments to follow will allow us to estimate
relevant sizes for N. First though, in this subsection, we
provide here a simple argument for the lower limit on the size
of a nascent metastatic colony which will allow a protective
microenvironment for non-surface cells within the cluster.
This argument is mainly illustrative, relying purely on geo-
metrical considerations. The true efficacy of a micro-
environment depends on many factors such as the
biochemical and signalling milieux of the tumour, as well as
the morphology of its constituent cells. In addition, for the
cluster to be stable, the rate of division of core cells must be
high enough to at least replace surface cells which are lost to
cell death. This balance will depend on the relative fitnesses
of core and surface cells, which is a biological aspect we do
not account for in the geometrical arguments below.
Assuming that cells in the metastasis are spherical and of
identical sizes, the minimal number of cells required to shield
one single core cell is 12, since this is the ‘kissing number’ for
spheres in three dimensions [33]. If indeed a surface of 12
cells provides a sufficiently beneficial microenvironment to

10

Ns

10

Figure 7. Number of surface cells N, necessary to shield a core of N;
cells: as given by relationship (52), which overestimates N, for small
tumours (blue line), and by directly counting the number of

neighbours in a face-centred-cubic lattice of identical spheres (stars).

the single core cell, one can assign this core cell a high fitness.
The subsequent dynamics are, however, not particularly
robust, since the progeny of a single high-fitness cell are at
significant risk of stochastic extinction. A more robust core
would require more than one cell. Using simple geometrical
considerations, and assuming a large cluster, one finds that the
number of surface cells N, required to cover N; internal core
cells is given by the relation

N, ~ (Ml/3+ 261‘3)3 - N, (52)
where e is the packing efficiency, a value that typically varies
between ¢ ~ (.52 for randomly packed spheres and e ~ 0.74
for Gauss’s optimal sphere packing. According to this for-
mula a core comprising 2-10 cells (allowing a more deter-
ministic growth dynamics) would require approximately
25-50 surface cells (figure 7). A more accurate estimate can
be gained from numerically packing spheres according to
face-centred-cubic close packing, which produces somewhat
lower estimates that equation (52). In this case 2040 surface
cells are required to enclose 2-10 core cells. Thus, on geo-
metric grounds, the minimum stability threshold for a proto-
metastasis, with greater than one core cell, is around N ~ 20
=50 cells.

It is possible that the stability threshold could be smaller
if surface cells are afforded some degree of protection also.
Since cells are likely to adapt their morphology to that of their
neighbours, via adhesive interactions, one can think of surface
cells in the tumour forming a contiguous surface layer having
only one facet in direct contact with the secondary tissue. This
partial screening may be sufficient to raise the fitness of
surface cells above unity, in which case all cells in the proto-
metastasis (both core and surface) would be capable of
deterministic growth. In this case, the minimum stability
threshold might be as small as approximately 12 cells.
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3.8. Connections to human cancer

To proceed further, in discussing the relevance of our theo-
retical results, it is necessary to make closer contact to human
cancer, and infer what we can from the dearth of empirical
data on the dynamics of metastatic colonization in humans.
Indeed, little is known about the properties of DTCs in human
cancer. Even measures such as the typical rate of shedding of
cancer cells from the primary tumour are poorly known. As
such, physiological parameters describing the number and
diversity of DTCs will be subject to high uncertainties. For-
tunately, for our purposes, it will transpire that only the
logarithm of these parameters will be relevant to calibrating
our model, so that approximate orders of magnitude in the
physiological parameters will suffice.

For concreteness, consider individual DTC colonization
attempts occurring over a period of one year in a hypothetical
cancer patient who is at risk of metastatic disease, but not in
late stage disease from previous successful metastatic colo-
nization. The total number of such attempts, which we denote
by M, will be very large, ranging from tens of thousands to
hundreds of millions. The typical concentrations of CTCs
found in patients with metastasis disease can be estimated at
about one to ten cells per millilitre of blood [11, 27], which
corresponds to about 10°-10° total CTCs in the human body
at any given time. Although a fraction of CTCs will die in the
bloodstream, we expect that a significant fraction are rapidly
arrested and extravasated from the vascular system as shown
by Luzzi et al [4] (note, this is an extrapolation from a mouse
model), and most of them are not in the blood stream for more
than 24 hours [11, 28]. Thus, over a one year period we can
expect approximately 10°-107 different DTCs to be
attempting colonization. This estimate appears low when
compared to other experimental sources. For example, Butler
et al [29] showed that approximately one million cells per day
are shed per one gram of tumour in a rat mammary carcinoma
model. If this figure were translated to humans, a one gram
tumour would yield over two orders of magnitude greater
number of DTCs than quoted above. A lower bound for this
number comes from studies of DTCs in bone marrow of
prostate tumour patients. In such cases it is estimated that
10*-10° DTCs may be in evidence, most likely in a dormant
state [30]. Given this great uncertainty, for our purposes we
take M in the range 10°-10°%.

