Advanced light microscopy

Fabian, Marcel, Wolfgang

Fakultät für Physik, Universität Bielefeld

WS 2014

Recapitulation: SIM principle

2 SIM reconstruction algorithm

3 SIM application

Outlook

Structured illumination microscopy: general concept

In general, techniques where $l_i(x, y) \neq \text{const.}$ in

$$M_{l}(x,y) = \int_{S_{z}} \mathsf{PSF}(z) * (I_{l}(x,y,z) \cdot S(x,y,z)) \, \mathrm{d}z$$

and multiple measurements M_l are combined to one image

General use of the term

Variants of multi-spot **confocal techniques** are referred to as SIM. Compared to standard confocal

- Same resolution enhancement ($\sqrt{2}$ over widefield)
- Same reduction of background
- Large speedup (depending on the specific technique used)
- Loss in sensitivity compared to PMT-based point-detectors
- Minimal (or even no) digital post-processing

Structured illumination microscopy: Lateral resolution enhancement

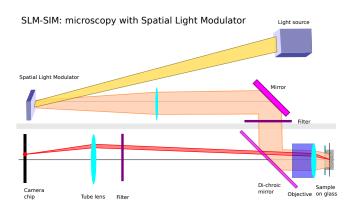
$$M_I(x,y) = \int_{S_z} \mathsf{PSF}(z) * (I_I(x,y,z) \cdot S(x,y,z)) \, \mathrm{d}z$$

SIM for lateral resolution enhancement

Modulation of $I_1(x, y)$ with a structure close to the resolution limit

- Realization through optical gratings or SLMs
- Multiple measurements (typ. 3 phases, 3 angles for 2D) of the same sample
- Digital reconstruction step relies on
 - Knowing the illumination patterns $I_I(x, y, z)$
 - Solving for S(x, y) from eq. $M_I(x, y) = ...$

SIM setup with spatial light modulators



- SLMs widely available, low cost, fast
- Image acquisition standard widefield, illumination modified
- Allows to project a pattern onto the sample surface

Step by step reconstruction of a SIM measurement

Step 1: Measurements

Regular illumination pattern

Use

$$I_l(x,y) = \frac{I_0}{2} \cdot [1 + \sin((2\pi \cdot p + \phi)/\kappa)]$$

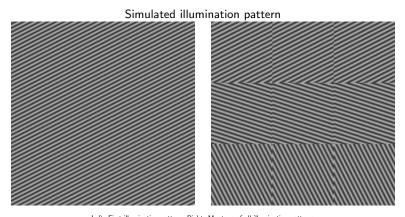
where

$$p = x \cdot \cos(\alpha) + y \cdot \sin(\alpha)$$

Multiple measurements

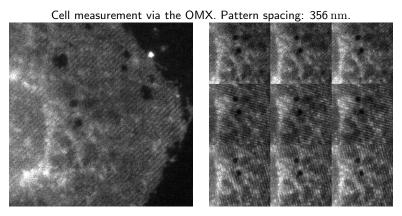
- Use multiple angles α for illumination Typically 3 or 4, evenly spaced
- \bullet For each angle, illuminate with (at least) 3 phases $\phi=\frac{0}{3}\pi,\frac{2}{3}\pi,\frac{4}{3}\pi$
 - Phases not evenly spaced: loss of SNR
 - More than three phases: Reconstruction gets over-defined, but still possible
- ullet Number of angles: Full resolution enhancement along each angle lpha.

Step 1: Illumination pattern



Left: First illumination pattern. Right: Montage of all illumination patterns

Step 1: Measurement (OMX next door)



Left: First illumination pattern. Right: Cut-out, montage of all patterns

Step 1: Measurement (2D TIRF SIM)

Test surface dye-filled beads. Pattern spacing: 256 nm (at resolution limit).

