Five lectures on

INTRODUCTION TO COSMOLOGY

Dominik J. Schwarz

Universität Bielefeld

 ${\tt dschwarz@physik.uni-bielefeld.de}$

Doktorandenschule Saalburg

September 2009

Lecture 1: The large picture

observations, cosmological principle, Friedmann model, Hubble diagram, thermal history

Lecture 2: From quantum to classical

cosmological inflation, isotropy & homogeneity, causality, flatness, metric & matter fluctuations

Lecture 3: Hot big bang

radiation domination, hot phase transitions, relics, nucleosythesis, cosmic microwave radiation

Lecture 4: Cosmic structure

primary and secondary cmb fluctuations, large scale structure, gravitational instability

Lecture 5: Cosmic substratum

evidence and candidates for dark matter and dark energy, direct and indirect dm searches

Minimal model: Where do we stand?

globular cluster age	\checkmark
SN 1a Hubble diagram	\checkmark
CMB spectrum	\checkmark
light element abundance	\checkmark
CMB temperature & polarisation anisotropies	\checkmark
galaxy redshift surveys	\checkmark

BUT we don't understand what we are fitting

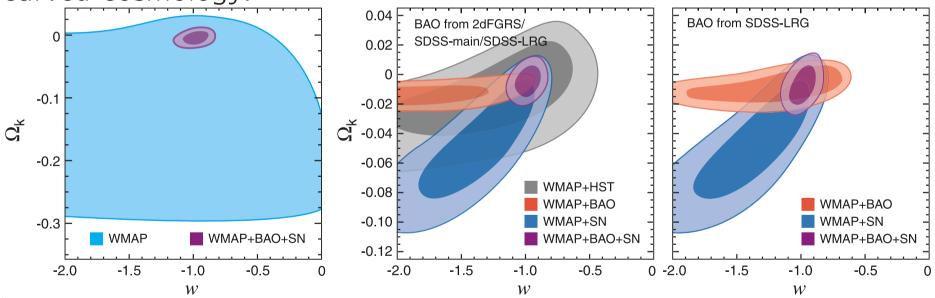
Conceptional problems of the minimal model

- no theory for vacuum energy density, i.e. cosmological constant;
 (cosmological constant problem)
- why is $\Omega_{\Lambda}(t_0) \sim \Omega_{\rm m}(t_0)$? (coincidence problem)
- why is $\Omega_{\rm b}(t_0) \sim \Omega_{\rm cdm}(t_0)$? (another coincidence problem)

Cosmological constant problem

 Λ_{gr} free parameter of gr

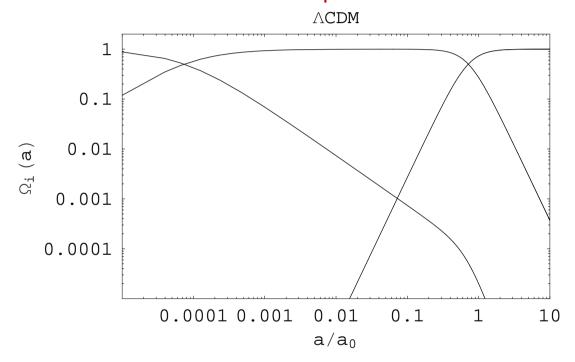
 $\Lambda_{\rm qft} \equiv 8\pi G \epsilon_{\rm V}$ to be calculated from quantum field theory flat space-time: normal ordering puts $\epsilon_{\rm V} = 0$ in true vacuum qft in curved space-time not sufficiently understood to predict a value


$$\Lambda_{\rm obs} \equiv \Lambda_{\rm gr} + \Lambda_{\rm qft} \sim H_0^2 \approx 10^{-122} M_{\rm P}^2$$

is that natural? important physics is missing

Cosmological constant vs. more general dark energy

for flat cosmology and constant $w_{\text{de}} = p_{\text{de}}/\epsilon_{\text{de}}$: $w = -0.972^{+0.061}_{-0.060}$


curved cosmology:

