General Relativity: Exercises 3 -Solutions

June 1, 2011

Homework 1: Ideal fluid

First, it is important to stress difference between "classical" velocity \mathbf{v} and four-velocity U^{μ}

$$
\begin{equation*}
\mathbf{v}=\frac{d \mathbf{x}}{d t}, \quad U^{\mu}=\frac{d x^{\mu}}{d \tau} \tag{1}
\end{equation*}
$$

so You can find relations

$$
\begin{equation*}
U^{0}=\frac{d t}{d \tau}=\gamma \quad U^{i}=\frac{d x^{i}}{d \tau}=\frac{d x^{i}}{d t} \frac{d t}{d \tau}=\gamma v^{i} \tag{2}
\end{equation*}
$$

where $\gamma=\left(1+v^{2}\right)^{-\frac{1}{2}}$. Then components of

$$
\begin{equation*}
T^{\mu \nu}=p \eta^{\mu \nu}+(p+\rho) U^{\mu} U^{\nu} \tag{3}
\end{equation*}
$$

expressed in terms of \mathbf{v} will be

$$
\begin{align*}
T^{00} & =-p+(p+\rho) \gamma^{2}, \tag{4}\\
T^{0 i} & =(p+\rho) \gamma^{2} v^{i}, \tag{5}\\
T^{i j} & =p \delta^{i j}+(p+\rho) \gamma^{2} v^{i} v^{j} . \tag{6}
\end{align*}
$$

Conservation law of energy-momentum tensor

$$
\begin{equation*}
\frac{\partial T^{\mu \nu}}{\partial x^{\nu}}=0, \tag{7}
\end{equation*}
$$

can be split to four equations

$$
\begin{align*}
& \frac{\partial T^{0 \nu}}{\partial x^{\nu}}=\frac{\partial T^{00}}{\partial t}+\frac{\partial T^{0 i}}{\partial x^{i}} . \tag{8}\\
& \frac{\partial T^{i \nu}}{\partial x^{\nu}}=\frac{\partial T^{i 0}}{\partial t}+\frac{\partial T^{i j}}{\partial x^{j}} . \tag{9}
\end{align*}
$$

Explicitly this is

$$
\begin{align*}
& \frac{\partial T^{0 \nu}}{\partial x^{\nu}}=-\frac{\partial p}{\partial t}+\left(\frac{\partial p}{\partial t}+\frac{\partial \rho}{\partial t}\right) \gamma^{2}+(p+\rho) \frac{\partial \gamma^{2}}{\partial t}+\left(\frac{\partial p}{\partial x^{j}}+\frac{\partial \rho}{\partial x^{j}}\right) \gamma^{2} v^{j}+(p+\rho) \frac{\partial \gamma^{2} v^{j}}{\partial x^{j}} \tag{10}\\
& \frac{\partial T^{i \nu}}{\partial x^{\nu}}=\left(\frac{\partial p}{\partial t}+\frac{\partial \rho}{\partial t}\right) \gamma^{2} v^{i}+(p+\rho) \frac{\partial \gamma^{2} v^{i}}{\partial t}+\frac{\partial p}{\partial x^{i}}+\left(\frac{\partial p}{\partial x^{j}}+\frac{\partial \rho}{\partial x^{j}}\right) \gamma^{2} v^{i} v^{j}+(p+\rho) \frac{\partial \gamma^{2} v^{i} v^{j}}{\partial x^{j}} . \tag{11}
\end{align*}
$$

Multiply first equation by v^{i} and substract it from second equation to obtain

$$
\begin{equation*}
\left(v^{i} \frac{\partial p}{\partial t}+\frac{\partial p}{\partial x^{i}}\right)+(p+\rho) \gamma^{2}\left[\frac{\partial v^{i}}{\partial t}+v^{j} \frac{\partial v^{i}}{\partial x^{j}}\right]=0 \tag{12}
\end{equation*}
$$

what can be expressed as

$$
\begin{equation*}
\frac{\partial v^{i}}{\partial t}+v^{j} \frac{\partial v^{i}}{\partial x^{j}}=-\frac{1}{(p+\rho) \gamma^{2}}\left(v^{i} \frac{\partial p}{\partial t}+\frac{\partial p}{\partial x^{i}}\right), \tag{13}
\end{equation*}
$$

or in vector notation

$$
\begin{equation*}
\frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \nabla) \mathbf{v}=-\frac{1-v^{2}}{(p+\rho)}\left(\mathbf{v} \frac{\partial p}{\partial t}+\nabla p\right) . \tag{14}
\end{equation*}
$$

