General Relativity: Exercises 1

Till: May 16, 2011

Problem 1

Standard way to compute Christoffel symbols is from definition

$$
\begin{equation*}
\Gamma_{\mu \nu}^{\lambda}=\frac{1}{2} g^{\lambda \sigma}\left(\frac{\partial g_{\nu \sigma}}{\partial x^{\mu}}+\frac{\partial g_{\mu \sigma}}{\partial x^{\nu}}-\frac{\partial g_{\mu \nu}}{\partial x^{\sigma}}\right) . \tag{1}
\end{equation*}
$$

There exist easier way to do it. Take functional

$$
\begin{equation*}
L=g_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}=g_{\mu \nu} \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d \tau} \tag{2}
\end{equation*}
$$

and show that Lagrange-Euler equations

$$
\begin{equation*}
\frac{d}{d \tau} \frac{\partial L}{\partial \dot{x}^{\lambda}}=\frac{\partial L}{\partial x^{\lambda}}, \tag{3}
\end{equation*}
$$

for this functional will be

$$
\begin{equation*}
\frac{d^{2} x^{\lambda}}{d \tau^{2}}+\frac{1}{2} g^{\lambda \sigma}\left(\frac{\partial g_{\nu \sigma}}{\partial x^{\mu}}+\frac{\partial g_{\mu \sigma}}{\partial x^{\nu}}-\frac{\partial g_{\mu \nu}}{\partial x^{\sigma}}\right) \frac{d \dot{x}^{\mu}}{d \tau} \frac{d \dot{x}^{\nu}}{d \tau}=0 . \tag{4}
\end{equation*}
$$

Actually this is equation of geodetic

$$
\begin{equation*}
\frac{d^{2} x^{\lambda}}{d \tau^{2}}+\Gamma_{\mu \nu}^{\lambda} \frac{d \dot{x}^{\mu}}{d \tau} \frac{d \dot{x}^{\nu}}{d \tau}=0 \tag{5}
\end{equation*}
$$

So, from this equation You can read-off all Christoffel symbols.

Problem 2

Remember previous homework-i.e. calculation Christoffel symbols for 2-sphere- and how much time did it consume. With help of this variational principle do it fast.

Homework 1

Show that covariant derivative of vector

$$
\begin{equation*}
\nabla_{\mu} V^{\nu}=\partial_{\mu} V^{\nu}+\Gamma_{\mu \lambda}^{\nu} V^{\lambda} \tag{6}
\end{equation*}
$$

transform under coordinate change

$$
\begin{equation*}
x^{\mu} \longmapsto x^{\prime \mu}, \tag{7}
\end{equation*}
$$

like tensor.

Homework 2

One of properties of derivative is that it respect Leibniz rule. Show that covariant derivative do so

$$
\begin{equation*}
\nabla_{\lambda}\left(A_{\nu}^{\mu} B^{\kappa}\right)=\left(\nabla_{\lambda} A_{\nu}^{\mu}\right) B^{\kappa}+A_{\nu}^{\mu}\left(\nabla_{\lambda} B^{\kappa}\right) \tag{8}
\end{equation*}
$$

Homework 3

Imagine infinite cylinder and find metric on it. What is the scalar curvature of surface of this cylinder. How do You find answer to this question without explicit calculation?

