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Structured illumination microscopy: general concept

In general, techniques where Il(x , y) 6= const. in

Ml(x , y) =

∫
Sz

PSF(z) ∗ (Il(x , y , z) · S(x , y , z))dz

and multiple measurements Ml are combined to one image

General use of the term

Variants of multi-spot confocal techniques are referred to as SIM. Compared to
standard confocal

Same resolution enhancement (
√

2 over widefield)

Same reduction of background

Large speedup (depending on the specific technique used)

Loss in sensitivity compared to PMT-based point-detectors

Minimal (or even no) digital post-processing
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Structured illumination microscopy: Lateral resolution enhancement

Ml(x , y) =

∫
Sz

PSF(z) ∗ (Il(x , y , z) · S(x , y , z))dz

SIM for lateral resolution enhancement

Modulation of Il(x , y) with a structure close to the resolution limit

Realization through optical gratings or SLMs

Multiple measurements (typ. 3 phases, 3 angles for 2D) of the same sample

Digital reconstruction step relies on
I Knowing the illumination patterns Il (x , y , z)
I Solving for S(x , y) from eq. Ml (x , y) = . . .
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SIM setup with spatial light modulators

Sample 
on glass

SLM-SIM: microscopy with Spatial Light Modulator

Di-chroic
mirror

Filter

Filter

Mirror

Tube lens Objective
Camera
chip

Spatial Light Modulator

Light source

SLMs widely available, low cost, fast

Image acquisition standard widefield, illumination modified

Allows to project a pattern onto the sample surface
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SIM: Measurement and reconstruction

Step by step reconstruction of a SIM measurement
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Step 1: Measurements

Regular illumination pattern

Use

Il(x , y) =
I0

2
· [1 + sin((2π · p + φ)/κ)]

where
p = x · cos(α) + y · sin(α)

Multiple measurements

Use multiple angles α for illumination
Typically 3 or 4, evenly spaced

For each angle, illuminate with (at least) 3 phases φ = 0
3
π, 2

3
π, 4

3
π

I Phases not evenly spaced: loss of SNR
I More than three phases: Reconstruction gets over-defined, but still possible

Number of angles: Full resolution enhancement along each angle α.
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Step 1: Illumination pattern

Simulated illumination pattern

Left: First illumination pattern. Right: Montage of all illumination patterns
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Step 1: Measurement (OMX next door)

Cell measurement via the OMX. Pattern spacing: 356nm.

Left: First illumination pattern. Right: Cut-out, montage of all patterns
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Step 1: Measurement (2D TIRF SIM)

Test surface dye-filled beads. Pattern spacing: 256 nm (at resolution limit).

Left: First illumination pattern. Right: Cut-out, montage of all patterns

Any visible variation between the different patterns?
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Step 1: Measurement (2D TIRF SIM)

Test surface dye-filled beads. Pattern spacing: 256 nm (at resolution limit).

Left: First illumination pattern. Right: Cut-out, montage with spectrum LUT

Look closely at the bright structures. . .
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Step 2: Illumination in Fourier space

Il(x , y) =
I0

2
· [1 + sin((2π · p + φ)/κ)]

where
p = x · cos(α) + y · sin(α)

Left: Illumination pattern. Right: FFT / FHT power spectrum

Why three dots in FFT?
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Step 2: Illumination in Fourier space

M̃l(kx , ky ) = OTF ·
(

S̃(kx , ky ) ∗ Ĩl(kx , ky )
)

Cell images (OMX)

Left: Illumination pattern. Right: FFT / FHT power spectrum

Guess how the parameters κ, α, φ carry over to Fourier space?
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Step 2: Illumination in Fourier space

M̃l(kx , ky ) = OTF ·
(

S̃(kx , ky ) ∗ Ĩl(kx , ky )
)

Test surface

Left: Illumination pattern. Right: FFT / FHT power spectrum

Fourier space reveals the illumination pattern.
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Step 2: Acquire parameters

Three peaks in FFT power spectrum:
Center ”DC” and symmetric
sin(2π · p + φ)-contribution.

Position directly translates to κ, α.

The phase φ is contained in z = r · e iφ,
as the FFT yields a complex number.
However, it is easily distorted by other
structures in the sample.
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Step 3: Decompose the measurements

Measurement

Three phases φ0, φ1, φ2 for illumination, each
row in M represents one measurement:

M =

1 1
2
e iφ0 1

2
e−iφ0

1 1
2
e iφ1 1

2
e−iφ1

1 1
2
e iφ2 1

2
e−iφ2


Columns: DC contributions, two symmetric
contributions from the sinusoidal form.