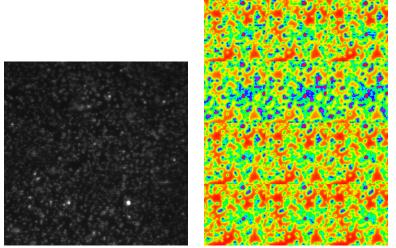


Left: First illumination pattern. Right: Cut-out, montage of all patterns

Any visible variation between the different patterns?

Step 1: Measurement (2D TIRF SIM)

Test surface dye-filled beads. Pattern spacing: $256\,\mathrm{nm}$ (at resolution limit).



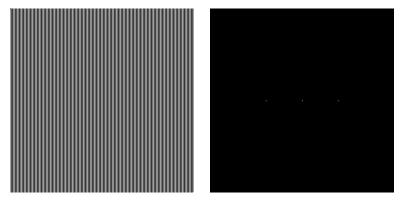
Left: First illumination pattern. Right: Cut-out, montage with spectrum LUT Look closely at the bright structures. . .

Step 2: Illumination in Fourier space

$$I_{I}(x,y) = \frac{I_{0}}{2} \cdot \left[1 + \sin((2\pi \cdot p + \phi)/\kappa)\right]$$

where

$$p = x \cdot \cos(\alpha) + y \cdot \sin(\alpha)$$



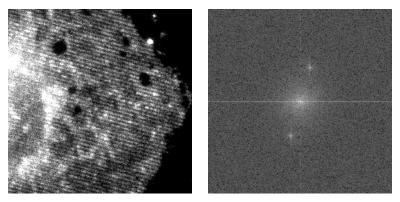
Left: Illumination pattern. Right: FFT / FHT power spectrum

Why three dots in FFT?

Step 2: Illumination in Fourier space

$$\tilde{M}_l(k_x, k_y) = \mathsf{OTF} \cdot \left(\tilde{S}(k_x, k_y) * \tilde{I}_l(k_x, k_y) \right)$$

Cell images (OMX)



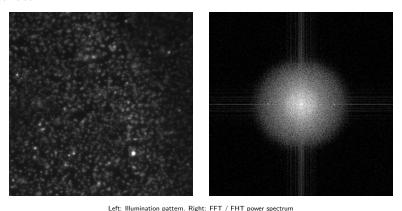
Left: Illumination pattern. Right: FFT / FHT power spectrum

Guess how the parameters κ , α , ϕ carry over to Fourier space?

Step 2: Illumination in Fourier space

$$\tilde{M}_l(k_x, k_y) = \mathsf{OTF} \cdot \left(\tilde{S}(k_x, k_y) * \tilde{I}_l(k_x, k_y) \right)$$

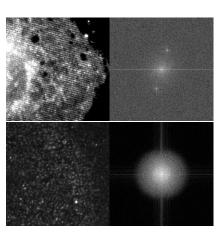
Test surface



Fourier space reveals the illumination pattern.

Step 2: Acquire parameters

- Three peaks in FFT power spectrum: Center "DC" and symmetric $\sin(2\pi \cdot p + \phi)$ -contribution.
- Position directly translates to κ , α .
- The phase ϕ is contained in $z=r\cdot e^{i\phi}$, as the FFT yields a complex number. However, it is easily distorted by other structures in the sample.



Step 3: Decompose the measurements

Measurement

Three phases ϕ_0, ϕ_1, ϕ_2 for illumination, each row in M represents one measurement:

$$M = \begin{pmatrix} 1 & \frac{1}{2}e^{i\phi_0} & \frac{1}{2}e^{-i\phi_0} \\ 1 & \frac{1}{2}e^{i\phi_1} & \frac{1}{2}e^{-i\phi_1} \\ 1 & \frac{1}{2}e^{i\phi_2} & \frac{1}{2}e^{-i\phi_2} \end{pmatrix}$$

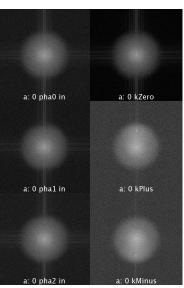
Columns: DC contributions, two symmetric contributions from the sinusoidal form.

