Advanced light microscopy

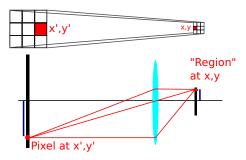
Fabian, Marcel, Wolfgang

Fakultät für Physik, Universität Bielefeld

WS 2014

- Recapitulation
- Noise and Background
 - Noise
 - Background

- 3 Light and Illumination
 - Light sources
 - Optics for light sources
 - Classic illumination modes

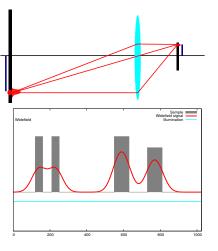

Literature

- OTFs and co.: Introduction to Fourier optics
 Goodman, Joseph W.
 maybe take the 2005 3. edition, not 1968
- Light sources and microscopy design:
 Zeiss campus website
 http://zeiss-campus.magnet.fsu.edu

Recapitulation: Magnification / Pixels

$$M(x, y) = I \cdot S(x, y)$$

- Sample S(x, y) reacts to illumination I, measured as M(x, y).
- Magnification links rectangular pixels $(d=50\dots150\,\mu\mathrm{m})$ to areas on the samples focal plane (e.g. $d'=75\,\mu\mathrm{m}$ and $f=60\times$ to $d=125\,\mathrm{nm}$).
- Think effective pixel size.


Camera pixel: Rectangular area collecting photons, thus integrating intensity. Maps to a (usually and ideally) regtangular area on the sample.

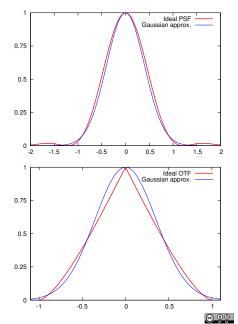
WS 2014

Recapitulation: Point-spread functions

$$M(x, y) = PSF * (I \cdot S(x, y))$$

- Point-spread function (PSF) describes intensity distribution of point-like emitter
- Measurement given by the sample intensity distribution folded by the PSF.
- Folding: Multiplication in Fourier space. Fourier transformation of the PSF: Optical transfer function (OTF).

More detail: Ideal PSFs/OTFs and approximation

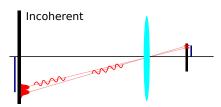

$$\tilde{M}(k_x, k_y) = \mathsf{OTF}(k_x, k_y) \cdot \left(I\tilde{S}(k_x, k_y) \right)$$

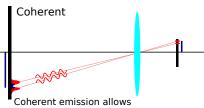
Ideal means a circular aperture in the Fourier plane, otherwise perfect optical system. Then:

$$PSF(x) = \frac{2J_1(x)^2}{x}$$

$$OTF(k) = \frac{2}{\pi} \left(arccos(|k|) - |k| \sqrt{1 - k^2} \right)$$

Gaussian approximation not too bad for PSF, and Fourier transform gets much easier.


Recapitulation: Coherence


This

$$M(x, y) = PSF * (I \cdot S(x, y))$$

implies adding up intensities. Or does it? Complex valued *I*, *S*, PSF...

- **Coherence**: Does the sample preserve the phase of incoming light?
- Fluorescence lifetime in order of nanoseconds, destroys coherence.
 For other materials and processes, a closer look might be needed (e.g., stimulated coherent emission).

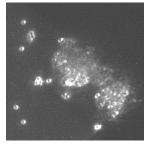
for (destructive) interference

What is Background, what is Noise

What is background, what is noise

Noise is an uncertainty in measuring the number of photons on a pixel. **Background** are photons picked up from (usually out-of-focus) positions on the sample that are of no interest to the measurement.

In common


- Both add to the measurement.
- Both are not signal. Thats somewhat by definition, as in not the signal we are interested in.
- Sometimes low enough to ignore, sometimes so high the image is ruined.
- Some post-processing addresses both.

Differences

- Noise is a camera property, while background depends on
 - the sample
 - the way it is illuminated
 - the way it is imaged
- Often, with M = I · S, increasing I keeps noise constant, while background scales with I. In these cases: More light improves SNR, but not SBR.

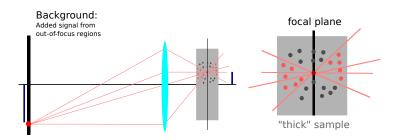
Noise

Noise/dark frame (left), full signal (middle), signal with darkframe substraction (right) 1

- Noise arises as the camera (mis)counts the number of photons.
- Photo effect: Thermal and quantum effects distort the number of electrons.
- Thermal and quantum effects distort the amplification and conversion from electron charge to a digital value.

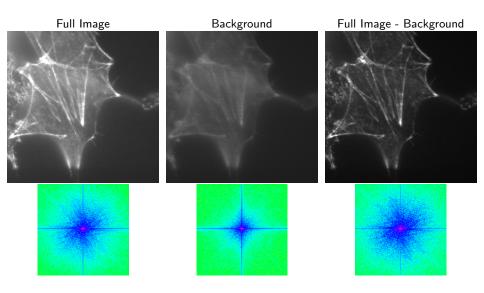
- More light (at least for SNR, see last slide)
- Cooling helps with some of the thermal effects
- Dark frame substration (below)
- "Better" electronics helps, lecture on camera types and trade-offs (noise, speed, price).

