# General Relativity: Exercises 4 -Solutions 

June 6, 2011

## Homework 1: Gravitational radius

Trivial calculations using

$$
\begin{equation*}
a=\frac{2 G M}{c^{2}}, \tag{1}
\end{equation*}
$$

from where You will obtain:
a) Gravitational radius of supermassive black hole in centre of Milky Way

$$
\begin{equation*}
a_{M W}=1.21 \times 10^{7} \mathrm{~km} . \tag{2}
\end{equation*}
$$

b) Schwarzchild radius of electron

$$
\begin{equation*}
a_{e}=1.353 \times 10^{-57} \mathrm{~m}=8.371 \times 10^{-23} l_{P} . \tag{3}
\end{equation*}
$$

c) Moon

$$
\begin{equation*}
a_{\mathbb{C}}=1.1 \times 10^{-4} \mathrm{~m} . \tag{4}
\end{equation*}
$$

## Homework 2: Proper and "radar" distance in Schwarzchild solution

a) For observer at $r_{1}$ is "radar" distance between $r_{1}$ and $r_{2}$ given by (in $c=1$ units)

$$
\begin{equation*}
l_{R}\left(r_{1}, r_{2}\right)=\tau\left(r_{1}, r_{2}\right)=t\left(r_{1}, r_{2}\right) \sqrt{g_{t t}\left(r_{1}\right)}, \tag{5}
\end{equation*}
$$

where $\tau\left(r_{1}, r_{2}\right)$ is time of travel of photon between $r_{1}$ and $r_{2}$ as measured by observer 1 (i.e. his proper time), which can be obtained by finding coordinate time of given process and multiplying by metric coefficient at the place of observer 1 to adjust for gravitational dilation of time.
Because light travel along null geodesics we know that

$$
\begin{equation*}
0=g_{t t} d t^{2}+g_{r r} d r^{2}, \tag{6}
\end{equation*}
$$

from where we can find coordinate time of travel of photon between $r_{1}$ and $r_{2}$

$$
\begin{equation*}
t\left(r_{1}, r_{2}\right)= \pm \int_{r_{1}}^{r_{2}} \sqrt{-\frac{g_{r r}}{g_{t t}}} d r= \pm \int_{r_{1}}^{r_{2}} \frac{d r}{1-\frac{a}{r}}= \pm\left[r+a \ln \left(\frac{r}{a}-1\right)\right]_{r_{1}}^{r_{2}} \tag{7}
\end{equation*}
$$

So, then "radar" distance for observer at $r_{1}$ will be

$$
\begin{equation*}
l_{R}\left(r_{1}, r_{2}\right)=\left[r+a \ln \left(\frac{r}{a}-1\right)\right]_{r_{1}}^{r_{2}} \sqrt{1-\frac{a}{r_{1}}} . \tag{8}
\end{equation*}
$$

b)First find expression for proper distance in Schwarzchild solution

$$
\begin{equation*}
l_{p}\left(r_{1}, r_{2}\right)=\int_{r_{1}}^{r_{2}} \sqrt{g_{r r}} d r=\int_{r_{1}}^{r_{2}} \sqrt{\frac{1}{1-\frac{a}{r}}} d r=\left[\sqrt{r(r-a)}+a \ln \left(\sqrt{\frac{r}{a}-1}+\sqrt{\frac{r}{a}}\right)\right]_{r_{1}}^{r_{2}} \tag{9}
\end{equation*}
$$

and so proper distance between $r_{1}=a$ and $r_{2}=r^{\prime}>a$ is given by

$$
\begin{equation*}
l_{p}\left(a, r^{\prime}>a\right)=\sqrt{r^{\prime}\left(r^{\prime}-a\right)}+a \ln \left(\sqrt{\frac{r^{\prime}}{a}-1}+\sqrt{\frac{r^{\prime}}{a}}\right)<\infty . \tag{10}
\end{equation*}
$$

Radar distance between $r_{1}=a$ and $r_{2}=r^{\prime}>a$ is obtained from equation (8) as

$$
\begin{equation*}
l_{R}\left(a, r^{\prime}\right)=\left.\left[r+a \ln \left(\frac{r}{a}-1\right)\right]_{a}^{r^{\prime}} \sqrt{1-\frac{a}{r}}\right|_{a} . \tag{11}
\end{equation*}
$$

We can see that expression in square brackets is infinite, but it is multiplied by expression which goes to zero. We can find limit of this expression and so we obtain

$$
\begin{equation*}
l_{R}\left(a, r^{\prime}\right)=0 \tag{12}
\end{equation*}
$$

c) So, we can conclude that in this situation radar distance is zero and proper distance is finite. Interesting thing is that if we would have opposite situation, i.e. observer at $r_{1}>a$ and mirror at $r_{2}=a$, then expression for radar distance would be infinite.

