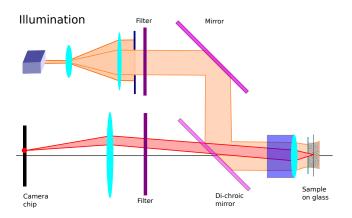
Advanced light microscopy

Fabian, Marcel, Wolfgang

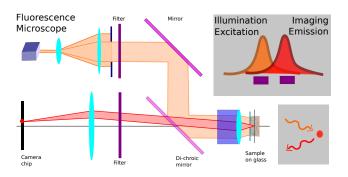
Fakultät für Physik, Universität Bielefeld

WS 2014


Fluorescence Microscopy

2 TIRF and co.

Outlook

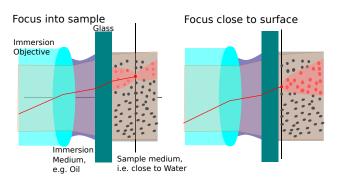


Fluorescence microscope setup

- Illumination and imaging share a light path through the same objective
- Easier adjustment, no restriction on sample thickness
- Need a way to separate illumination light from sample response:
 In practice: By wavelength

Fluorophoes

- Capture a photon, hold it for some nanoseconds, emit it at a longer wavelength (in any direction, with any polarization)
- Have an excitation and an emission spectrum (separated via filters)
- Allow to mark specific structures
- Outlook: There are other processes that shift wavelength... measuring these is much more involved.

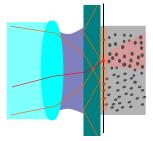

WS 2014

Mathematical description

$$M(x,y) = \int_{S_z} \mathsf{PSF}(z) * (I(x,y,z) \cdot S(x,y,z)) \, \mathrm{d}z$$

- ullet I is the illuminating light, here still uniform
- S as the sample response, now fluorophore density, in principle a collection of single molecule delta functions.
- The system will lose (a lot of) photons. For counting purposes, we would have to quantify that.

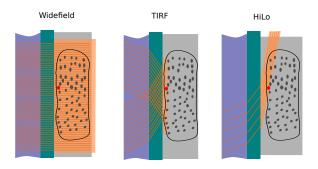
Axial resolution / contrast improvement



$$M(x,y) = \int_{S_z} \mathsf{PSF}(z) * (I(x,y,z) \cdot S(x,y,z)) \, \mathrm{d}z$$

- Problem for axial resolution and background: The integral \int_{S_z} , where the PSF gets for $z \neq 0$.
- Idea: change the modulation I(x, y, z) so that $I \approx 0$ for $z \neq 0$.
- Multiple methods to approximate that. Arguably the easiest: TIRF and HiLo.

TIRE


TIRF
Total Internal Reflection Fluorescence microscopy

- Typical sample: Refraction index close to water.
 Therefore, total reflection between glass and sample.
- Evanescent wave, so $I(z) = I_0 \cdot e^{-\alpha \cdot z}$ with I_0 at the sample / glass interface.
- Enough light for a focal plane up to a few hundred nanometers from glass (that the drawback).

Three light modes

- Widefield illuminates all the sample uniformly. Free to chose focal plane, but prone to background contributions.
- TIRF lets the illumination intensity drop exponentially with distance to the glass / sample interface. Only usable for structures close to glass, but very little background
- HiLo illumination angle close to TIRF, thus a sheet of light passes through the sample. Often a good compromise, but quantifying the light intensity takes some work.

Outlook on super-resolution

$$M_{I,\kappa}(x,y) = \int_{S_z} \mathsf{PSF}(z) * (I_I(x,y,z) \cdot S(x,y,z,\kappa)) \, \mathrm{d}z$$

PSF cannot be overcome.

But other factors can be influences, with two mayor approaches:

- Influence the illumination: Use multiple sets I of $I_I(x,y,z)$, where $I_I(x,y,z)$ varies along x,y,z. If now $M_I(x,y)$ and $I_I(x,y,z)$ is known, solve for S(x,y,z). First steps are TIRF, confocal scanning, state of the art: **Structured illumination microscopy**
- Influence the sample response: Add some property κ to the sample, so its response to illumination can change. This can be switching the fluorophore (STED) or a stochastic process (STROM, dSTROM), allowing for localisation microscopy.
- Finally, both approaches can even be combined.

Demonstration

Remaining time of this lecture: Hands-on demonstration of TIRF on our microscope