Noise in Fourier space


Noise in spatial (left) and frequency (right) domain

$$M(x,y) = (\mathsf{PSF} * (I \cdot S(x,y))) + N(x,y)$$

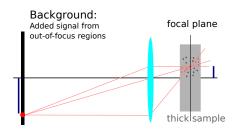
- N(x, y) is random: Distribution influenced by various factors.
- Each pixels might be different, e.g. different average and variation.
- In first approximation there should be no correlation between pixels. Spectral distribution can be used to check.
- **High-frequency filtering** thus will eliminate some of it.
- Camera characteristics can be measured quite extensively.



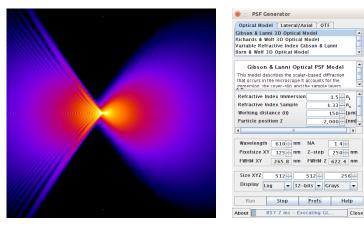
Background

- Samples are often not flat, but somewhat thick.
- Image plane (photons stopped by camera chip) sets a fixed sample focal plane
- Pixels collect additional light from out-of-focus contributions

Background: Examples


Background: 3D PSF

$$M(x,y) = \int_{S_{\tau}} \mathsf{PSF}(\mathbf{z}) * (I \cdot S(x,y,\mathbf{z})) \, \mathrm{d}\mathbf{z}$$


- 3D PSF (and sample) to account for these contribution
- z-component generally harder to calculate, but can be measured and/or simulated.
- Important: Axial vs. lateral resolution and improvement

Sketch of 3D PSF

Background: Obtaining a PSF

ImageJ Plugin: PSF Generator

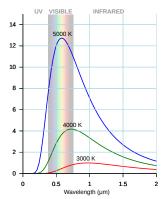
- Simulation: Software takes into account particle position, working distance, all refractive index changes between immersion medium, cover slip, sample.
- Measurement: Use single point-like emitters (reasonably smaller than resolution limit) and scan them through the focus.

Summary: Background and Noise

$$M(x,y) = \underbrace{\int_{S_z} \mathsf{PSF}(z)}_{} * (I \cdot S(x,y,z)) \, \mathrm{d}z + \underbrace{N(x,y)}_{}$$

Background

- Unwanted out-of-focus contributions
- Background scales with illumination intensity, thus SBR (signal-background-ratio) uninfluenced by more light
- Improvements: Illumination, Deconvolution, . . .

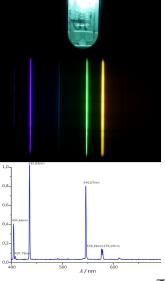

Noise

- Measurement errors for camera photon count
- Noise is constant when illumination is increased, thus SNR (signal-noise-ratio) can be improved by more light
- Other improvements:
 Exposure time, camera type (with cost/speed/noise trade-off).

Light and Illumination: Sources, Modes of Illumination

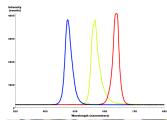
Light sources: Incandescent light bulb

- Patent 1845, Osram halogen in 1959
- Heated tungsten, approx. black body spectrum, halogen for higher temperature
- Light: No coherence, not at all monochrome
- Filtering to a narrow-band emission throws away lots of the spectrum
- Historically cheap and easy source, today rivaled by (cheap) high power LEDs



Wikimedia/Spektrum, Wikimedia/Halogen Lamp

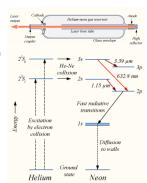
Light sources: (mercury) gas-discharge lamp


- Mercury lamps: discovered 1705, first applications 1901, referred to as burners
- Light generated by electrical discharge that ionizes gas
- No coherence, spectral lines given by gas, spectral broadening when using high pressure
- Filtering to narrow-band emission is quite effective if close to spectral line.
- Today still in use, again rivaled by (quality) high power LEDs and Lasers.



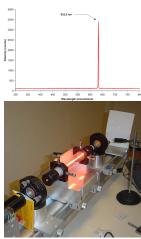
Light sources: High Power LEDs (Light-emitting diode)

- Prototype 1962, blue LEDs 1994, Nobel Prize 2014
- Semiconductor diode with band gap photon emission
- Light: No coherence, wave length set by band gap, spectral peak somewhat broad (compared to lasers)
- Filtering gives a narrower band if required
- High power LEDs became available only some years ago
- Today: Go-to light source (that is cheaper than a laser)



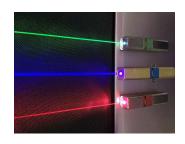
Wikimedia/LED-Spectrum
Wikimedia/High Power LED

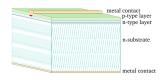
Light sources: LASER / principal (light amplification by stimulated emission of radiation)


- Patent 1960, semiconductor laser diodes since approx. 1990
- Laser principle: Stimulated emission in a system with multiple energy states
- Different types, most important:
 - ► Gas (e.g. He/Ne)
 - solid state/crystals
 - semi-conductor/diode

Also, pumping one type (crystal) with another (diode).