Decomposition

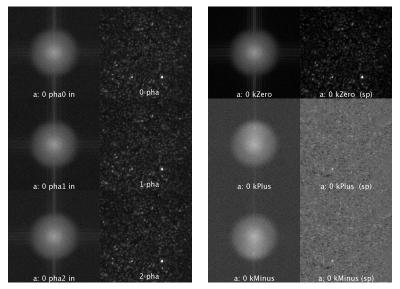
Invert^a M to M^{-1} .

Via M^{-1} , get the DC contribution (wide-field) and higher frequencies.

^a3 × 3 matrix, otherwise Moore-Penrose pseudo inverse



Step 3: Spatial results of decomposition



DC component reconstructs to an images with wide-field characteristics.

Sinusoidal components not yet meaningful, but: κ and α have not been used so far.

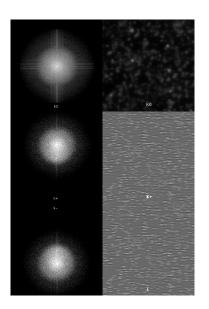
Step 4: Shifting frequency components

Compute shift

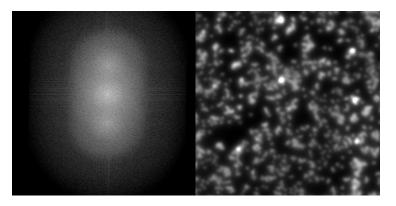
- DC component: Widefield, done.
- Two symmetric components: $\sin((2\pi \cdot p + \phi)/\kappa)$, where $p = x \cdot \cos(\alpha) + y \cdot \sin(\alpha)$
- ullet Shift these contributions by $\pm \kappa, \alpha$

Result

- Pixels needed for shift: Resolution enhancement
- $+\kappa$ and $-\kappa$: contain the same information by definition
- Spatial transformation: Structure becomes apparent



Step 3: Added frequency components

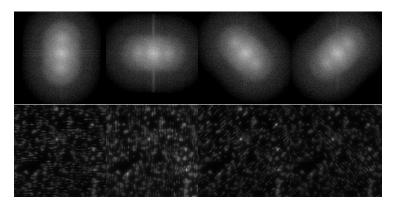


Add up the DC and shifted sinusoidal components. Result: Resolution-enhancement along illumination pattern direction α .

Interim result

- Sinusoidal pattern¹, 3 contributions in Fourier space
- Matrix inversion, decomposition and shift
- Resolution enhancement along the pattern direction
- Number of phases: At least 3, more lead to an over-defined matrix
- \bullet When measuring these 3 phases, κ and α have to be fixed, phases should be evenly spaced.
- Number of angles: Arbitrary, but usually 3 or 4 to fill the Fourier space.
- κ may change between angles α .
- Resolution enhancement: Directly given by pattern spacing κ .

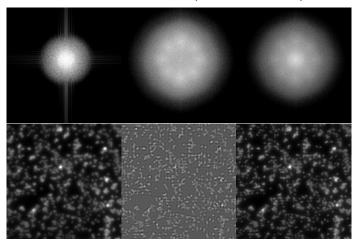
Step 4: Measure for multiple angles α



Three angles α . Resolution enhancement along each angle of the pattern. Next step: Combine these spectra.

Step 4: Combine all angles

$$\tilde{M}_l(k_x, k_y) = \mathsf{OTF}(k_x, k_y) \cdot \left(\tilde{S}_l(k_x, k_y) * \tilde{I}(k_x, k_y) \right)$$



Low, high and all frequency components

Low frequency widefield, high frequency additional information, all frequencies combined. Close, but not quite right. What is missing?