Assuming that rare dynamics is the dominant mechanism
for colonization, we can crudely estimate a range of values for
N as follows: let m be the number of colonization attempts in
the relevant range 6, + A0, where, ultimately, successful
events are likely to emerge. It is not possible to estimate
systematically what fraction of the M attempts will contribute
to m, so given the enormous range of uncertainty in M, we
will assume that the range of m is equally large and uncertain.
We denote by K the number of m attempts resulting in a
metastatic colony. The great inefficiency of metastasis implies
that successful colonization events are exceedingly rare [4]
and as such K will be orders of magnitude smaller than m.
From the definitions given above we have the direct

1

relationship

mﬂ,v(()(,) ~ K. (53)
Assuming that 6, is not too close to unity, equation (31) gives
us Py(6y) ~ aH({v , which together with (53) allows us to
express the stability threshold N in terms of the other quan-
tities, viz.

log (m/K) log (m)
log (1/6,)  log (1/6,)

where we have used in the second step the fact that m > K.
On varying m within the range 10°-10® and 6, within the
range 0.25-0.85 one finds that N takes a modest range of
values, between 10 and 100. The fact that the range of N is
relatively well-defined given the enormous uncertainty in the
number of attempts and the fitness of DTCs is due to the
logarithmic dependence of N on these parameters.

There is a remarkable concurrence of this size range with
both geometrical reasoning and biological observations. As
discussed in the previous subsection geometrical estimates on
the size of a tumour which would enable protection of the
core from a hostile microenvironment yields a range for N of
about 20-50 cells. Observations of induced metastatic colo-
nization in zebrafish reported that clusters as small as 15-30
cells were able to induce angiogenesis for subsequent growth
[31]. There have also been reports of stable metastatic cell
clusters in mice of size 30-60 cells [32]. We believe the
congruence of biological observations with geometrical con-
siderations and our rare event analysis in identifying 10-100
cells as a threshold size for stability argues for closer
experimental examination of such minute clusters, which we
term ‘proto-metastases’.

(54)

3.9. Absolute probabilities and timescales for colonization

We have used equation (54) to determine the possible range
of N given crude estimation of physiological ranges of €, and
m, finding this range to be 10-100. We can take a different
strategy and use (54) to provide a range of values of 6,
assuming a value for N motivated by biological data, e.g.
N = 30 as discussed above. Thus, taking N = 30 in (54), and
the physiological range m ~ 10°~10®, we find that 6, takes
values in the rather confined range 0.55-0.75. The absolute
probability of colonization for a given event will be trivially
given by K/m, and thus will lie in the large range of
107107, which simply reflects the large uncertainty in the
number of DTCs. Using the range of €, and N = 30 we can
estimate the average time for a given successful colonization
event using the leading term of equation (33). This equation
gives the average time in units of the mean time (the inverse
of the Poisson rate) of cell death, which we crudely estimate
for non-dormant DTCs to be of order one day. One then finds
(t3) in the range 7.5-13.5 days, i.e. between one and two
weeks. This time-scale of initial growth of a successful proto-
metastasis is rapid compared to the time interval separating
successful events, and relatedly, the typical time-scale of
years over which human metastasis clinically progresses.
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4. Conclusions

We have presented results arising from a linear birth-death
process designed to interrogate the notion that metastatic
inefficiency in human cancer may be due to rare dynamical
events rather than rare pre-adapted cells. This is a funda-
mental issue in interpreting and combatting metastatic dis-
ease: does colonization of secondary tissue sites arise from
deterministic growth of rare pre-adapted cells or from rare
stochastic dynamics of common non-pre-adapted cells—the
special forces versus infantry in our military metaphor. We
have shown, in the context of rare events, that rare dynamics
is equally plausible to rare genotypes, and that the dynamics
of emerging colonies from each mechanism are, in their early
stages, statistically indistinguishable. Despite the paucity of
relevant human data, we have been able to provide estimates
on key aspects of rare dynamics coloniation—such as the
critical colony size N and the mean time of growth—due to
the logarithmic dependence of these quantities on the poorly
known physiological parameters. Our estimate for N, being in
the range 10-100 cells, is, remarkably, in the same range as
independent estimates from geometrical considerations and
observations of proto-clusters in mice and zebrafish models.

