Nanoscopy

Marcel, Wolfgang

Biomolecular Photonics, Bielefeld University

SoSe 2015

- Light detection
 - Semiconductors: CCDs and CMOS
 - Analog / digital conversion
- Camera properties
 - Linearity and gain
 - Quantum efficiency and noise
 - Sampling precision / "bit depth"
- Digital image processing
 - Data formats
 - Human vision
 - Gamma correction
 - Processing and displaying images
 - Storing images / file formats
 - From measurement to publication

Light detection: Semiconductor-based cameras

MOSFET

- MOSFET / field-effect transistor
- Charge on gate sets conductivity
- No current through gate required: Measuring gate charge as voltage

WikiMedia: MOSFET, MOSFET with channel

Pixels

Photosensitiv semi-conductor pixel

- Top layer: Conductive, transparent material, e.g. poly-crystalline silicon
- Middle layer: Insulating material, e.g. silicon dioxide
- Bottom layer: positively doped semiconductor, again silicon

- Top electrode charged negatively, creates depletion zone
- Incoming photon creates electron/depletion pair, electrons accumulate
- Question: How to measure the amount of collected electrons?

5 / 28

CCDs

- Charge coupled device: Named after the working principle
- Invented late 1960. Nobel Prize 2009
- After exposure, charge is moved down pixel by pixel.
- Reaching end of the sensor, charge is moved right into a shift register
- Note: charges are moved by applying a field, not by creating a circut.

CCDs: Readout

CCDs: Readout of overexposed pixels

Problem of CCDs: Overexposed pixels can influence a complete vertical readout line, as their charge is not completely transferred.

CCD: Overexposure and vertical blooming

Blooming of overexposed pixel and along readout. Wikipedia

Effect of this problem: Vertically smeared lines around overexposed pixels.

Marcel, Wolfgang (Bielefeld) Nanoscopy SoSe 2015

CCDs: Types / faster readout modes

Speed of CCDs:

- Each pixel has to pass through the same electronics, makes it slow
- Readout while exposure can give artifacts
- Shift each line of even a full frame to a non-light sensitive area
- Parallelize read-out

em-CCD: Precise readout through pre-amplification

emCCD working principly (Wikimedia)

Advantage of CCDs: One (or few) amplifiers for all pixels.

- Build an electron-multiplying pre-amplifier
- Pre-amplification gives low noise, high sensitivity
- Sensor content is shifted into storage, allows read-out during next exposure
- Cameras are rather expensive

CMOS: No more need for shifting electrons

- Complementary metal-oxide-semiconductor named after how they are produced
- Active pixel sensor Arguably the more correct term
- Place the amplifier (transistor/diode combinations) with each pixel
- Simple switching matrix, only measure a voltage: fast
- With CMOS process: cheap(er) to produce
- Scientific CMOS: nice marketing term for CMOS chips optimized for scientific use.

Comparison: CCDs and CMOS

CCD:

Charges are moved to one (or a few) amplifiers

CMOS:

Dedicated MOSFET to convert charge to conductivity for each pixel

Pros and cons: CCDs and CMOS

CCD:

- Allow for electron-multiplying amplifiers
- Allow for pixel-binning
- Same amplifier characteristic for each pixel

CMOS:

- Cheap(er) to produce
- Fast, parallel read-out
- Electronic shutter

Digital image processing

So far, the CCD/CMOS signal is still analog (electron count / voltage).

How to obtain a digital signal?

How is that signal linked to the measurement?

How to display / represent that signal?

Analog-digital conversion

- CCD (after amplifier) and CMOS provide a voltage (analog) proportional to the amount of photons received.
- ADCs (analog-digital converters) are used to convert that voltage into a digital signal.
- Result (usually) a binary number N, where $\frac{N}{N_{\text{max}}} = \frac{V}{V_{\text{ref}}}$ and $N_{\text{max}} = 2^b$ given by the number of bits b, typ. $b = 8, 12, 16, 24, \ldots$
- Is the ADC linear? Does is introduce measurement errors?

Flash ADC (Wikimedia)

Camera linearity and gain

Photon count P o Electron Charge o Voltage o Binary Integer Number N

Considerations for microscopy:

- ullet $P \rightarrow N$ is of interest, intermediate steps not so much
- $P \rightarrow N$ is linear, so $P \approx a \cdot N$, ideally with some known a.
- a is called Gain.
 - Depending on the camera, it can be influenced, especially for emCCDs. For CMOS, is will vary by pixel.
- If P → N is not linear (cheap/non-scientific camera), the function should at least be known.

If its not known, it can of course be measured.

Camera quantum efficiency and noise

Photon count P o Electron Charge o Voltage o Binary Integer Number N

- Quantum efficiency: Ratio of photons converted into stored electrons. Very wavelength-dependent.
- Noise: Uncertainty in photon → electron conversion. Electrons tunneling in and out of pixels.
- Also noise: Electron → voltage conversion. Depends on ADC type. Greatly reduced by electron multiplying stages.