CMB, H_0 , SN, BAO

Komatsu et al. 2008

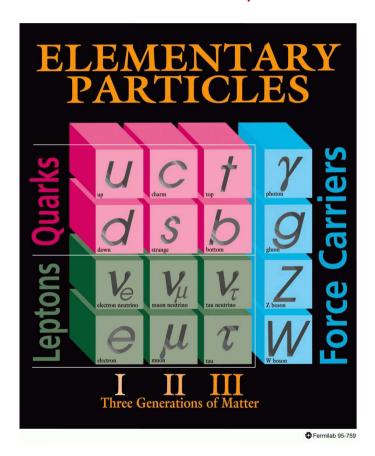
Coincidence problem

We seem to observe the universe at a very special moment. Why?

Ideas to solve the coincidence problem

- **dynamic de:** quintessence/k-essence another scalar field make the dynamics trace dominant component (tracker solutions) acceleration, weakens coincidence, $w \neq -1$
- unified de/dm: e.g. generalised Chaplygin gas no compelling physics, acceleration, may solve the coincidence
- modify gravity: change the large scale properties of gr some extra dimension models provide interesting ideas acceleration, does not solve coincidence, Solar system tests of gravity?
- cosmological backreaction: no new physics, non-linear effect of gr evolution of averaged metric ≠ averaged evolution of real metric nonlinear effect, hard to quantify acceleration possible but not inevitable, would solve coincidence

abandon Copernican principle: inhomogeneous dust models high price


antropic principle: give up

Dark matter

"bullet cluster" Markevitch et al. 2006

Requirements for a dark matter candidate

- 1. white (no coulor charge)
- 2. neutral (no electric charge)
- 3. stable (or $\tau \geq t_0$)

SM candidates:
neutrinos,
atoms (dark baryonic matter)
n.b.: photons are not dark

Classification of dm candidates

two criteria: pressure gradients (Jeans mass) and thermalisation

HOT: $p \sim \epsilon$ at onset of structure formation (= matter-radiation equality) COLD: $p \ll \epsilon$ at onset of structure formation

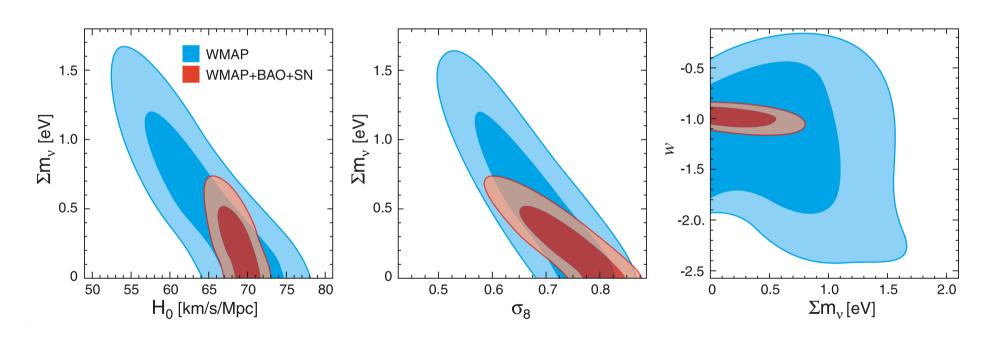
THERMAL: was in local thermal equilibrium with radiation (after inflation) NON-THERMAL: was never in local thermal equilibrium with radiation

	HOT (relativistic)	COLD (non-relativistic)
THERMAL	light $ u$,	WIMP(heavy ν , LSP,),
NON-THERMAL	string gas,	misalignment axion,
		primordial black holes,

