Five lectures on

INTRODUCTION TO COSMOLOGY

Dominik J. Schwarz

Universität Bielefeld

dschwarz@physik.uni-bielefeld.de

Doktorandenschule Saalburg

September 2009

Lecture 1: The large picture

observations, cosmological principle, Friedmann model, Hubble diagram, thermal history

Lecture 2: From quantum to classical

cosmological inflation, isotropy & homogeneity, causality, flatness, metric & matter fluctuations

Lecture 3: Hot big bang

radiation domination, hot phase transitions, relics, nucleosythesis, cosmic microwave radiation

Lecture 4: Cosmic structure

primary and secondary cmb fluctuations, large scale structure, gravitational instability

Lecture 5: Cosmic substratum

evidence and candidates for dark matter and dark energy, direct and indirect dm searches

History of the Universe (STAR) Sky from WMAP Hubble Deep Field LHC dipole RHIC-event (STAR) hadrons nucleosynthesis 3K radiation galaxies masses geometry & today fluctuations 10⁻¹² s 10⁻⁶ s 10¹²s 10¹⁸s 10[°] s 10⁶ s inflation radiation matter ?

End of inflation

- homogeneous & isotropic
 Friedmann cosmology
- spatially flat $\sum_i \Omega_i = 1, \quad i = \text{particle species}$
- empty all conserved charges are diluted during inflation
- Cold the scalar field oscillates, effectively p = 0 cosmology

need to heat up and generate matter-antimatter asymmetry

Preheating and thermalisation

coherent oscillations of inflaton ϕ decay into ϕ and χ "particles" thermalise later on

time in units of 1/m

Felder & Kofman 2007

 $T_{\rm rh} < 10^{16} {\rm GeV}$ from $H_{\rm end inf} < 10^{-5} M_{\rm P}$, instantaneous heating, $g(T_{\rm rh}) = 10^2$

Radiation-dominated Universe

maximal $T_{\rm rh} \sim {\rm GUT}$ scale below GUT scale all interaction rates $\Gamma \gg H \Rightarrow$ local thermal equilibrium $\Gamma/H \sim \alpha_{\rm GUT} M_{\rm P}/(g^{1/2}T) \sim 10^{15} {\rm GeV}/T$

Friedmann equations (flat Universe):

$$H^2 = \frac{8\pi G}{3}\epsilon, \qquad \dot{\epsilon} = -3H(\epsilon+p)$$

for ultrarelativistic particles $(T \gg m)$

$$p = \frac{\pi^2}{90}g(T)T^4$$
 in thermodynamic equilibrium

g(T) effective relativistic number of spin degrees of freedom

$$\sum_i \Omega_i = 1; \ \omega_i = \Omega_i h^2 \ (i = b, \nu, \text{ cdm}, \dots)$$

Relativistic degrees of freedom

Interaction rates

History of the early Universe

- ... cosmological inflation
- ... grand unification (?), baryogenesis (?)
- 10^{-11} s electroweak transition
- 10⁻⁵ s QCD transition
 - **1** s decoupling of neutrinos and neutrons
 - **100 s** nucleosynthesis & e^{\pm} -annihilation
- 10¹¹ s radiation-matter equality
- 10¹³ s atom formation & photon decoupling
 - ... structure formation

age of the Universe $\sim 10^{17}$ s

Baryogenesis

Sakharov's conditions (1967):

- baryon number violation
- C and CP violation

create baryonic charge

distinguish matter from anti-matter

• out of equilibrium

provide a time arrow

standard model of particle physics: conserves B - L, but allows for B + L violation at high temperatures violates C and CP (but only weakly) electroweak baryogenesis ? Kuzmin, Rubakhov & Shaposhnikov 1985

Electroweak transition ($t \sim 10 \text{ ps}$)

LEP: $m_H \ge 115 \text{GeV}$

no electroweak SM baryogenesis

MSSM parameter space allows 1st order transition and baryogenesis

Cosmic QCD transition ($t \sim 10 \ \mu s$)

scales: $T\simeq$ 190 MeV, $d_{
m H}\simeq$ 10 km

relics? (strangelets, magnetic fields, primordial black holes, ...)

initial conditions for primordial nucleosynthesis (homogeneous?)

influence on cosmological perturbations

Order of the transition, T_{QCD} and equation of state

lattice QCD indicates for physical quark masses that transition is crossover

transition temperature $T_{QCD} = 192(7)(4)$ MeV Cheng et al. 2006, but $T_{QCD} = 151(3)(3)$ MeV Aoki et al. 2006

Consequences of QCD transition

- probably no relics (strangelets, magnetic fields, black holes)
 crossover, scales too small
 Boyanovsky, de Vega & Schwarz 2007
- feature in primordial gravitational wave spectrum

Watanabe & Komatsu 2006

Neutrino decoupling $(t \sim 1 \text{ s})$

radiation fluid at $T \sim 1$ MeV: $\gamma, e, \nu_e, \nu_\mu, \nu_\tau$

 ν_{μ}, ν_{τ} neutral current interactions $\Gamma_{\mu,\tau} = 0.06 G_{\rm F}^2 T^5$ ν_e charged and neutral current interactions $\Gamma_e = 0.3 G_{\rm F}^2 T^5$