Wikimedia/HeNe diagram Wikimedia/HeNe states Wikimedia/HeNe spectrum


Wikimedia/HeNe laser



WS 2014

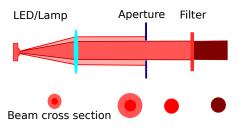
Light sources: LASER / application

- Laser diodes: Similar to LEDs, but withstand higher local currents and (might) have a more complex band structure.
- Laser light (in general): Very coherent, single wave length, narrow band
- Filtering still useful, especially for semi-conductor lasers
- Coherent light is very versatile when designing optical systems: Think gratings, interference patterns.
- Today: Generally laser diodes (cheap, powerful), other types for special requirements (good coherence, multiple spectral lines).

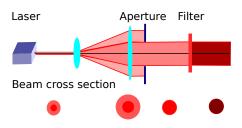


Wikimedia/Lasers

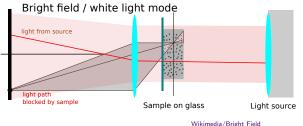
Wikimedia/Laser diode

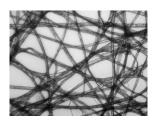

Spectrum of LEDs and Laser diodes

Wikipedias List of LED (left) and LASER (right) wavelength and materials.

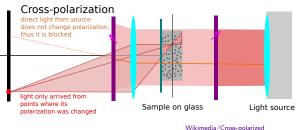

• Today: Variety of semiconductor materials to obtain different wavelength

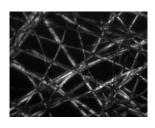
Illumination/Source: Lamps and LEDs


- Light emission under some angle
- Lens (system) to obtain a parallel beam
- Aperture to block out low intensity outer regions
- \bullet Filter to narrow spectrum (LED typ. $25\,\mathrm{nm}$ FWHM)
- Ideal result: A monochrome, parallel beam with uniform intensity


Illumination/Source: Lasers

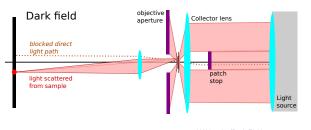
- LASER emits almost parallel light
- Lens (system) to widen beam
- Aperture to block out low intensity outer regions. A nice profile is Gaussian, a diode can be much worse.
- Maybe: filter to clean up / correct spectrum. Native laser diode spectrum depends on technical details (current control, mechanical construction).
- Ideal result: A monochrome, coherent, parallel beam with uniform intensity

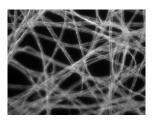

Illumination/"classic": Bright field / white light mode



- Arguably the oldest and most standard mode
- Light goes through the sample: "Durchlicht"
- Contrast by absorbing and scattering light
- Optimized by using Köhler illumination
- Used at (almost) every microscope e.g. to quickly align a new sample

Illumination/"classic": Cross-polarization





Wikimedia/ Cross-polarized

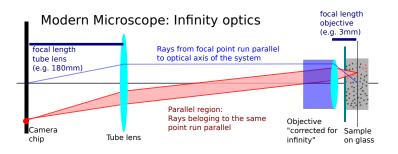
- Easy extension to bright field: Two polarization filters
- Polarized light enters the sample:
 - If it does not interact, it is blocked by a second filter
 - ▶ If it interacts, and changes polarization, it can pass the second filter
- Visible: Structures that change the polarization of light

Illumination/"classic": Dark field

Wikimedia/Dark Field

- Align illumination optics and block central beams
- Light enters sample under a steep angle:
 - If it does not scatter, it exists under the same angle. Thus it is blocked by the imaging objectives aperture
 - ▶ If it scatters, some will leave under a flat angle, able to pass the aperture
- Visible: All scattering structures
- This can be extended to measure (almost only) phase-shifting structures.

Excursion: Infinity optics



$$\frac{1}{f} = \frac{1}{b} + \frac{1}{g}$$

- Set g = f, then $b = \infty$, image forms "in infinity"
- Set b=f, then $g=\infty$, objects at infinity distance are now in focus That one actually works on it own, take a landscape photo with g>>f
- For an imaging system, plug two of these $(b_1 = f_1, g_1 = \infty, b_2 = \infty, g_2 = f_2)$ together
- Advantage: "Parallel region" for light manipulation (filters, mirrors)

WS 2014

Excursion: Infinity objectives

- Magnification becomes easy: $\frac{f_1}{f_2}$, here $\frac{180\,\mathrm{mm}}{3\,\mathrm{mm}}=60\times$
- "Infinity objectives" are no magical, physics-defying things
 - ▶ They are a bunch of (well made, well adjusted, expensive) lenses
 - "Infinity" means: Lens corrections (coating, calculations) are optimized for infinity focus applications (at more than one wavelength)
 - ▶ Often they state a magnification (60×), not a focal length (3 mm). In these cases, there is a (manufacturer-dependent) standard tube lens (e.g. 180 mm) that gives that magnification.