RECHENMETHODEN DER PHYSIK I

WS 2025/26

Übungsblatt 2

http://www.physik.uni-bielefeld.de/~reimann/RdP1.html

Schriftlich abzugeben sind: 7, 8, 9a, 10

Aufgabe 7

Bestimmen Sie die **Periode** der Funktion $f(t) = 3\sin(3t + 2)$

Aufgabe 8

Vereinfachen Sie folgenden Ausdruck: $\cos^2(\varphi) \tan^2(\varphi) + \cos^2(\varphi)$

Aufgabe 9

Berechnen Sie folgende bestimmten Integrale:

- a) $\int_{-5}^{5} dx (4x^3 + 5x)$. Erklären Sie das Resultat anschaulich.
- b) $\int_{0}^{\infty} dx \, e^{1-2x}$. **Hinweis**: gemeint ist $\int_{0}^{b} dx \, e^{1-2x}$ für $b \to \infty$.

Aufgabe 10

Betrachten Sie das in der Vorlesung definierte **Skalarprodukt** im Vektorraum \mathbb{R}^n . Zeigen Sie für alle $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ und $\lambda \in \mathbb{R}$, dass

- (1) $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- (2) $\vec{v} \cdot \vec{v} > 0$ falls $\vec{v} \neq \vec{0}$ und $\vec{v} \cdot \vec{v} = 0$ falls $\vec{v} = \vec{0}$.
- (3) $(\lambda \vec{u}) \cdot \vec{v} = \lambda (\vec{u} \cdot \vec{v})$
- (4) $(\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}$

Aufgabe 11

Zeigen Sie, dass die k-te Komponente v_k eines beliebigen Vektors $\vec{v} \in \mathbb{R}^n$ durch $v_k = \vec{e}_k \cdot \vec{v}$ gegeben ist, und somit die Formel

$$\vec{v} = \sum_{k=1}^{n} (\vec{e}_k \cdot \vec{v}) \, \vec{e}_k$$

immer richtig ist.

Aufgabe 12

Betrachten Sie drei Vektoren $\vec{u}_1, \vec{u}_2, \vec{v}$ eines Vektorraumes \mathbb{R}^n . Zeigen Sie (am besten anhand eines Beispiels): aus $\vec{u}_1 \cdot \vec{v} = \vec{u}_2 \cdot \vec{v}$ folgt *nicht* notwendigerweise $\vec{u}_1 = \vec{u}_2$.

Aufgabe 13

Leiten Sie folgende Funktionen ab:

- a) $\Omega(x) := x^x \text{ mit } x \in \mathbb{R}^+.$
- b) $\Gamma(\omega) := \ln(g(\omega))$, wo $g(\omega)$ für alle betrachteten ω differenzierbar und $g(\omega) > 0$. **Hinweis**: $\ln(x) := \log(x)$

Aufgabe 14

Skizzieren Sie den **Graph** folgender Funktionen (muss nicht allzu genau sein, nur der ungefähre Verlauf sollte stimmen; 5 Minuten pro Stück sollten reichen!):

- a) $\nu(\mu) = e^{-\mu}$
- b) $\Lambda(\tau) = e^{-|\tau|/2}$
- c) $x(f) = \frac{1}{e^f + 1}$ (Fermi-Dirac-Funktion)