Light neutrinos

 $m_{
u_e} <$ 2.3 eV tritium decay $\Delta m_{12}^2 \simeq 8 imes 10^{-5} \ {
m eV^2}$ solar $|\Delta m_{23}^2| \simeq 2 imes 10^{-3} \ {
m eV^2}$ atmospheric

$$\omega_{\nu} = \frac{\sum_{\nu} m_{\nu}}{93.8 \text{ eV}}$$


range of ν energy density from particle physics:

$$0.0006 \le \omega_{\nu} \le 0.08$$

 $(0.001 < \Omega_{\nu} < 0.2)$

Hannestad S. 2006. but, $\omega_{\rm m}\sim$ 0.15 from CMB Annu. Rev. Nucl. Part. Sci. 56:137–61 need something else besides ν

Limits on neutrino masses from cosmology

massive neutrinos lead to extra damping of small structures

CMB $\sum m_v < 1.3 \text{ eV}$; +SN+BAO: < 0.61 eV (95% CL) Komatsu et al. 2008

A strong argument for cold dark matter

Can we make $\Omega_{\rm m} = \Omega_{\rm b}$? No!

baryon density continues to oscillate after photon decoupling Coulomb interactions due to residual ionisation, Van der Waals forces baryon decoupling happens at $z_{\rm b-dec} \sim 150$, no growth before

initial density contrast at $k_{\rm ph} \sim H : \Delta_m \sim 10^{-4}$ (from CMB)

ABDM: maximal density contrast of baryons (any scale): $\sim 10^{-2} \ll 1$ non-linear structures (e.g. galaxies) do not form

 Λ CDM: cdm structure starts to grow at $z_{eq} \sim 3500$ density contrast of 100 Mpc (10 Mpc) scale $\sim 0.3~(\sim 1)$ after baryon decoupling: baryons fall into gravitational potential wells of cdm

Baryonic dark matter

most baryons are in gas

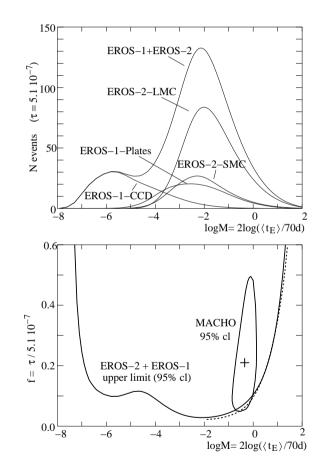
mass in stars only $\Omega_* \sim 0.001$

massive cold halo objects (MACHOs)

limits from microlensing

baryonic dm in non-nuclear form might

naturally explain $\Omega_{cdm} \sim \Omega_{b}$, e.g.


strangelets

no compelling scenario to from them

primordial black holes:

$$10^{-17} M_{\odot} < M < 10^{-7} M_{\odot}$$

no compelling scenario to from them

Tisserand et al. 2006

Non-baryonic cold dark matter

thermal cdm candidates from particle physics:

weakly interacting massive particles (WIMPs)

heavy ν (m > 80.5 GeV from LEP)

lightest neutralino $\tilde{\chi}_1^0$ (m > 46 GeV from LEP)

non-thermal cdm candidates:

very heavy WIMPs WIMPzillas $(m > 25T_{\rm rh})$ superweakly coupled particles primordial black holes

coherently oscillating fields: $\langle p \rangle = 0$

axion

 $(10^{-6} \text{ eV} < m_a < 10^{-3} \text{ eV}; \text{ lower limit from cosmology; upper limit form SN1987a})$

Dark matter decoupling: chemical vs. kinetic

thermal dm candidates:

time of chemical decoupling (freeze-out) \neq time of kinetic decoupling hdm: $T_{\rm cd} \sim T_{\rm kd}$, e.g. light $\nu {\rm s}$

before kinetic decoupling, dm and radiation are a single fluid after kinetic decoupling, dm and radiation are two fluids

 \Rightarrow at $t_{\rm cd}$ the amount of dm $\Omega_{\rm dm}$ is fixed (for stable dm) at $t_{\rm kd}$ the initial conditions for structure formation are set