Homework 2: Lie derivative

a) First find commutator of vector fields

$$
\begin{equation*}
[\epsilon, V]=\epsilon^{\mu} \partial_{\mu} V^{\nu} \partial_{\nu}-V^{\mu} \partial_{\mu} \epsilon^{\nu} \partial_{\nu}=\epsilon^{\mu}\left(\partial_{\mu} V^{\nu}\right) \partial_{\nu}-V^{\mu}\left(\partial_{\mu} \epsilon^{\nu}\right) \partial_{\nu}+\underbrace{\epsilon^{\mu} V^{\mu}\left(\partial_{\mu} \partial_{\nu}-\partial_{\nu} \partial_{\mu}\right)}_{0}, \tag{15}
\end{equation*}
$$

where last bracket vanishes because partial derivatives commute. From there follows

$$
\begin{equation*}
[\epsilon, V]=\left(\epsilon^{\mu} \partial_{\mu} V^{\nu}-V^{\mu} \partial_{\mu} \epsilon^{\nu}\right) \partial_{\nu}, \tag{16}
\end{equation*}
$$

and from lecture notes You know that Lie derivative acts on vector (See review from 25th of May) as

$$
\begin{equation*}
\Delta_{\epsilon} V^{\mu}=\epsilon^{\mu} \partial_{\mu} V^{\nu}-V^{\mu} \partial_{\mu} \epsilon^{\nu} \tag{17}
\end{equation*}
$$

You can see that this is exactly what You wanted to prove, because $\Delta_{\epsilon} V^{\mu}$ is μ-component of Lie derivative. So, in coordinate basis ∂_{μ} we obtained exactly equation (16).
b) We have metric

$$
\begin{equation*}
d s^{2}=d \theta^{2}+\sin ^{2} \theta d \phi^{2}, \tag{18}
\end{equation*}
$$

Lie derivative acts on metric as

$$
\begin{equation*}
\Delta_{\epsilon} g_{\mu \nu}=\epsilon^{\alpha} \frac{\partial g_{\mu \nu}}{\partial x^{\alpha}}+g_{\mu \alpha} \frac{\partial \epsilon^{\alpha}}{\partial x^{\nu}}+g_{\alpha \nu} \frac{\partial \epsilon^{\alpha}}{\partial x^{\mu}}, \tag{19}
\end{equation*}
$$

where ϵ is some vector field which can be expressed in (θ, ϕ) coordinates as

$$
\begin{equation*}
\epsilon=u \frac{\partial}{\partial \theta}+v \frac{\partial}{\partial \phi} . \tag{20}
\end{equation*}
$$

Then we have three independent components of equation (19). Explicitly

$$
\begin{align*}
\Delta_{\epsilon} g_{\theta \theta} & =2 \frac{\partial u}{\partial \theta} \tag{21}\\
\Delta_{\epsilon} g_{\theta \phi} & =\frac{\partial u}{\partial \phi}+\sin ^{2} \theta \frac{\partial v}{\partial \theta} \tag{22}\\
\Delta_{\epsilon} g_{\phi \phi} & =2 \sin \theta \cos \theta u+2 \sin ^{2} \theta \frac{\partial v}{\partial \phi} \tag{23}
\end{align*}
$$

Lie derivative tells us how some tensor changes under change of coordinates. This means that to find vector field ϵ which leaves metric invariant is equivalent to finding such vector field ϵ for which Lie derivative of metric vanishes. This means that all left-hand sides of previous equations are zero and we obtain system of differential equations

$$
\begin{equation*}
\frac{\partial u}{\partial \theta}=0, \quad \frac{\partial v}{\partial \theta} \sin ^{2} \theta+\frac{\partial u}{\partial \phi}=0, \quad u+\frac{\partial v}{\partial \phi} \tan \theta=0 . \tag{24}
\end{equation*}
$$

From first of these equations we obtain

$$
\begin{equation*}
u=u(\phi), \tag{25}
\end{equation*}
$$

then second equation can be integrated according to θ

$$
\begin{equation*}
v=u^{\prime}(\phi) \cot \theta+C, \tag{26}
\end{equation*}
$$

and we can insert this result to third equation to obtain

$$
\begin{equation*}
u^{\prime \prime}(\phi)=-u(\phi), \tag{27}
\end{equation*}
$$

which solution is

$$
\begin{equation*}
u(\phi)=A \cos \phi+B \sin \phi, \tag{28}
\end{equation*}
$$

and thus

$$
\begin{equation*}
v(\phi, \theta)=-A \sin \phi \cot \theta+B \cos \phi \cot \theta+C . \tag{29}
\end{equation*}
$$

So, most general vector field which leaves metric of two-sphere invariant is

$$
\begin{equation*}
\epsilon=(A \cos \phi+B \sin \phi) \frac{\partial}{\partial \theta}+(-A \sin \phi \cot \theta+B \cos \phi \cot \theta+C) \frac{\partial}{\partial \phi} \tag{30}
\end{equation*}
$$

or we can rewrite it as

$$
\begin{equation*}
\epsilon=A X+B Y+C Z, \tag{31}
\end{equation*}
$$

i.e. as a linear combination of three linearly independent vector fields

$$
\begin{align*}
X & =\cos \phi \frac{\partial}{\partial \theta}-\sin \phi \cot \theta \frac{\partial}{\partial \phi} \tag{32}\\
Y & =\sin \phi \frac{\partial}{\partial \theta}+\cos \phi \cot \theta \frac{\partial}{\partial \phi}, \tag{33}\\
Z & =\frac{\partial}{\partial \phi} . \tag{34}
\end{align*}
$$