Ideal QE for silicon with anti-reflective coating. (Wikimedia Link)

Camera bit depth

Photon count P o Electron Charge o Voltage o Binary Integer Number N

- ADC output is an integer N, with some $N_{\text{max}} = 2^b$, where b is the **bit depth**.
- Given a gain a, $P_{\text{max}} = a \cdot N_{\text{max}}$ limits the maximum number of photons.
- In practice: Fix P_{max}, which links bit depth and gain. Now, the bit depth sets the pixel count resolution.
- Ideal camera: P_{max} is higher than the pixel photon limit at a gain of a = 1.
- Bit depth is the technical inspired term, converts nicely to a dynamic range. Or, for photography, directly to aperture stops.

Typical camera bit ranges

n	2 ⁿ	$\approx dB$
8	256	24
12	4096	36
14	16384	42
15	32786	45
16	65536	48

Digital image processing

Digital image representation

- Typical image file format: 8 bit depth
- That means 256 intensity variations from black to white
- Surely, the eye can distinguish more than 256 gray values?
- An intensity is a measurement, but are images really measurements?

All 256 8-bit gray scale values, with hexadecimal numbering. (Wikipedia)

SoSe 2015

The human eye

- Human eye has a contrast range of approx.
 2²⁰, over all 2²⁴ (adaption via iris).
- However, vision is highly non-linear:
 You can distinguish small variances in
 luminescence on a dark background, but not
 on a bright background.
- Left: 0% Background, 10% Text
 Right: 50% Background, 60% Text

Test

Human eye wavelength (Wikimedia)

Gamma values / Gamma correction

Wikipedia: Gamma Correction / Power law

- Map intensities I and stored values V to a range [0...1].
- Link intensity I and stored values V via a power law: $I = V^{\gamma}$
- A common value (analog TV, standard PC hardware, . . .) is $\gamma=2.2$. It is based on cheap(er) CRT TV design.
- More involved systems (color-calibrated formats, e.g. sRGB) exist.
- This mimics the eye's response well enough for 8-bit storage.

Gamma function graph (Wikimedia)

Images on consumer hardware

Taking and viewing a typical digital photo:

Digital Camera Chip o Image processing o JPEG, 8bit, often sRGB Facebook / Picassa (auto-awesome!) / SD-Card PC / Phone / Tablet / TV o 8bit display link (LVDS, HDMI, VGA) o Display driver

- In 2014: Processing chain will involve 8bit conversions
- Ideal world: Every device knows and applies a correct γ / color space profile.
- Enthusiasts / professionals can get close: Color space management, calibrated equipment, 16 bit raw formats.
 This needs knowledge and (some) equipment.
- You cannot rely on it!

Typical γ -control on a consumer-grade monitor

Storing images / Image file formats

- Photo/JPEG, Audio/MP3, Video/H264:
 Highly optimized and compressed for human perception
- PNG: Portable network graphics
 - Lossless compression
 - ightharpoonup Stores γ and allows 16bit gray-scale
 - Fully specified, free, open...
 - Well integrated: Web browsers, operating systems, PDF, LATEX
- TIFF: Tagged image file format
 - Actually a container format (think zip file)
 - Can store collections ("stacks") of images
 - Can store various meta-data
 - Complex to implement, lots of optional features
 - ► Goto (raw) measurement storage format
- Note: Image file formats used for storing measurements

JPEG Compression, Wikimedia (1, 2)

JPEG vs. PNG, Wikimedia,

Measurement to image

12-16 bit lin. measurement o (documented/limited) processing o 8 bit γ -encoded "bitmap" $I=V^{\gamma}$

Convert from a linear "number of photons" to a gray-scale image:

- What represents "black"? Background subtraction?
- What represents "white"? Compensation for overexposed pixels?
- What is the output γ mapping? Linear ($\gamma=1$) needs more than 8 bit, other non-standard ($\gamma \sim 2.2$) values can be tricky.
- Any further "improvements"?
- The average image processing software displays pixel values in V, not I.
- Document what is done!

Measurement to image: in color

12-16 bit lin. measurement o (documented/limited) processing o 8 bit color (RGB?) image $I=V^{\gamma}$

- All that has been said for gray-scale
- How to map V-values to color?
 - by wavelength
 - by a lookup table
- Document the colors used!

Gamut and color temperature (Wikimedia)

Do not rely on software/hardware you have no control of

Creating and viewing images in a typical scientific publications:

12-16 bit lin. measurement \to (documented/limited) processing \to 8 bit γ -encoded "bitmap" Publication as PDF, with embedded images

Systems you do not know \to Display / Print-out

For digital publication, if possible:

- Do not rely on optional / exotic features
- Do not rely on perfect contrast, gray-scale reproduction (think recycling paper)
- Expect gray-scale print-outs
- Expect color-blind people reading the publication

For seminar / conference talks, if possible:

- Except non-ideal contrast on the projector
- Often one computer for all speakers: No special software, rely on standard formats
- Have a basic PDF version of the talk