Decomposition

Inverta M to M−1.
Via M−1, get the DC contribution (wide-field)
and higher frequencies.

a3 × 3 matrix, otherwise Moore-Penrose pseudo inverse
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Step 3: Spatial results of decomposition

DC component reconstructs to an images with wide-field characteristics.
Sinusoidal components not yet meaningful, but: κ and α have not been used so far.
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Step 4: Shifting frequency components

Compute shift

DC component: Widefield, done.

Two symmetric components:
sin((2π · p + φ)/κ), where
p = x · cos(α) + y · sin(α)

Shift these contributions by ±κ, α

Result

Pixels needed for shift: Resolution
enhancement

+κ and −κ: contain the same
information by definition

Spatial transformation: Structure
becomes apparent
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Step 3: Added frequency components

Add up the DC and shifted sinusoidal components. Result: Resolution-enhancement
along illumination pattern direction α.
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Interim result

Sinusoidal pattern1, 3 contributions in Fourier space

Matrix inversion, decomposition and shift

Resolution enhancement along the pattern direction

Number of phases: At least 3, more lead to an over-defined matrix

When measuring these 3 phases, κ and α have to be fixed, phases should be evenly
spaced.

Number of angles: Arbitrary, but usually 3 or 4 to fill the Fourier space.

κ may change between angles α.

Resolution enhancement: Directly given by pattern spacing κ.

1Other pattern: How does their Fourier transform look like?
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Step 4: Measure for multiple angles α

Three angles α. Resolution enhancement along each angle of the pattern. Next step:
Combine these spectra.
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Step 4: Combine all angles

M̃l(kx , ky ) = OTF(kx , ky ) ·
(

S̃l(kx , ky ) ∗ Ĩ (kx , ky )
)

Low, high and all frequency components

Low frequency widefield, high frequency additional information, all frequencies combined.
Close, but not quite right. What is missing?
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Step 5: OTF frequency filtering

M̃l(kx , ky ) = OTF ·
(

S̃(kx , ky ) ∗ Ĩl(kx , ky )
)

So far, result looks better, but not quite right

Transfer function: Not only limits resolution, but dampens high frequencies

This leads to problems when shifting components around

Solution: Divide by OTF in frequency domain.

However: Low to zero regions in OTF will cause artifacts

Full solution: frequency filtering
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Step 5: (modified/generalized) Wiener filter

R̃(kx , ky ) =
∑
l

OTF (kx , ky )M̃l(kx , ky )

OTF2(kx , ky ) + ω

Multiply by OTF and divide by OTF2, thus: Result without frequency dampening

Numerator: One contribution of OTF is multiplied in post-processing, one is
inherent to the measurement.

Parameter ω: Artificial high-frequency dampening.
Dominates in regions of a low OTF, with quadratic response.

Determining the OTF: Big difference between 2D and 3D:
2D: Use any OTF (Gaussian, Bessel, . . . ) with a somewhat matching FWHM
3D: Measure a quite exact OTF along the axial direction.

There are more involved filtering methods available (e.g. iterative ones like total
variations)
But: No further information is generated by filtering.
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Step 5: Result of Wiener filtering

Reconstruction with different Wiener filter settings:

0.05, 0.1, 0.5, 2, 10, 50
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Step 5: Apotization

S̃ ′(kx , ky ) = APO ·
∑
l

OTF (kx , ky )M̃l(kx , ky )

OTF2(kx , ky ) + ω

After the filtering step, R(kx , ky ) now has no ”natural” dampening of higher
frequencies.

This leads to harsh contrasts that would not be obtained by a higher resolution
microscope

Fix: Multiply an apotization function APO to the result

APO: An artificial OTF, dampening high frequency components the same way a
microscope would

FWHM of the APO: motivated by the higher resolution limit set through the
original OTF, κ and (to a lesser degree) ω.

In practice: Start with FWHMAPO = 2 · FWHMOTF, tweak ω and APO with lots of
leeway.
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Step 5: Result of Wiener filtering

Reconstruction with different apotization settings: 50, 100, 200, 400
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Step 5: Final result

SIM reconstruction software and final result
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Algorithm presented today

Sinusoidal form needed

2D since ≈ 2000,
3D since ≈ 2008.

In Bielefeld: OMX and self-made
setup

In development: Free, open-source
reconstruction software

Blind SIM

Idea: Set
∑N

l=1 Il = const.

This leaves
Ml(x , y) = PSF ∗(Il(x , y) · S(x , y))
with
IN = 1−

∑N−1
l=1 Il

That is solvable for I1, . . . , IN−1, S

Non-linear system

Solvable: e.g. non-linear variants
of conjugate gradient
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Outlook

This concludes structured illumination

Wolfgang: Demonstration of the OMX in SIM-mode

(maybe): Demonstration of the SLM-SIM setup

Next lectures: Localization-based methods:
STED, STORM, PALM,. . .
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