Step 5: OTF frequency filtering

$$ilde{M}_l(k_x,k_y) = \mathsf{OTF} \cdot \left(ilde{S}(k_x,k_y) * ilde{I}_l(k_x,k_y)\right)$$

- So far, result looks better, but not quite right
- Transfer function: Not only limits resolution, but dampens high frequencies
- This leads to problems when shifting components around
- Solution: Divide by OTF in frequency domain.
- However: Low to zero regions in OTF will cause artifacts
- Full solution: frequency filtering

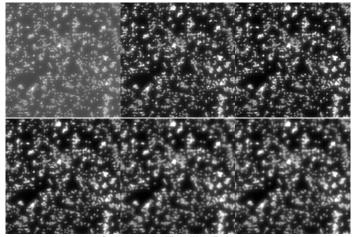
Step 5: (modified/generalized) Wiener filter

$$\tilde{R}(k_x, k_y) = \sum_{l} \frac{OTF(k_x, k_y) \tilde{M}_l(k_x, k_y)}{OTF^2(k_x, k_y) + \omega}$$

- Multiply by OTF and divide by OTF², thus: Result without frequency dampening
- Numerator: One contribution of OTF is multiplied in post-processing, one is inherent to the measurement.
- Parameter ω : Artificial high-frequency dampening. Dominates in regions of a low OTF, with quadratic response.
- Determining the OTF: Big difference between 2D and 3D:
 2D: Use any OTF (Gaussian, Bessel, ...) with a somewhat matching FWHM
 3D: Measure a quite exact OTF along the axial direction.
- There are more involved filtering methods available (e.g. iterative ones like total variations)

But: No further information is generated by filtering.

Step 5: Result of Wiener filtering



Reconstruction with different Wiener filter settings:

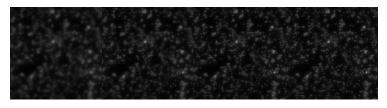
0.05, 0.1, 0.5, 2, 10, 50

Step 5: Apotization

$$\tilde{S}'(k_x, k_y) = APO \cdot \sum_l \frac{OTF(k_x, k_y) \tilde{M}_l(k_x, k_y)}{OTF^2(k_x, k_y) + \omega}$$

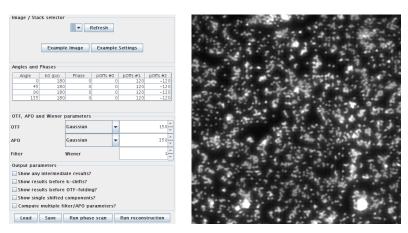
- After the filtering step, $R(k_x, k_y)$ now has no "natural" dampening of higher frequencies.
- This leads to harsh contrasts that would not be obtained by a higher resolution microscope
- Fix: Multiply an apotization function APO to the result
- APO: An artificial OTF, dampening high frequency components the same way a microscope would
- FWHM of the APO: motivated by the higher resolution limit set through the original OTF, κ and (to a lesser degree) ω .
- In practice: Start with FWHM_{APO} = $2 \cdot \text{FWHM}_{\text{OTF}}$, tweak ω and APO with lots of leeway.

Step 5: Result of Wiener filtering



Reconstruction with different apotization settings: 50, 100, 200, 400

Step 5: Final result



SIM reconstruction software and final result

Algorithm presented today

- Sinusoidal form needed
- 2D since \approx 2000, 3D since \approx 2008.
- In Bielefeld: OMX and self-made setup
- In development: Free, open-source reconstruction software

Blind SIM

- Idea: Set $\sum_{l=1}^{N} I_l = \text{const.}$
- This leaves $M_{I}(x, y) = \mathsf{PSF} * (I_{I}(x, y) \cdot S(x, y))$ with $I_{N} = 1 \sum_{l=1}^{N-1} I_{l}$
- That is solvable for I_1, \ldots, I_{N-1}, S
- Non-linear system
- Solvable: e.g. non-linear variants of conjugate gradient

Outlook

- This concludes structured illumination
- Wolfgang: Demonstration of the OMX in SIM-mode
- (maybe): Demonstration of the SLM-SIM setup
- Next lectures: Localization-based methods: STED, STORM, PALM,...