Given the rare event nature of these concepts, direct
experimental validation is challenging. The following two
experimental avenues might provide such validation. Rare
colonization events leading to proto-metastases could occur in
proximal stromal tissue surrounding the primary tumour, as
well as in distant secondary sites (which has been the focus of
the main article). Exhaustive study of high resolution histol-
ogy sections of such tissue removed along with a primary
tumour in a cancer patient would be a means of identifying
these stable nascent colonies. If our model is correct one
would expect to see a number of tiny metastatic clusters of
size 10-100 cells. If only pre-adapted cells are causative
agents of metastasis, there will be no significance to this size
range, and the size distribution of micro-metastases will show
no signature in this range. Better would be high-resolution
examination of tissue from secondary sites in a cancer patient
with a small recently diagnosed primary tumour. For exam-
ple, a biopsy from the lung or liver in a breast cancer patient
who does not yet have a diagnosis of metastatic disease.
However, there are serious medical and ethical concerns
about obtaining such tissue samples. An in vitro alternative is
an experiment inspired by the classic Fidler experiments
[6, 8]; to culture a large number of individual cancer cells
from an in vivo heterogeneous tumour (preferably from a
human patient), but in relatively unfavourable growth con-
ditions. Presumably only a small number of replicates will
yield a significant new colony. To determine whether these
colonies are due to rare pre-adapted cells or rare dynamics,
one would attempt to culture cells from these colonies singly
under the same conditions. If a large fraction succeed, then
one is observing ‘special forces’, if a large fraction fail, then
one is observing ‘infantry’. We must emphasise here that it is
imperative that cells are removed from the first round of
successful colonies very early on before adaptation has
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occurred, which can effectively transform ‘lucky infantry’
into special forces for the given metastatic milieu.

In summary, successful establishment of metastases from
low-fitness cells is (i) exponentially rare, (ii) explosive, and
(ii1) effectively deterministic. As a result of statistical duality,
if one were to observe the early dynamics of only successful
realizations of colonization arising from low fitness cells, they
would resemble perfectly the deterministic, exponential
dynamics of pre-adapted cells (@ > 1), leading one to the
erroneous conclusion that successful tumours arise from cells
with a rare genotype that enabled them to have positive fitness
in the secondary tumour site. This duality provides a clear
warning in interpretation of metastatic growth statistics—rare
dynamics can be as likely as, or more likely than, rare gen-
otypes in causing colonization, and yet can appear phenoty-
pically similar in early stages. Our results are in accord with
the seed and soil hypothesis, in that fitness is a key parameter
within our model, and fitness, as we have repeatedly stressed,
is a co-function of a given DTC (from a given subclone of the
primary tumour) in a given secondary tissue environment.
The empirical correlation between primary and secondary
sites can be interpreted in the context of the rare dynamics
model in terms of particular environments providing DTCs
with lesser degrees of exponential difficulty of colonization
than others. While colonization from rare genotypes provides
a rationale for searching for novel drug targets aimed at the
particular genetic mutations or phenotypic adaptations that
allow such rare cells to be pre-adapted to secondary sites,
colonization from rare dynamics, occurring by chance, will
require an entirely different paradigm of therapy, presumably
more generic than targeted in nature. On the positive side, our
results show that the rare dynamics is exponentially sensitive
to both the critical cluster size N and the optimal fitness 6.
Therefore treatments that can increase N and/or lower 6, even
marginally, will have a significant impact in lowering the
overall probability of successful colonization, directly leading
to increased periods of an absence of metastatic disease. With
particular regard to targeting the critical cluster size, it will be
worthwhile to connect the purely demographic analysis in this
paper to more detailed cell biological and biomechanical
studies of the microenvironment, such as the model of Basan
et al [18], in which the initial growth of metastases is ham-
pered by homeostatic pressure from the surrounding tissue,
essentially rendering all progenitor cells ‘unfit’, and leading to
dynamics analogous to nucleation.

We end with three speculative remarks. First, although
this paper has been concerned with metastatic colonization,
this entire discussion could be recapitulated in the context of
primary tumour initiation. Again, the standard model is rare
genotypes (key successive mutations allowing a particular
cell to clonally expand), whilst rare dynamics would describe
a process of aberrant proliferation against the odds, which
very rarely leads to a critical tumour size in which the nascent
colony is less fragile due to defining its own new micro-
environment. Second, whether one speaks of rare dynamics in
terms of metastatic colonization or primary tumour initiation,
the rare event statistics show that successful growth will be
very rapid. This explosive growth may enable such fragile
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colonies to effectively evade immune response. We estimated
a time scale of days for growth to a colony size of tens of
cells, and it would be interesting to explore this time scale in
the context of immune response. Third, and last, our analysis
of colonization is not limited, in terms of the modelling, to
cancer. Rare dynamics, as a mode for non-pre-adapted indi-
viduals to reach critical size in a hostile environment, could
find application in infectious disease dynamics within the
body, as well as in more traditional areas of modelling such as
ecological colonization.
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