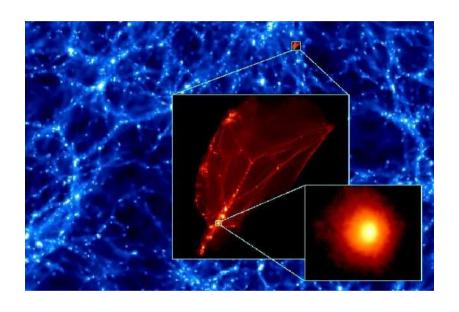
non-thermal dm candidates: not an issue

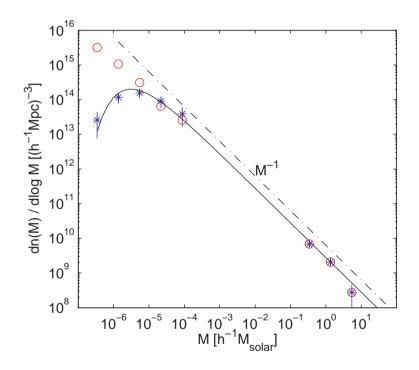
Direct & indirect dm search

both methods involve astrophysical uncertainties

direct search (laboratory)

$$\Gamma_{\text{scatter}} = n \langle \sigma v \rangle, \qquad n = n(\mathbf{x}, t), \mathbf{v} = \mathbf{v}(\mathbf{x}, t)$$

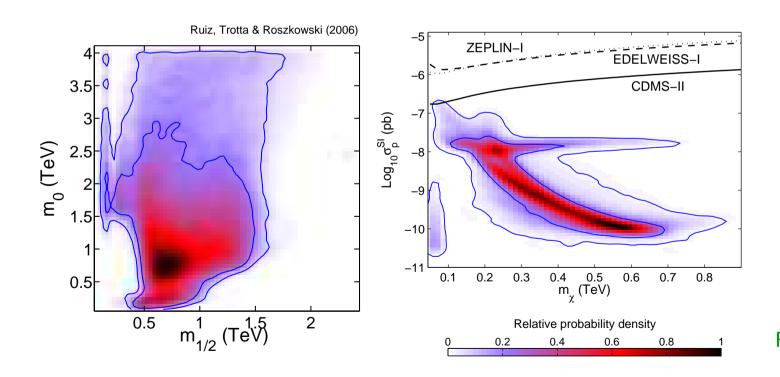

astrophysics on Solar system scales


indirect search (observation of sky in γ , ν or cosmic rays)

$$\Gamma_{\text{annihilation}} = \int n^2 \langle \sigma v \rangle dV, \qquad n = n(\mathbf{x}, t)$$

astrophysics on subgalactic scales

Nonlinear evolution of structure: snapshot at z = 25


Diemand, Moore & Stadel 2005

linear evolution: cut-off at smallest scales Green, Hofmann & Schwarz 2004

WIMPs

natural candidates: $\Omega_{\rm wimp} \sim 0.2 \frac{(m/T_{\rm cd})/25}{\langle \sigma_{\rm ann} v \rangle/1~{\rm pb}}$

best studied candidate: neutralino (lightest SUSY particle)

Ruiz, Trotta & Roszkowski 2006

Summary of 5th lecture

minimal model: We do not understand 96% of the Universe!

cosmological constant problem

coincidence problems

How to make progress: Rule out the wrong possibilities!

need laboratory experiments (LHC, ...), direct search (underground), indirect search (GLAST, ...)

The last slide of the lecture

we arrived at a very successful model based on standard model of particle physics & general relativity idea of cosmological inflation introduction of cosmological constant and dark matter minimal set of well motivated physical parameters (9): $T_0, m_{\nu}, \omega_{\rm b}, \omega_m, h, H_{\rm inf}, \varepsilon_1, \varepsilon_2, T_{\rm rh}$ minimal used set (6): $T_0, \omega_{\rm b}, \omega_m, h, A, n-1$ astrophysical parameters (follow from physical parameters, but cannot be calculated): $\tau, b_s, Q_{\rm nl}, \sigma_v, \ldots$

Copernican principle? What is the dark matter?