 ν decouple at $H \sim \Gamma \Rightarrow T_{\nu_e} = 2.2 \text{ MeV}$ Hannestad 2007

collisional damping of density perturbations $\delta \equiv \delta \epsilon / \epsilon$

$$\ddot{\delta} + \frac{\eta_{\text{visc}}}{\epsilon} k_{\text{ph}}^2 \dot{\delta} + c_s^2 k_{\text{ph}}^2 \delta = 0 \quad \text{for} \quad k_{\text{ph}} \gg H$$

primordial fluctuations are washed out $M \equiv (4\pi/3)\rho_{cdm}(\pi/k_{ph})^3$

$$\delta \propto \exp\left[-\left(\frac{M_{\nu-\text{dmp}}}{M}\right)^{1/4}\right]$$
 for $M < M_{\nu-\text{dmp}} = 2 \times 10^{-6} M_{\odot}$

Schmid, Schwarz & Widerin 1999

Primordial nucleosynthesis (D,³He, ⁴He, ⁷Li)

 $N_{\nu} = 3$ & homogeneity deuteron binding energy 1.2 MeV small baryon density $\omega_{\rm b} = 3.66 \times 10^7 \eta, \ \eta \equiv n_{\rm b}/n_{\gamma} \simeq 6.1 \times 10^{-10}$

t < 1 s: neutrons in β -equilibrium $X_n \equiv n_n/n_p \simeq 1/6$ t > 100 s: neutrons decay, $X_n \simeq 1/7$ t < few minutes: nucleosynthesis $Y_p \equiv \rho_{\rm 4He}/\rho_{\rm b} \simeq 1/4$

```
CMB \omega_{\rm b} = 0.02229(73)
D/H
<sup>7</sup>Li
         \omega_{\rm b} = 0.006 - 0.016
```

Spergel et al. 2006 $\omega_{\rm b} = 0.0213(13)(4)$ O'Meara et al. 2006 Coc et al. 2001

Bounds on new physics

 N_{ν} effective number of neutrino dof $H \simeq 1.66(2 + \frac{7}{4}N_{\nu} + ...)^{1/2}T^2/M_{\rm P}$ non-trivial agreement of BBN (⁴He & D/H) constraint (black) and CMB & LSS & SN1a constraint (coloured) impressive agreement with LEP:

 $N_{\nu} = 2.994 \pm 0.012$ SM fit

 N_{ν} = 2.92 ± 0.06 invisible Z width

Hannestad 2005

PDG 2006

Evidence for non-baryonic (non-nuclear) matter

flatness + SN 1a require $\Omega_{\rm m} \sim 0.3$ or $\omega_{\rm m} \sim 0.15$ with $\mathit{h} = 0.7$

from CMB: $\omega_{\rm m} = 0.127^{+0.009}_{-0.007}$ Spergel et al. 2006

from BBN: $\omega_{\rm b} = 0.0213(13)(4)$

O'Meara et al. 2006

non-baryonic (non-nuclear) component with non-relativistic eos \Rightarrow cold dark matter (cdm)

caveat: primordial black holes, strangelets, could carry baryon number but would not participate in BBN; thus $\omega_{\rm b} = \omega_{\rm m}$ not excluded, rather $\omega_{\rm nuclei} \sim 0.15\omega_{\rm m}$

e^{\pm} annihilation

 e^{\pm} annihilation happens at $T\sim m_e/3\sim 0.2~{
m MeV}$

at that time ν s are decoupled, T_{γ} increases relative to T_{ν}

after e^{\pm} annihilation:

$$T_{\nu}(t) = \left(\frac{4}{11}\right)^{1/3} T_{\gamma}(t), \qquad T_{\nu}(t_0) = 1.946 \pm 0.001 \text{ K}$$

indirect detection: $N_{\nu} > 0$ from BBN and CMB/SN1a independently

Photon decoupling — cosmic microwave background

binding energy of H-atom 13.6 eV 2s \rightarrow 1s forbidden $\eta = \frac{4}{11} \eta_{\text{BBN}} \simeq 2 \times 10^{-10}$

high entropy delays atom formation: $T_{\rm atom} \sim 0.3~{\rm eV}$

fraction of free electrons x_e drops, photons decouple:

 $T_{
m dec} \sim$ 0.2 eV, $z_{
m dec} \sim$ 1100 $t_{
m dec} \sim$ 350,000 yr

Planck spectrum $T_0 = 2.725 \pm 0.001$ K

Fixsen et al. 1997

Summary of 3rd lecture

heating up after inflation 10^2 GeV (min. scale for baryogenesis) $< T_{\rm rh} < 10^{16}$ GeV

series of (thermal) phase transitions gut, ew, qcd

synthesis of light nuclei: 75% H, 25% ⁴He, rest metals (< 1%)

formation of atoms and photon decoupling: cosmic microwave background

physical parameters: $T_{\rm rh}, T_0, \omega_{\rm b}$

what is the mechanism to generate a tiny baryon (nucleon) excess $n_b/s = (8.2 \pm 0.4) \times 10^{-11}$?